A logical approach to TFNP

Neil Thapen

Institute of Mathematics
Czech Academy of Sciences

Reflections on Propositional Proofs in Algorithms and Complexity

FOCS 2021, online, 7 February 2022

1/32

A logical approach to TFNP — some references

® Buss, Krajicek 1994
An application of Boolean complexity to separation problems
in bounded arithmetic

e Jefabek 2009

Approximate counting by hashing in bounded arithmetic
® Skelley, Thapen 2011

The provably total search problems of bounded arithmetic

® Beckmann, Buss 2014
Improved witnessing and local improvement principle for
second-order bounded arithmetic

o Kotodziejczyk, Thapen 2018
Approximate counting and NP search problems

The talk is based on the last paper, which has detailed references.

2/32

Outline

Total Functional NP

Some logic

Bounded arithmetic and TFENP

Approximate counting and TFNP

3/32

Total Functional NP

4/32

Total Functional NP

Complexity theory usually studies decision problems.
E.g. given a graph, decide whether it has a Hamiltonian path.

We will discuss instead search problems.
E.g. given a graph, find and output a Hamiltonian path.

We are interested in search problems where
® the thing being searched for always exists
® it is recognizable in polynomial time

® it is not too big.

The class of such problems is Total Functional NP, or TENP.

5/32

Two examples

TENP problems appear in yellow.

PIGEON

Input: a number n (in binary) and a circuit C

The circuit C specifies a function f : n+1 — n.
Output: a collision in f.

That is, distinct x, x’ < n+ 1 such that f(x) = f(x').

RAMSEY
Input: a number n (in binary) and a circuit C
The circuit C specifies a graph G on vertices [0, n).

Output: A clique or anticlique in G of size %Iog n.

6/32

Formal definition

Definition
A TENP problem is specified by a p-time relation R(x,y) and a
polynomial bound p satisfying Vx3y < 2P(XD) R(x, y).

We use R as the name for the problem, suppressing the bound p.

The variables x, y range over binary strings, which we identify with
natural numbers whenever convenient.

Usually the input x is a compact description of an exponential size
object. In relativized problems, this object may be directly
described by an oracle.

7/32

Comparing problems

Let P, Q be problems in TFNP.
P is reducible to @, written P < Q, means

“we can efficiently solve P with the help of one call to Q"

Definition
P < Q if there are p-time functions f and g such that

VxVz Q(f(x),z) — P(x,g(x,z)).

(“solve Q at f(x)" = “solve P at x")

P is equivalent to @, written P=Q, if P< Q and Q < P.

8/32

Structure of TFNP

FP := problems solvable in p-time.

Other subclasses of TFNP are PPAD, PLS, PPP, ...
These consist of all problems reducible to a specified problem.
E.g. PPP :={Q € TFNP : Q < PIGEON }.

If P=NP then all these classes collapse to FP.

Why study the structure of TFNP classes?
® we want to solve search problems
® some are easy (e.g. in FP)
® some appear hard. What are the ways they can be hard?

9/32

Selected TFNP classes

PPA PPP

NS

PPAD

PLS WPHP HOP RAMSEY
FP
Solid arrows indicate strict containment of one class in another.

Equivalently, a reduction < that goes strictly in one direction.

(I am not distinguishing carefully between the names of classes and
the names of their complete problems.)

10/32

Some logic

11/32

Background - how strong is a theory?
A theory is just a set of sentences (describing properties of the
natural numbers).

PA := algebraic axioms + induction for all formulas

IX, := algebraic axioms + induction for ¥ formulas [L4-IND]
RDo<Ii <y < <PA<--- <ATRp < ...

As we move to the right, we can define more recursive functions.

That is, we can prove more recursive functions are total.

This gives a common measure for quite different theories.

There are sophisticated ways to measure this increase in strength,
using ordinals or measuring the growth rate of functions.

12/32

From computability to complexity

We replace recursive functions with TENP problems.

Definition
For a theory T,

TFENP(T) :={R € TENP : T proves R is total }.

What is language is T in? How do we express "R is total"?

® The language consists of a name for every p-time relation and
function. E.g. x <y, x — 2P and R(x, y).

® “Ris total’ is the formal sentence Vx3y <2P(K) R(x, y).

® As before, variables are binary strings, identified with numbers.

13/32

A convenient base theory

Definition
The theory BASE consists of every true sentence of the form
VXp(X) where ¢ is quantifier free (that is, p-time).

Recall that the condition @ < P is such a sentence, namely

VxVz Q(f(x),z) — P(x,g(x,z)).

Proposition
If T contains BASE, then TFNP(T) is closed under reductions.

BASE also contains the algebraic axioms of PA.

For our questions, it is harmless to work only with theories
containing BASE (called in the literature e.g. VPV(N)).

14 /32

Examples

TFNP(BASE) = FP (the problems solvable in p-time)

TFNP(BASE+ "R is total"), for some R € TFENP

Depends on robustness of R.
If R is PLS, this is just PLS.

TFNP(PA) or TFNP(ZFC) = ...?

Cannot be all of TFNP, unless you add BASE.

