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In our previous paper [V. Kolář and J. Šístek, “Orbitally compact and loose vortex regions,” Phys. Fluids 35,
121708(2023)] the eigenvalue-based measure of orbital compactness of particle motion inside a vortex for compress-
ible flows has been proposed. Here, a complementary eigenvector-based geometric property of cylindricity (three-
dimensional /3D/ aspect) is introduced. This property is closely related to the local flow axisymmetry in the swirl
plane (two-dimensional /2D/ aspect) which explains the positive response of the vortex-identification ∆-criterion, and
closely related criteria swirling strength and Rortex (Liutex), for almost no vorticity and a large (without any limita-
tion) rate-of-strain magnitude. A relatively high correlation between orbital compactness, cylindricity, and widely used
vortex-identification criteria has been found for several flow examples.

The well-known vortex-identification ∆-criterion,1–4 iden-
tifies a vortex by the existence of complex eigenvalues of the
velocity-gradient tensor (VGT), that is, by a positive value of
the discriminant ∆. Assuming complex eigenvalues of the
VGT, the corresponding local instantaneous streamline pat-
tern is spiraling or closed on the so-called swirl plane spanned
by the complex eigenvectors in a local reference frame mov-
ing with the point.

In connection with the ∆-criterion, there is a fundamen-
tal statement in Chong et al.1 (note that the term "rate-of-
deformation tensor" is employed for the VGT): "a vortex core

is a region of space where the vorticity is sufficiently strong

to cause the rate-of-strain tensor to be dominated by the ro-

tation tensor, i.e., the rate-of-deformation tensor has complex

eigenvalues." This statement has been recalled in full many
times in the literature dealing with vortices.5–16 However,
this statement—of the otherwise excellent paper by Chong et
al.1—is incorrect as the first part of the statement does not
represent a necessary condition for the second one.

According to the ∆-criterion, a vortex may be positively
identified by negligible vorticity and extremely large (without
any limitation) rate-of-strain magnitudes, and not necessarily
by the relative vorticity dominance as stated above. What is
behind the existence of a vortex according to the ∆-criterion
for negligible vorticity is local flow axisymmetry in the swirl
plane. It can be easily verified by considering the VGT of
the deviatoric form representing negligible rigid body rota-
tion aligned with an unlimited stretching (or contraction) in
the swirl plane, and perhaps even combined with an arbitrary
simple shear, that is, by considering the VGT of the following
form:

VGT =





∓S −ω ϕ
ω ∓S ψ
0 0 ±2S



 (1)

or its transpose.
Vorticity, denoted as ω , is non-zero but negligible, strain

rate S is arbitrarily large, both ω and S are positive parame-
ters such that S >> ω , a superimposed simple shear is given
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by arbitrary values of ϕ and ψ . The discriminant of the char-
acteristic equation reads ∆ = (IID/3)3 +(IIID/2)2. Here IID

and IIID denote the second and third invariants of the devia-
toric (traceless) form D of an arbitrary VGT input. Consider-
ing the deviatoric form allows us to identify vortices in both
compressible and incompressible flows.17 On closer examina-
tion, by evaluating ∆ for non-zero vorticity, ω > 0, one finds
that the VGT (1) has always complex eigenvalues (S± iω) for
stretching or (−S± iω) for contraction in the swirl plane as
∆ > 0,

∆ =
1

27
ω6 +

2
3

ω4S2 +3ω2S4. (2)

The discriminant ∆ is always positive, despite the negligible
vorticity and despite the unlimited stretching or contraction
(S >> ω). Moreover, ∆ is not a function of a superimposed
simple shear appearing in (1) as ϕ and ψ do not enter IID and
IIID, and hence do not enter the expression for ∆.

The same conclusion for almost no vorticity and an ex-
tremely large (without any limitation) rate-of-strain magni-
tude holds for the closely related vortex-identification criteria
having a basis in the already mentioned ∆-criterion: swirling
strength18,19 and Rortex (Liutex).20,21 Behind the positive re-
sponse to vortex existence of all the three mentioned criteria
stands the dominance of axisymmetry in the swirl plane as al-
ready shown through Eqs. (1) and (2). Hence, by no means,
the vortex existence according to the ∆-criterion is based
on the condition of high vorticity-to-strain-rate ratio. This
was partially treated regarding Rortex (Liutex) and swirling
strength in Refs.22,23

