Randomness and Computation, Spring'22
 Homework 1

Navid Talebanfard

Deadline: 24/2-04:33

Let $G=(V, E)$ be a simple undirected graph. For any two disjoint subsets $A, B \subseteq V$, let $E(A, B)$ be the set of all edges with one endpoint in A and one in B. We say that G is $(d, 2)$ Ramsey if for every family of d pairwise disjoint subsets $S_{1}, \ldots, S_{d} \subseteq V$ (not necessarily partitioning $V)$ it holds that

$$
\left\{\left|E\left(S_{i}, S_{j}\right)\right| \quad(\bmod 2): 1 \leq i<j \leq d\right\}=\{0,1\}
$$

1. Prove that for every $\epsilon>0$ there exists n_{0} such that for every $n \geq n_{0}$ there exists an n-vertex graph which is ($n^{\frac{1}{2}+\epsilon}, 2$)-Ramsey.
2. Give an explicit graph which is $\left(\frac{n}{2}+1,2\right)$-Ramsey.
3. (Bonus) Give an explicit graph which is ($\delta n, 2$)-Ramsey for some constant $\delta<1 / 2$.
