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A logical approach to TFNP – some references

• Buss, Kraj́ıček 1994
An application of Boolean complexity to separation problems
in bounded arithmetic

• Jěrábek 2009
Approximate counting by hashing in bounded arithmetic

• Skelley, Thapen 2011
The provably total search problems of bounded arithmetic

• Beckmann, Buss 2014
Improved witnessing and local improvement principle for
second-order bounded arithmetic

• Ko lodziejczyk, Thapen 2018
Approximate counting and NP search problems

The talk is based on the last paper, which has detailed references.
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Total Functional NP

Complexity theory usually studies decision problems.
E.g. given a graph, decide whether it has a Hamiltonian path.

We will discuss instead search problems.
E.g. given a graph, find and output a Hamiltonian path.

We are interested in search problems where

• the thing being searched for always exists

• it is recognizable in polynomial time

• it is not too big.

The class of such problems is Total Functional NP, or TFNP.
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Two examples

TFNP problems appear in yellow.

PIGEON

Input: a number n (in binary) and a circuit C

The circuit C specifies a function f : n + 1→ n.

Output: a collision in f .

That is, distinct x , x ′ < n + 1 such that f (x) = f (x ′).

RAMSEY

Input: a number n (in binary) and a circuit C

The circuit C specifies a graph G on vertices [0, n).

Output: A clique or anticlique in G of size 1
2 log n.
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Formal definition

Definition

A TFNP problem is specified by a p-time relation R(x , y) and a
polynomial bound p satisfying ∀x∃y<2p(|x |) R(x , y).

We use R as the name for the problem, suppressing the bound p.

The variables x , y range over binary strings, which we identify with
natural numbers whenever convenient.

Usually the input x is a compact description of an exponential size
object. In relativized problems, this object may be directly
described by an oracle.
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Comparing problems

Let P,Q be problems in TFNP.

P is reducible to Q, written P ≤ Q, means

“we can efficiently solve P with the help of one call to Q”

Definition

P ≤ Q if there are p-time functions f and g such that

∀x∀z Q(f (x), z) → P(x , g(x , z)).

( “solve Q at f (x)” =⇒ “solve P at x” )

P is equivalent to Q, written P ≡ Q, if P ≤ Q and Q ≤ P.
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Structure of TFNP

FP := problems solvable in p-time.

Other subclasses of TFNP are PPAD, PLS, PPP, . . .
These consist of all problems reducible to a specified problem.
E.g. PPP := {Q ∈ TFNP : Q ≤ PIGEON }.

If P=NP then all these classes collapse to FP.

Why study the structure of TFNP classes?

• we want to solve search problems

• some are easy (e.g. in FP)

• some appear hard. What are the ways they can be hard?

9 / 32



Selected TFNP classes

PPA PPP

PPAD

WPHP HOP RAMSEY

FP

PLS

Solid arrows indicate strict containment of one class in another.
Equivalently, a reduction ≤ that goes strictly in one direction.
(I am not distinguishing carefully between the names of classes and
the names of their complete problems.)
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Background - how strong is a theory?

A theory is just a set of sentences (describing properties of the
natural numbers).

PA := algebraic axioms + induction for all formulas

IΣk := algebraic axioms + induction for Σk formulas [Σk -IND]

IΣ0 < IΣ1 < IΣ2 < · · · < PA < · · · < ATR0 < . . .

As we move to the right, we can define more recursive functions.
That is, we can prove more recursive functions are total.
This gives a common measure for quite different theories.

There are sophisticated ways to measure this increase in strength,
using ordinals or measuring the growth rate of functions.
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From computability to complexity

We replace recursive functions with TFNP problems.

Definition

For a theory T ,

TFNP(T ) := {R ∈ TFNP : T proves R is total }.

What is language is T in? How do we express “R is total”?

• The language consists of a name for every p-time relation and
function. E.g. x < y , x 7→ 2p(|x |) and R(x , y).

• “R is total” is the formal sentence ∀x∃y<2p(|x |) R(x , y).

• As before, variables are binary strings, identified with numbers.
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A convenient base theory

Definition

The theory BASE consists of every true sentence of the form
∀x̄φ(x̄) where φ is quantifier free (that is, p-time).

Recall that the condition Q ≤ P is such a sentence, namely

∀x∀z Q(f (x), z) → P(x , g(x , z)).

Proposition

If T contains BASE, then TFNP(T ) is closed under reductions.