Assuming a standard double decomposition of the VGT in
terms of the sum of vorticity tensor Ω and strain-rate tensor
S, the vortex boundary is found for the ratio of the (Frobe-
nius) norms ∥Ω∥/∥S∥ equal (everywhere at the boundary)
to one for the Q-criterion24 and at least to (approx. mini-
mum value of the ratio ∥Ω∥/∥S∥ at the boundary of) 0.58
for the more tolerant λ2-criterion,25 see Fig. 3 in Ref.19 In-
terestingly, the magnitude ratio ∥Ω∥/∥S∥ may turn out to be
negligibly small, ∥Ω∥<< ∥S∥, for the recently proposed Ror-
tex (Liutex) by Liu et al.20 while the so-called Ω-criterion,
also recently proposed by Liu et al.26, is based on the idea
that “vorticity overtakes deformation in vortex”, that is, by
the condition ∥Ω∥ > ∥S∥, the same condition as required for
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Two complementary eigen-based geometric properties of a vortex 2

the widely used Q-criterion.24 Weak and dissipating vortices
may be, unlike the criteria Q and λ2 requiring a significant
value of the ratio ∥Ω∥/∥S∥, better covered by the most tol-
erant VGT-based criteria such as the complex-domain-based
criteria (∆-criterion, swirling strength, and Rortex/Liutex).

The local flow axisymmetry in the swirl plane is a 2D as-
pect while the cylindrical axisymmetry (shortly, cylindricity)
of the flow is a 3D aspect. The perfect cylindricity conve-
niently expressed in the frame of strain-rate principal axes is
described by the VGT of the form (1) without an additional
superimposed simple shear (ϕ = ψ = 0), that is, by the tensor
form

VGT =





∓S −ω 0
ω ∓S 0
0 0 ±2S



 . (3)

Such a local axisymmetry is fulfilled provided that (i) the
strain-rate tensor (i.e. the symmetric part of the VGT) is ax-

isymmetric as the strain rate of the submatrix

(

∓S −ω
ω ∓S

)

rep-

resents a 2D uniform radial contraction or stretching (coupled
with a perpendicular uniaxial stretching or contraction in the
third direction) and (ii) the vorticity vector coincides with the
axis of strain-rate axisymmetry (recall that the associated vor-
ticity tensor is given by the antisymmetric part of the VGT).

Let us show that the necessary and sufficient condition for
an arbitrary VGT-input with non-zero vorticity to be axisym-
metric is the orthogonality of eigen-basis vectors. The con-
clusion obtained in 3D can be reduced to the 2D axisymmet-
ric case. The orthogonality is understood with respect to the
usual dot product for complex vectors. The orthogonality con-
dition is equivalent to the condition that the VGT represents a
so-called normal matrix as shown below. That is, redenoting

the abbreviation VGT simply by G, this condition reads

GG
T = G

T
G or (GG

T −G
T

G) = 0. (4)

Let us examine the 3x3 matrix (GG
T −G

T
G) in the ref-

erence frame of strain-rate principal axes for not necessarily
divergence-free input G with non-zero vorticity (otherwise ar-
bitrary)

G =





S1 −ω3 ω2
ω3 S2 −ω1
−ω2 ω1 S3



 , (5)

GG
T −G

T
G=





0 2ω3(S1 −S2) 2ω2(S3 −S1)
2ω3(S1 −S2) 0 2ω1(S2 −S3)
2ω2(S3 −S1) 2ω1(S2 −S3) 0



 .

(6)
According to the structure of the symmetric matrix (6), the

condition (4) is satisfied only by the perfect cylindricity of G

expressed by (3). In this case, S1 = S2 =∓S, S3 =±2S, ω1 =
ω2 = 0, ω3 = ω . Note that the principal strain-rate differences
in (6) describe just a deviatoric motion assumed already for
simplicity in (1), and in its special case (3).

