Randomness and Computation, Spring'22 Homework 1

Navid Talebanfard

Deadline: 24/2 - 04:33

Let G = (V, E) be a simple undirected graph. For any two disjoint subsets $A, B \subseteq V$, let E(A, B) be the set of all edges with one endpoint in A and one in B. We say that G is (d, 2)Ramsey if for every family of d pairwise disjoint subsets $S_1, \ldots, S_d \subseteq V$ (not necessarily partitioning V) it holds that

$$\{|E(S_i, S_j)| \pmod{2} : 1 \le i < j \le d\} = \{0, 1\}.$$

- 1. Prove that for every $\epsilon > 0$ there exists n_0 such that for every $n \ge n_0$ there exists an n-vertex graph which is $(n^{\frac{1}{2}+\epsilon}, 2)$ -Ramsey.
- 2. Give an explicit graph which is $(\frac{n}{2}+1,2)$ -Ramsey.
- 3. (Bonus) Give an explicit graph which is $(\delta n, 2)$ -Ramsey for some constant $\delta < 1/2$.