BASE also contains the algebraic axioms of PA.

For our questions, it is harmless to work only with theories
containing BASE (called in the literature e.g. ∀PV(N)).

14 / 32



Examples

TFNP(BASE) = FP (the problems solvable in p-time)

TFNP(BASE+“R is total”), for some R ∈ TFNP

Depends on robustness of R.
If R is PLS, this is just PLS.

TFNP(PA) or TFNP(ZFC) = . . . ?

Cannot be all of TFNP, unless you add BASE.
“Given a purported proof of 0 = 1 in PA, find a mistake”
is a TFNP problem that PA does not prove is total.
Discussed in [Beckmann 09, Pudlák 17]

TFNP({all true sentences}) = TFNP
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Bounded arithmetic

This is a “resource bounded” version of PA [Buss 85].

Definition

The theory ΣP
k -IND consists of

• BASE, and

• the induction axiom for every ΣP
k formula

The induction axiom for a formula φ is

φ(0) ∧ ∀x(φ(x)→ φ(x + 1)) → ∀xφ(x).

A ΣP
k property is one at level k in the polynomial hierarchy.

ΣP
1 is NP, ΣP

2 is NPNP, etc.

We need to specify a particular machine to express a ΣP
k property

in a formula. But it does not matter which one, as BASE proves
they are all equivalent.
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Bounded arithmetic

Bounded arithmetic provides a natural way to reason with and
about concepts from complexity theory.

Two properties we use here are that it can be translated into small,
uniform constant-depth Frege proofs, and the following:

Theorem [Buss 85]

ΣP
k -IND proves

“Every PΣP
k machine has a computation on every input”.

For our purposes, ΣP
k -IND is equivalent to this statement.
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Polynomial Local Search and ΣP
1 -IND

PLS (SINK OF DAG) [JPY 88]

Input: A number n (in binary) and a circuit C

C specifies a DAG G on [0, n), in which node 0 is a source.

Output: A sink in G .

Here DAG means that every edge (x , y) in G has x < y .

This has many natural equivalent problems.

E.g. find a local minimum of a function over a low degree graph.

(Formally, PLS is the class of problems ≤ SINK OF DAG.)

Theorem [BK 94]

TFNP(ΣP
1 -IND) = PLS
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Coloured Polynomial Local Search

CPLS [KST 07]

A version of PLS with some extra structure.
Find a sink in a DAG, where each node is labelled with a set of
colours that must satisfy some local conditions.

Theorem

TFNP(ΣP
2 -IND) = CPLS

This principle is useful for proof complexity lower bounds, as it is in
some sense the strongest combinatorial principle with a short proof
in resolution.
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Game Induction Principle

k-turn Game Induction Principle, GIk [ST 11]

Input: A sequence of k-turn, two-player games, together with a
winning strategy for Player B in the first game, and functions to
change a strategy for game i into a strategy for game i + 1.

Output: Winning moves for Player B in the last game.

Theorem

TFNP(ΣP
k -IND) = GIk

GIk is equivalent to [PT 12]:
Generalized PLS, GPLSk - A version of PLS where you have to
optimize an alternating min of max of min etc. rather than just
find a minimum.
Polynomial Time Equilibrium, PEk - Find a Nash equilibrium in
a k-turn, succinctly given game, where players can only make
p-time revisions to their strategies.
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TFNP

PPA PPP

PPAD

FP

PLS ≡ GI1

CPLS ≡ GI2

GI3

GI4

WPHP HOP RAMSEY

GIk ≡ TFNP(ΣP
k -IND)

New arrows follow from known
proofs in bounded arithmetic

[Pudlák 91, MPW 02]

Main open problem

For k ≥ 2, show GIk 6≡ GIk+1, w.r.t. some oracle.
In other words, show ΣP

k+1-IND is stronger than ΣP
k -IND.
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Second order theories

[Buss 85] also introduced “second-order” bounded arithmetic
theories. These are similar to ΣP

k -IND, but also allow
quantification over exponentially large objects; essentially oracles.

Two important theories are U1
2 and its extension V 1

2 .

Theorem [Buss 85]

U1
2 proves
“Every PSPACE machine has a computation on every input”.

V 1
2 proves
“Every EXPTIME machine has a computation on every input”.

For our purposes, U1
2 and V 1

2 are equivalent to these respective
statements.

