valib
Vortex Analysis LIBrary
Bibliography
[1]

Z.P. Bažant and B.H. Oh. Efficient numerical integration on the surface of a sphere. ZAMM Zeitschrift für Angewandte Mathematik und Mechanik, 66(1):37–40, 1986.

[2]

P. Chakraborty, S. Balachandar, and R.J. Adrian. On the relationships between local vortex identification schemes. Journal of Fluid Mechanics, 535:189–214, 2005.

[3]

M.S. Chong. A general classification of three-dimensional flow fields. Physics of Fluids A, 2(5):765–777, 1990.

[4]

U. Dallmann. Topological structures of three-dimensional flow separation. Technical Report 221-82 A07, Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt DFVLR-IB, 1983.

[5]

A.E. Ehret, M. Itskov, and H. Schmid. Numerical integration on the sphere and its effect on the material symmetry of constitutive equations—a comparative study. International Journal for Numerical Methods in Engineering, 81:189–206, 2010.

[6]

Y. Gao, Y. Yu, J. Liu, and C. Liu. Explicit expressions for Rortex tensor and velocity gradient tensor decomposition. Physics of Fluids, 31(8):081704, 2019.

[7]

J.H. Hannay and J.F. Nye. Fibonacci numerical integration on a sphere. Journal of Physics A: Mathematical and General, 37(48):11591–11601, 2004.

[8]

J.C.R. Hunt, A.A. Wray, and P. Moin. Eddies, stream, and convergence zones in turbulent flows. Technical report, Center for Turbulence Research, 1988.

[9]

J. Jeong and F. Hussain. On the identification of a vortex. Journal of Fluid Mechanics, 285:69–94, 1995.

[10]

V. Kolář and J. Šístek. Recent progress in explicit shear-eliminating vortex identification. In H. Chowdhury and F. Alam, editors, Proceedings of the 19th Australasian Fluid Mechanics Conference, Melbourne, Australia, December 8-11, 2014. RMIT University, Melbourne, Australia, 2014. Article no. 274.

[11]

V. Kolář and J. Šístek. Corotational and compressibility aspects leading to a modification of the vortex-identification Q-criterion. AIAA Journal, 53(8):2406–2410, 2015.

[12]

V. Kolář and J. Šístek. Vortex and the balance between vorticity and strain rate. International Journal of Aerospace Engineering, 2019. Article ID 1321480.

[13]

V. Kolář, J. Šístek, F. Cirak, and P. Moses. Average corotation of line segments near a point and vortex identification. AIAA Journal, 51(11):2678–2694, 2013.

[14]

V. Kolář. Vortex identification: New requirements and limitations. International Journal of Heat and Fluid Flow, 28(4):638–652, 2007.

[15]

V. Kolář. Compressibility effect in vortex identification. AIAA Journal, 47(2):473–475, 2009.

[16]

C. Liu, Y. Gao, S. Tian, and X. Dong. Rortex—A new vortex vector definition and vorticity tensor and vector decompositions. Physics of Fluids, 30(3):035103, 2018.

[17]

O. K. Smith. Eigenvalues of a symmetric 3x3 matrix. Communications of the ACM, 4(4):168, 1961.

[18]

H. Vollmers, H.-P. Kreplin, and H.U. Meier. Separation and vortical-type flow around a prolate spheroid – evaluation of relevant parameters. In Proceedings of the AGARD Symposium on Aerodynamics of Vortical Type Flows in Three Dimensions, volume AGARD-CP-342, pages 14–1--14–14, Rotterdam, Netherlands, Apr. 1983.

[19]

J. Zhou, R.J. Adrian, S. Balachandar, and T.M. Kendall. Mechanisms for generating coherent packets of hairpin vortices in channel flow. Journal of Fluid Mechanics, 387:353–396, 1999.

[20]

J. Šístek and V. Kolář. Average contra-rotation and co-rotation of line segments for flow field analysis. Journal of Physics: Conference Series, 822(1):012070, 2017.