
A logical approach to TFNP

Neil Thapen

Institute of Mathematics
Czech Academy of Sciences

Reflections on Propositional Proofs in Algorithms and Complexity

FOCS 2021, online, 7 February 2022

1 / 32

A logical approach to TFNP – some references

• Buss, Kraj́ıček 1994
An application of Boolean complexity to separation problems
in bounded arithmetic

• Jěrábek 2009
Approximate counting by hashing in bounded arithmetic

• Skelley, Thapen 2011
The provably total search problems of bounded arithmetic

• Beckmann, Buss 2014
Improved witnessing and local improvement principle for
second-order bounded arithmetic

• Ko lodziejczyk, Thapen 2018
Approximate counting and NP search problems

The talk is based on the last paper, which has detailed references.

2 / 32

Outline

Total Functional NP

Some logic

Bounded arithmetic and TFNP

Approximate counting and TFNP

3 / 32

Total Functional NP

Some logic

Bounded arithmetic and TFNP

Approximate counting and TFNP

4 / 32

Total Functional NP

Complexity theory usually studies decision problems.
E.g. given a graph, decide whether it has a Hamiltonian path.

We will discuss instead search problems.
E.g. given a graph, find and output a Hamiltonian path.

We are interested in search problems where

• the thing being searched for always exists

• it is recognizable in polynomial time

• it is not too big.

The class of such problems is Total Functional NP, or TFNP.

5 / 32

Two examples

TFNP problems appear in yellow.

PIGEON

Input: a number n (in binary) and a circuit C

The circuit C specifies a function f : n + 1→ n.

Output: a collision in f .

That is, distinct x , x ′ < n + 1 such that f (x) = f (x ′).

RAMSEY

Input: a number n (in binary) and a circuit C

The circuit C specifies a graph G on vertices [0, n).

Output: A clique or anticlique in G of size 1
2 log n.

6 / 32

Formal definition

Definition

A TFNP problem is specified by a p-time relation R(x , y) and a
polynomial bound p satisfying ∀x∃y<2p(|x |) R(x , y).

We use R as the name for the problem, suppressing the bound p.

The variables x , y range over binary strings, which we identify with
natural numbers whenever convenient.

Usually the input x is a compact description of an exponential size
object. In relativized problems, this object may be directly
described by an oracle.

7 / 32

Comparing problems

Let P,Q be problems in TFNP.

P is reducible to Q, written P ≤ Q, means

“we can efficiently solve P with the help of one call to Q”

Definition

P ≤ Q if there are p-time functions f and g such that

∀x∀z Q(f (x), z) → P(x , g(x , z)).

(“solve Q at f (x)” =⇒ “solve P at x”)

P is equivalent to Q, written P ≡ Q, if P ≤ Q and Q ≤ P.

8 / 32

Structure of TFNP

FP := problems solvable in p-time.

Other subclasses of TFNP are PPAD, PLS, PPP, . . .
These consist of all problems reducible to a specified problem.
E.g. PPP := {Q ∈ TFNP : Q ≤ PIGEON }.

If P=NP then all these classes collapse to FP.

Why study the structure of TFNP classes?

• we want to solve search problems

• some are easy (e.g. in FP)

• some appear hard. What are the ways they can be hard?

9 / 32

Selected TFNP classes

PPA PPP

PPAD

WPHP HOP RAMSEY

FP

PLS

Solid arrows indicate strict containment of one class in another.
Equivalently, a reduction ≤ that goes strictly in one direction.
(I am not distinguishing carefully between the names of classes and
the names of their complete problems.)

10 / 32

Total Functional NP

Some logic

Bounded arithmetic and TFNP

Approximate counting and TFNP

11 / 32

Background - how strong is a theory?

A theory is just a set of sentences (describing properties of the
natural numbers).

PA := algebraic axioms + induction for all formulas

IΣk := algebraic axioms + induction for Σk formulas [Σk -IND]

IΣ0 < IΣ1 < IΣ2 < · · · < PA < · · · < ATR0 < . . .

As we move to the right, we can define more recursive functions.
That is, we can prove more recursive functions are total.
This gives a common measure for quite different theories.

There are sophisticated ways to measure this increase in strength,
using ordinals or measuring the growth rate of functions.

12 / 32

From computability to complexity

We replace recursive functions with TFNP problems.

Definition

For a theory T ,

TFNP(T) := {R ∈ TFNP : T proves R is total }.

What is language is T in? How do we express “R is total”?

• The language consists of a name for every p-time relation and
function. E.g. x < y , x 7→ 2p(|x |) and R(x , y).

• “R is total” is the formal sentence ∀x∃y<2p(|x |) R(x , y).

• As before, variables are binary strings, identified with numbers.

13 / 32

A convenient base theory

Definition

The theory BASE consists of every true sentence of the form
∀x̄φ(x̄) where φ is quantifier free (that is, p-time).