Both structures (1) and (3) have a pair of complex conjugate
eigenvalues. The existence of complex conjugate eigenvalues
of the VGT in general ensures the largest volumetric region of
a vortex core among the widely used local region-type crite-
ria Q, λ2, ∆, and λci for all practical purposes.19 Recall that
the streamline pattern (in a local reference frame moving with
the examined point) is spiraling or closed on a swirl plane
spanned by the complex eigenvectors. Within the critical-
point theory these points are elliptic ones (focus or centre).
The eigen decomposition of the VGT in the domain character-
ized by complex conjugate eigenvalues (shortly, the complex

domain indexed as CD) reads12

(G)CD =



vcr + ivci vcr − ivci vr









λcr + iλci 0 0
0 λcr − iλci 0
0 0 λr







vcr + ivci vcr − ivci vr





−1

(7)

where (λcr ± iλci,λr) denotes the eigenvalues and (vcr ±
ivci,vr) stands for the associated eigenvectors. The condi-
tion that the discriminant of the characteristic equation for G

is positive, ∆ > 0, implies that G has complex eigenvalues
(λci > 0). The time period for completing one revolution of
the streamline is given by 2π/λci, and therefore, the quantity
λci is taken to be defined non-negative.19 As mentioned ear-
lier, for including compressible flows, the discriminant con-
dition, ∆ > 0, holds for deviatoric quantities.17 The swirling-
strength criterion18,19 is given by the imaginary part λci. This
criterion is one of the most widely used and studied even from
the viewpoint of the dynamics of vortices, and its evolution
equation has been recently derived.27

Here we deal with the departure from the full 3D cylindrical

axisymmetry, that is, from the perfect cylindricity, of vortical
flows. Previous studies28,29 dealt with the 2D symmetry as-
pects in the swirl plane only, using the ratio of real-valued
dual-eigenvectors representing the orthogonal elongated di-
rections in the swirl plane. Thus, the dual-eigenvectors were
employed in Refs.28,29 as a substitute for a pair of complex
conjugate eigenvectors. Further, the departure from the 3D
cylindrical axisymmetry (perfect cylindricity) has been al-
ready investigated in Kolář and Šístek30 though using much
less satisfactory approach (partially based on dual eigenvec-
tors) than the one described below.

The departure from the perfect cylindricity expressed by
the inequality (GG

T −G
T

G) ̸= 0 can be examined through
the non-orthogonality of eigen-basis vectors within the com-
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Two complementary eigen-based geometric properties of a vortex 3

plex domain through the corresponding determinant of unit-
eigenvector matrix. The determinant of unit-eigenvector ma-
trix has its geometric interpretation which can be derived from
the geometric interpretation of a determinant itself given by
the associated volume of a parallelepiped, which is here ge-
ometrically defined by the three unit eigenvectors. The value
of the determinant can be negative or even complex, hence the
decisive quantity representing the volume is the absolute value
of the determinant, and it ranges between 0 and 1. The former
holds for (at least two) coincident unit eigenvectors, the latter
for orthogonal unit eigenvectors. Consequently, in the present
context, this volume serves as the cylindricity measure in the
complex domain, and it is labelled as τ below,

τ = |Det(unit-eigenvector matrix)|. (8)

Extreme situations theoretically possible are as follows:
|Det(unit-eigenvector matrix)| = 0, the corresponding eigen-
basis volume is equal to 0, and the cylindricity τ = 0 (i.e., its
minimum value); |Det(unit-eigenvector matrix)| = 1, the cor-
responding eigenbasis volume is equal to 1, and the cylindric-
ity τ = 1 (i.e., its maximum value). This approach is directly
applicable to the departure from the local flow axisymmetry
in the swirl plane (spanned by the associated complex eigen-
vectors) where the two unit complex eigenvectors are deci-
sive. The determinant of the corresponding 2D matrix repre-
sents the area of a parallelogram (again ranging between 0 and
1) instead of the whole eigenvector-based volume of a paral-
lelepiped including the real eigenvector. Note that only perfect
cylindricity, τ = 1, is based on the eigenvector orthogonality.
The difference (1−τ) expresses how far the local geometry is
from the perfect cylindricity.

There is no limitation to apply the cylindricity as a local
measure everywhere the Eulerian local region-type vortex-
identification schemes based on the VGT can be effectively
employed (within the “complex-domain envelope”).

Alongside with the local eigenvector-based geometric
property of a vortex, the already introduced cylindricity, we
have to recall the recently proposed local eigenvalue-based

geometric property of a vortex, namely the orbital compact-
ness. The orbital compactness requires that the separation of
swirling material points inside a vortex is bounded and re-
mains small. The idea of orbital compactness introduced in
Ref.19 for incompressible flows has been recently extended
and the measure of orbital compactness has been proposed
in Ref.31 for compressible flows. Orbitally compact and
loose vortex regions have been distinguished. Their bound-
ary is set very permissively and expressed through the intro-
duced eigenvalue-based measure of orbital compactness. The
investigation31 shows that some vortex-identification criteria
are too permissive, more or less ignoring the inherent vor-
tex property of orbital compactness. What is important in the
present context is that the property of orbital compactness has
been introduced as eigenvalue-based geometric property, and
the relation towards eigenvector-based cylindricity is basically
complementary, as schematically depicted in Fig. 1 for an ar-
bitrary VGT input within the complex domain.