These are uniform versions of Frege and Extended Frege proof
systems. U1

2 can formalize counting and is very good at proving
combinatorial statements.
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Local Improvement Principle

Local Improvement Principle, LI [KNT 11]

Input: A large DAG, with an initial labelling of nodes, and local
rules about how to relabel nodes to improve their “score”.

Output: A labelling of part of the graph with maximal score.

Linear Local Improvement Principle, LLIlog

A restriction of LI, where the DAG is just a line and scores are at
most logarithmic in the size parameter.

Theorem [KNT 11, BB 14]

TFNP(U1
2 ) = LLIlog

TFNP(V 1
2 ) = LI
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TFNP

PPA PPP

PPAD

FP

PLS ≡ GI1

CPLS ≡ GI2

GI3

GI4

LLIlog

LI

WPHP HOP RAMSEY

= TFNP(∃ EXPTIME computations)

= TFNP(∃ PSPACE computations)

= TFNP(∃ PΣP
4 computations)

...

...

(Wrong proof / PTFNP

of [PG 18] probably

lives at or above LI)
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Approximate counting

The problems WPHP, HOP and RAMSEY can all be proved total
using arguments based on approximate counting.

Proof of the finite Ramsey Theorem

We are given a graph G of size n. Choose the first node in G .
Either it is has an edge to at least ( 1

2 − ε)n other nodes, or it is has
no edge to at least ( 1

2 − ε)n other nodes . . .

Q1. Is there a formal theory capturing this kind of counting?

Q2. Is every TFNP-style principle, provable in first-order bounded
arithmetic, already provable in approximate counting?

Q3. Is every TFNP-style principle, provable in first-order bounded
arithmetic, already provable in ΣP

2 -IND / reducible to CPLS?

A1. Yes

A2. No (at least relative to an oracle)

A3. This is the main open problem again
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Approximate counting

Definition [Jěrábek 09]

The theory APC2 consists of

• ΣP
1 -IND, and

• rWPHP(PNP), the PNP retraction weak pigeonhole principle
stating there is no PNP surjection n � 2n. with PNP inverse.

Theorem [Jěrábek 09]

In APC2 we can express “a set X has size approximately n, with
some multiplicative error” and can formalize proofs using this
notion, such as the Ramsey theorem, the tournament principle, etc.

Theorem [KT 18]

APC2 does not prove that CPLS is total.
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Proof that APC2 does not prove CPLS is total, part 1

Definition

A ΣP
2 search problem is like a TFNP problem, except that the

relation R(x , y) is coNP, rather than p-time.

Given a purported solution to such a problem, there may be a
counterexample, showing that it is not a solution.

Definition

A TFNP problem Q(x , y) is PLS counterexample reducible to a
ΣP

2 search problem R(x ′, y ′) if we can solve Q as follows:

1. Given x , compute in p-time an instance x ′ of R.

2. Let y ′ be a purported solution of R satisfying R(x ′, y ′).

3. Compute y from x and y ′ by solving a PLS problem.

4. Either y is a solution satisfying Q(x , y), or y is a
counterexample witnessing that R(x ′, y ′) is false.
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Proof that APC2 does not prove CPLS is total, part 2

We formalize the PNP retraction weak pigeonhole principle as a
class rWPHP2 of ΣP

2 search problems.

Definition

The class APPROX consists of all TFNP problems which are PLS
counterexample reducible to problems in rWPHP2.

Theorem

APPROX = TFNP(APC2)

Theorem

CPLS /∈ APPROX, relative to an oracle.
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Proof that APC2 does not prove CPLS is total, last part

Theorem (from last slide)

CPLS /∈ APPROX, relative to an oracle.

Proof. We use a random restriction and a kind of switching
lemma, developed in [PT 19], to construct a partial oracle α for an
instance of CPLS such that

• α does not contain a solution to CPLS

• α fixes replies to every NP query made by a PNP machine on
most inputs, and thus the output of the machine, for a
suitable notion of “fixes”.

We show that α contains a purported solution y ′ to our
rWPHP(PNP) problem, but it is still hard to find a solution to
CPLS in α or to find a counterexample witnessing that y ′ is not a
solution to rWPHP(PNP), even if we have the power to solve PLS
problems.
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TFNP

PPA PPP

PPAD

FP

PLS ≡ GI1

CPLS ≡ GI2

GI3

GI4

LLIlog

LI

WPHP HOP RAMSEY

APPROX

Open, for k ≥ 2:

GIk 6≡ GIk+1?

Our result:
CPLS 6≤ APPROX
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