![]() |
valib
Vortex Analysis LIBrary
|
Z.P. Bažant and B.H. Oh. Efficient numerical integration on the surface of a sphere. ZAMM Zeitschrift für Angewandte Mathematik und Mechanik, 66(1):37–40, 1986.
P. Chakraborty, S. Balachandar, and R.J. Adrian. On the relationships between local vortex identification schemes. Journal of Fluid Mechanics, 535:189–214, 2005.
M.S. Chong. A general classification of three-dimensional flow fields. Physics of Fluids A, 2(5):765–777, 1990.
U. Dallmann. Topological structures of three-dimensional flow separation. Technical Report 221-82 A07, Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt DFVLR-IB, 1983.
A.E. Ehret, M. Itskov, and H. Schmid. Numerical integration on the sphere and its effect on the material symmetry of constitutive equations—a comparative study. International Journal for Numerical Methods in Engineering, 81:189–206, 2010.
Y. Gao, Y. Yu, J. Liu, and C. Liu. Explicit expressions for Rortex tensor and velocity gradient tensor decomposition. Physics of Fluids, 31(8):081704, 2019.
J.H. Hannay and J.F. Nye. Fibonacci numerical integration on a sphere. Journal of Physics A: Mathematical and General, 37(48):11591–11601, 2004.
J.C.R. Hunt, A.A. Wray, and P. Moin. Eddies, stream, and convergence zones in turbulent flows. Technical report, Center for Turbulence Research, 1988.
J. Jeong and F. Hussain. On the identification of a vortex. Journal of Fluid Mechanics, 285:69–94, 1995.
V. Kolář and J. Šístek. Recent progress in explicit shear-eliminating vortex identification. In H. Chowdhury and F. Alam, editors, Proceedings of the 19th Australasian Fluid Mechanics Conference, Melbourne, Australia, December 8-11, 2014. RMIT University, Melbourne, Australia, 2014. Article no. 274.
V. Kolář and J. Šístek. Corotational and compressibility aspects leading to a modification of the vortex-identification Q-criterion. AIAA Journal, 53(8):2406–2410, 2015.
V. Kolář and J. Šístek. Vortex and the balance between vorticity and strain rate. International Journal of Aerospace Engineering, 2019. Article ID 1321480.
V. Kolář, J. Šístek, F. Cirak, and P. Moses. Average corotation of line segments near a point and vortex identification. AIAA Journal, 51(11):2678–2694, 2013.
V. Kolář. Vortex identification: New requirements and limitations. International Journal of Heat and Fluid Flow, 28(4):638–652, 2007.
V. Kolář. Compressibility effect in vortex identification. AIAA Journal, 47(2):473–475, 2009.
C. Liu, Y. Gao, S. Tian, and X. Dong. Rortex—A new vortex vector definition and vorticity tensor and vector decompositions. Physics of Fluids, 30(3):035103, 2018.
O. K. Smith. Eigenvalues of a symmetric 3x3 matrix. Communications of the ACM, 4(4):168, 1961.
H. Vollmers, H.-P. Kreplin, and H.U. Meier. Separation and vortical-type flow around a prolate spheroid – evaluation of relevant parameters. In Proceedings of the AGARD Symposium on Aerodynamics of Vortical Type Flows in Three Dimensions, volume AGARD-CP-342, pages 14–1--14–14, Rotterdam, Netherlands, Apr. 1983.
J. Zhou, R.J. Adrian, S. Balachandar, and T.M. Kendall. Mechanisms for generating coherent packets of hairpin vortices in channel flow. Journal of Fluid Mechanics, 387:353–396, 1999.
J. Šístek and V. Kolář. Average contra-rotation and co-rotation of line segments for flow field analysis. Journal of Physics: Conference Series, 822(1):012070, 2017.