The measure of orbital compactness is explicitly sensitive
to the local compressibility impact through the explicit depen-

FIG. 1: Two complementary eigen-based geometric
properties of a vortex derived from different parts of the

eigen decomposition of the VGT within complex domain
(marked by the subscript CD in the figure).

dence on the first VGT invariant reflecting positive or negative
uniform dilatation.31 There is no limit to describe the extreme
behavior of real flows (e.g., shock waves) provided that reli-
able local VGT data are available, for example, from detailed
numerical simulations.

The parameter σ of orbital compactness for incompress-
ible flows reads σ = 1− 3(λcr/λci)

2 indicating compactness
σ = 1 for λcr = 0. Only positive values of σ indicate that the
examined point is a part of an orbitally compact vortex region.
Any negative outcome represents an orbitally loose vortex re-
gion. More negative values of σ mean orbitally looser vortex
regions.

The two complementary geometric properties are indepen-
dent. For example, an extreme case of the perfect cylindricity
(τ = 1) may be combined with no orbital compactness and
vice versa. All four extremal situations given by extreme val-
ues of both parameters for incompressible flow are stated be-
low. Let us recall for simplicity the VGT structure (3) rep-
resenting an incompressible flow under the already employed
condition S >> ω . As a result we obtain the case of perfect
cylindricity, τ = 1, but the measure of orbital compactness
σ is extremely negative (σ → −∞) indicating an extremely
orbitally loose vortex region. On the contrary, for the oppo-
site condition ω >> S, the VGT structure (3) results again in
perfect cylindricity, τ = 1, with an almost ideal orbital com-
pactness (σ → 1). Note that the limiting case σ = 1 repre-
sents a rigid-body rotation for incompressible flow. More-
over, the situation (1) for ω >> S, now coupled with a much
stronger simple shear, that is, satisfying |ϕ| >> ω >> S

and/or |ψ|>> ω >> S, leads to an almost ideal orbital com-
pactness (σ → 1) coupled with an almost zero cylindricity
(τ → 0). And finally, the case (1) for |ϕ| >> S >> ω and/or
|ψ | >> S >> ω gives an extremely negative σ (σ → −∞)
indicating an extremely orbitally loose vortex region with an
almost zero cylindricity (τ → 0).

The above configurations of extreme values of τ and σ are
schematically depicted in Fig. 2. It should be emphasized that
this schematic of streamlines stands behind the tensor forms
(1) for the lower streamlines in Fig. 2 and (3) for the upper
streamlines in Fig. 2. The picture would be different for dif-
ferent tensor structures and resulting extreme situations. For
example, the usual shear appearing in the swirl plane, which
may be considered as “inherent vortex shear”, makes the local
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Two complementary eigen-based geometric properties of a vortex 4

FIG. 2: Local streamline features at extreme situations for
the given examples of VGT.

spiraling of streamlines in the swirl plane (or their projection
onto the swirl plane) more elliptic and lowers the angle be-
tween the corresponding complex eigenvectors as well as the
cylindricity outcome.

Recall that both complementary eigen-based vortex prop-
erties, orbital compactness and cylindricity, are defined ex-
clusively for the complex domain (λci > 0). Therefore, all
the four extreme cases of the VGT discussed in the previous
paragraph are still identified as part of a vortex according to
the complex-domain ∆-criterion,1–4 as well as according to
the other ∆-based criteria: swirling strength18,19 and Rortex
(Liutex).20,21 Also note that unlike the well-known vortex-
identification criteria not based on the complex domain Q and
λ2, the swirling strength and Rortex (Liutex) suffer from the
“disappearing vortex problem”,19,23,32 the clearly counterintu-
itive phenomenon appearing by increasing the vorticity mag-
nitude for an otherwise fixed tensor configuration.

In this connection (and also in view of practical applica-
tions), it is necessary to keep in mind one issue for both ge-
ometric properties proposed: they are not defined outside the
complex domain, and hence cannot provide a tool to resolve
the “disappearing vortex problem” or any other problems ex-
tending beyond the boundary of the complex domain.