Recall that the condition Q ≤ P is such a sentence, namely

∀x∀z Q(f (x), z) → P(x , g(x , z)).

Proposition

If T contains BASE, then TFNP(T) is closed under reductions.

BASE also contains the algebraic axioms of PA.

For our questions, it is harmless to work only with theories
containing BASE (called in the literature e.g. ∀PV(N)).

14 / 32

Examples

TFNP(BASE) = FP (the problems solvable in p-time)

TFNP(BASE+“R is total”), for some R ∈ TFNP

Depends on robustness of R.
If R is PLS, this is just PLS.

TFNP(PA) or TFNP(ZFC) = . . . ?

Cannot be all of TFNP, unless you add BASE.
“Given a purported proof of 0 = 1 in PA, find a mistake”
is a TFNP problem that PA does not prove is total.
Discussed in [Beckmann 09, Pudlák 17]

TFNP({all true sentences}) = TFNP

15 / 32

Total Functional NP

Some logic

Bounded arithmetic and TFNP

Approximate counting and TFNP

16 / 32

Bounded arithmetic

This is a “resource bounded” version of PA [Buss 85].

Definition

The theory ΣP
k -IND consists of

• BASE, and

• the induction axiom for every ΣP
k formula

The induction axiom for a formula φ is

φ(0) ∧ ∀x(φ(x)→ φ(x + 1)) → ∀xφ(x).

A ΣP
k property is one at level k in the polynomial hierarchy.

ΣP
1 is NP, ΣP

2 is NPNP, etc.

We need to specify a particular machine to express a ΣP
k property

in a formula. But it does not matter which one, as BASE proves
they are all equivalent.

17 / 32

Bounded arithmetic

Bounded arithmetic provides a natural way to reason with and
about concepts from complexity theory.

Two properties we use here are that it can be translated into small,
uniform constant-depth Frege proofs, and the following:

Theorem [Buss 85]

ΣP
k -IND proves

“Every PΣP
k machine has a computation on every input”.

For our purposes, ΣP
k -IND is equivalent to this statement.

18 / 32

Polynomial Local Search and ΣP
1 -IND

PLS (SINK OF DAG) [JPY 88]

Input: A number n (in binary) and a circuit C

C specifies a DAG G on [0, n), in which node 0 is a source.

Output: A sink in G .

Here DAG means that every edge (x , y) in G has x < y .

This has many natural equivalent problems.

E.g. find a local minimum of a function over a low degree graph.

(Formally, PLS is the class of problems ≤ SINK OF DAG.)

Theorem [BK 94]

TFNP(ΣP
1 -IND) = PLS

19 / 32

Coloured Polynomial Local Search

CPLS [KST 07]

A version of PLS with some extra structure.
Find a sink in a DAG, where each node is labelled with a set of
colours that must satisfy some local conditions.

Theorem

TFNP(ΣP
2 -IND) = CPLS

This principle is useful for proof complexity lower bounds, as it is in
some sense the strongest combinatorial principle with a short proof
in resolution.

20 / 32

Game Induction Principle

k-turn Game Induction Principle, GIk [ST 11]

Input: A sequence of k-turn, two-player games, together with a
winning strategy for Player B in the first game, and functions to
change a strategy for game i into a strategy for game i + 1.

Output: Winning moves for Player B in the last game.

Theorem

TFNP(ΣP
k -IND) = GIk

GIk is equivalent to [PT 12]:
Generalized PLS, GPLSk - A version of PLS where you have to
optimize an alternating min of max of min etc. rather than just
find a minimum.
Polynomial Time Equilibrium, PEk - Find a Nash equilibrium in
a k-turn, succinctly given game, where players can only make
p-time revisions to their strategies.

21 / 32

TFNP

PPA PPP

PPAD

FP

PLS ≡ GI1

CPLS ≡ GI2

GI3

GI4

WPHP HOP RAMSEY

GIk ≡ TFNP(ΣP
k -IND)

New arrows follow from known
proofs in bounded arithmetic

[Pudlák 91, MPW 02]

Main open problem

For k ≥ 2, show GIk 6≡ GIk+1, w.r.t. some oracle.
In other words, show ΣP

k+1-IND is stronger than ΣP
k -IND.

22 / 32

Second order theories

[Buss 85] also introduced “second-order” bounded arithmetic
theories. These are similar to ΣP

k -IND, but also allow
quantification over exponentially large objects; essentially oracles.

Two important theories are U1
2 and its extension V 1

2 .

Theorem [Buss 85]

U1
2 proves
“Every PSPACE machine has a computation on every input”.

V 1
2 proves
“Every EXPTIME machine has a computation on every input”.

For our purposes, U1
2 and V 1

2 are equivalent to these respective
statements.