Both eigen-based vortex properties, though indepen-
dent, are mostly well correlated with widely used vortex-
identification criteria Q and λ2 as shown in Fig. 3 using nu-
merical data of four different flow situations. These flow sit-
uations can be summarized as follows (for more details, see
Refs.33–35): a flow past a sphere (Re=300), a flow around an
inclined flat plate (Re=300), a hairpin vortex of boundary-
layer transition (Re=730, based on the displacement thick-
ness), and the reconnection process of two Burgers vortices

(circulation-based Re=10 000). The sphere and the plate prob-
lems were solved using the finite element method on unstruc-
tured meshes with 11 and 21×106 nodes, respectively, while
the boundary-layer transition and the Burgers problems were
solved using the finite difference method on structured grids
with 2.3 and 2×106 grid points. To avoid numerical noise
and identification of apparently false vortex regions, the eval-
uation is carried out within the rationally taken vortex enve-
lope regions given by very low positive thresholds of λci set
for each flow situation. As already mentioned, the complex
domain ensures the largest volumetric region of a vortex core
among the widely used local region-type criteria.19 These vor-
tex envelopes are explicitly depicted for the four different flow
situations in the first column of Fig. 3.

The following conclusion can be drawn: alongside with the
application of the complex-domain-based criteria, it seems ra-
tional to require a certain positive level of the geometric mea-
sures proposed (e.g., as employed in Fig. 3) to avoid the over-
identification of vortices in flow regions dominated by strain-
ing and shearing motions.

In this Letter, we have investigated two basic geomet-
ric properties of a vortex which are closely related to the
eigen decomposition of the VGT in the domain character-
ized by complex conjugate eigenvalues. From the view-
point of the eigen decomposition of the VGT, the two proper-
ties, the eigenvector-based cylindricity proposed here and the
eigenvalue-based orbital compactness31 proposed recently,
can be understood to be mutually complementary.

Let us remark on the compressibility aspect. Unlike the
eigenvalues and the eigenvalue-based orbital compactness, the
eigenbasis vectors are independent of a non-zero isentropic
compression or expansion given by a uniform dilatation and,
consequently, the same holds for the eigenvector-based cylin-
dricity measure.

The reliability of the eigen-based vortex characteristics is
closely connected to the accuracy of the VGT, and therefore,
these characteristics are more suitable for the local analysis of
numerically simulated data (such as DNS data) than experi-
mental ones. There are non-local vortex-identification meth-
ods that proved their usefulness for the interpretation of ex-
perimental data (such as PIV data), for example, Graftieaux
et al.,36 which are not as sensitive to the accuracy of spatial
derivatives.

The applicability extent of the proposed measures in (high-
Reynolds number) turbulent and transitional flows is, in gen-
eral, just the same as the one of the Eulerian local region-type
vortex-identification schemes based on the VGT, see, e.g., the
review paper of Epps12 and the relevant references therein.

The proposed geometric properties and measures should
primarily restrict the relaxed assumption of the complex-
domain-based criteria which theoretically find a vortex for al-
most no vorticity and an extremely large (without any limita-
tion) rate-of-strain magnitude.

Regarding future possibilities, the combination of the ob-
tained metrics (e.g., their product) may be plausible for in-
compressible flows and orbitally compact vortex regions31

(σ ≥ 0) due to their corresponding ranges between 0 and 1.
In compressible flows, the orbital compactness may exceed 1
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Two complementary eigen-based geometric properties of a vortex 5

FIG. 3: From left to right: Vortex envelopes based on very low positive threshold of λci, compactness (0.5), cylindricity (0.5),
Q-criterion, and λ2-criterion. The datasets are from top to bottom: a flow past a sphere, a flow around an inclined flat plate, a

hairpin vortex of boundary-layer transition, and the reconnection process of two Burgers vortices.

without any limitation for higher compression rates while the
cylindricity measure still keeps its “incompressible” range be-
tween 0 and 1. Consequently, their combination appears less
suitable.

The VGT is a key quantity to describe and analyze the local
flow kinematics. The velocity gradient analysis is one of the
powerful tools in the research of vortices, see, among many
others, the original vortex-identification paper by Chakraborty
et al.19, or, for example, the very recent paper of Arun and
Colonius37 dealing with the head-on vortex ring collision.
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