These are uniform versions of Frege and Extended Frege proof
systems. U1

2 can formalize counting and is very good at proving
combinatorial statements.

23 / 32

Local Improvement Principle

Local Improvement Principle, LI [KNT 11]

Input: A large DAG, with an initial labelling of nodes, and local
rules about how to relabel nodes to improve their “score”.

Output: A labelling of part of the graph with maximal score.

Linear Local Improvement Principle, LLIlog

A restriction of LI, where the DAG is just a line and scores are at
most logarithmic in the size parameter.

Theorem [KNT 11, BB 14]

TFNP(U1
2) = LLIlog

TFNP(V 1
2) = LI

24 / 32

TFNP

PPA PPP

PPAD

FP

PLS ≡ GI1

CPLS ≡ GI2

GI3

GI4

LLIlog

LI

WPHP HOP RAMSEY

= TFNP(∃ EXPTIME computations)

= TFNP(∃ PSPACE computations)

= TFNP(∃ PΣP
4 computations)

...

...

(Wrong proof / PTFNP

of [PG 18] probably

lives at or above LI)

25 / 32

Total Functional NP

Some logic

Bounded arithmetic and TFNP

Approximate counting and TFNP

26 / 32

Approximate counting

The problems WPHP, HOP and RAMSEY can all be proved total
using arguments based on approximate counting.

Proof of the finite Ramsey Theorem

We are given a graph G of size n. Choose the first node in G .
Either it is has an edge to at least (1

2 − ε)n other nodes, or it is has
no edge to at least (1

2 − ε)n other nodes . . .

Q1. Is there a formal theory capturing this kind of counting?

Q2. Is every TFNP-style principle, provable in first-order bounded
arithmetic, already provable in approximate counting?

Q3. Is every TFNP-style principle, provable in first-order bounded
arithmetic, already provable in ΣP

2 -IND / reducible to CPLS?

A1. Yes

A2. No (at least relative to an oracle)

A3. This is the main open problem again
27 / 32

Approximate counting

Definition [Jěrábek 09]

The theory APC2 consists of

• ΣP
1 -IND, and

• rWPHP(PNP), the PNP retraction weak pigeonhole principle
stating there is no PNP surjection n � 2n. with PNP inverse.

Theorem [Jěrábek 09]

In APC2 we can express “a set X has size approximately n, with
some multiplicative error” and can formalize proofs using this
notion, such as the Ramsey theorem, the tournament principle, etc.

Theorem [KT 18]

APC2 does not prove that CPLS is total.

28 / 32

Proof that APC2 does not prove CPLS is total, part 1

Definition

A ΣP
2 search problem is like a TFNP problem, except that the

relation R(x , y) is coNP, rather than p-time.

Given a purported solution to such a problem, there may be a
counterexample, showing that it is not a solution.

Definition

A TFNP problem Q(x , y) is PLS counterexample reducible to a
ΣP

2 search problem R(x ′, y ′) if we can solve Q as follows:

1. Given x , compute in p-time an instance x ′ of R.

2. Let y ′ be a purported solution of R satisfying R(x ′, y ′).

3. Compute y from x and y ′ by solving a PLS problem.

4. Either y is a solution satisfying Q(x , y), or y is a
counterexample witnessing that R(x ′, y ′) is false.

29 / 32

Proof that APC2 does not prove CPLS is total, part 2

We formalize the PNP retraction weak pigeonhole principle as a
class rWPHP2 of ΣP

2 search problems.

Definition

The class APPROX consists of all TFNP problems which are PLS
counterexample reducible to problems in rWPHP2.

Theorem

APPROX = TFNP(APC2)

Theorem

CPLS /∈ APPROX, relative to an oracle.

30 / 32

Proof that APC2 does not prove CPLS is total, last part

Theorem (from last slide)

CPLS /∈ APPROX, relative to an oracle.

Proof. We use a random restriction and a kind of switching
lemma, developed in [PT 19], to construct a partial oracle α for an
instance of CPLS such that

• α does not contain a solution to CPLS

• α fixes replies to every NP query made by a PNP machine on
most inputs, and thus the output of the machine, for a
suitable notion of “fixes”.

We show that α contains a purported solution y ′ to our
rWPHP(PNP) problem, but it is still hard to find a solution to
CPLS in α or to find a counterexample witnessing that y ′ is not a
solution to rWPHP(PNP), even if we have the power to solve PLS
problems.

31 / 32

TFNP

PPA PPP

PPAD

FP

PLS ≡ GI1

CPLS ≡ GI2

GI3

GI4

LLIlog

LI

WPHP HOP RAMSEY

APPROX

Open, for k ≥ 2:

GIk 6≡ GIk+1?

Our result:
CPLS 6≤ APPROX

32 / 32

	Total Functional NP
	Some logic
	Bounded arithmetic and TFNP
	Approximate counting and TFNP