“Given a purported proof of 0 =1 in PA, find a mistake”
is a TFNP problem that PA does not prove is total.
Discussed in [Beckmann 09, Pudldk 17]

TFNP({all true sentences}) = TFNP

15/32

Bounded arithmetic and TENP

16 /32

Bounded arithmetic

This is a “resource bounded” version of PA [Buss 85].
Definition
The theory ZE—IND consists of

e BASE, and

® the induction axiom for every Zf formula

The induction axiom for a formula ¢ is
d(0) ANVx(p(x) = d(x+1)) — Vxo(x).

A Zf property is one at level k in the polynomial hierarchy.
YPis NP, X5 is NPNP etc.

We need to specify a particular machine to express a Zf property
in a formula. But it does not matter which one, as BASE proves

they are all equivalent.
17/32

Bounded arithmetic

Bounded arithmetic provides a natural way to reason with and
about concepts from complexity theory.

Two properties we use here are that it can be translated into small,
uniform constant-depth Frege proofs, and the following:

Theorem [Buss 85]

~F-IND proves
&0 P o o 5 "
Every P>« machine has a computation on every input”.

For our purposes, Zf—IND is equivalent to this statement.

18/32

Polynomial Local Search and F-IND

PLS (SINK OF DAG) [JPY 88

Input: A number n (in binary) and a circuit C

C specifies a DAG G on [0, n), in which node 0 is a source.
Output: A sink in G.

Here DAG means that every edge (x,y) in G has x < y.

This has many natural equivalent problems.

E.g. find a local minimum of a function over a low degree graph.

(Formally, PLS is the class of problems < SINK OF DAG.)

Theorem [BK 94]
TFNP(ZF-IND) = PLS

19/32

Coloured Polynomial Local Search

CPLS [KST 07]

A version of PLS with some extra structure.
Find a sink in a DAG, where each node is labelled with a set of
colours that must satisfy some local conditions.

Theorem
TFNP(Z£-IND) = CPLS

This principle is useful for proof complexity lower bounds, as it is in
some sense the strongest combinatorial principle with a short proof
in resolution.

20/32

Game Induction Principle

k-turn Game Induction Principle, Gl [ST 11]

Input: A sequence of k-turn, two-player games, together with a
winning strategy for Player B in the first game, and functions to
change a strategy for game / into a strategy for game i + 1.

Output: Winning moves for Player B in the last game.

Theorem
TFNP(EP-IND) = Gl

Gl is equivalent to [PT 12]:

Generalized PLS, GPLS - A version of PLS where you have to
optimize an alternating min of max of min etc. rather than just
find a minimum.

Polynomial Time Equilibrium, PE, - Find a Nash equilibrium in
a k-turn, succinctly given game, where players can only make

p-time revisions to their strategies.
21/32

TFNP

= P_
oPA opp Gl = TFNP(ZP-IND)

B New arrows follow from known
PPAD Gly proofs in bounded arithmetic
B [Pudlék 91, MPW 02]
Gl

CPLS = Gl,

PLS=Gl; WPHP HOP RAMSEY

l

FP

Main open problem

For k > 2, show Glg # Gl 1, w.r.t. some oracle.
In other words, show ZfH—IND is stronger than Zf—IND.

22/32

Second order theories

[Buss 85] also introduced “second-order” bounded arithmetic
theories. These are similar to Zf—IND, but also allow
quantification over exponentially large objects; essentially oracles.

Two important theories are U3 and its extension Vj.

Theorem [Buss 85]

U} proves

“Every PSPACE machine has a computation on every input”.
V3 proves

“Every EXPTIME machine has a computation on every input”.
For our purposes, U21 and V21 are equivalent to these respective
statements.

These are uniform versions of Frege and Extended Frege proof
systems. U} can formalize counting and is very good at proving

combinatorial statements.
23/32

Local Improvement Principle

Local Improvement Principle, LI [KNT 11]

Input: A large DAG, with an initial labelling of nodes, and local
rules about how to relabel nodes to improve their “score”.

Output: A labelling of part of the graph with maximal score.

Linear Local Improvement Principle, LLIjog

A restriction of LI, where the DAG is just a line and scores are at
most logarithmic in the size parameter.

Theorem [KNT 11, BB 14]

TFNP(U2) = LLlog
TENP(V}) = LI

24 /32

TFNP

(Wrong proof / PTFNP o
of [PG 18] probably LI = TFNP(3 EXPTIME computations)

lives at or above LI)

LLi,og = TFNP(3 PSPACE computations)

PPA PPP
\P‘PA‘D/ G\:i4 = TFNP(3 Py computations)
GI3
CPLS = GI2

PLS_G|1 WPHP HOP RAMSEY

FP

25/32

Approximate counting and TENP

26/32

Approximate counting

The problems WPHP, HOP and RAMSEY can all be proved total
using arguments based on approximate counting.

Proof of the finite Ramsey Theorem

We are given a graph G of size n. Choose the first node in G.
Either it is has an edge to at least (% — €)n other nodes, or it is has
no edge to at least (3 — €)n other nodes ...

Q1.
Q2.

Q3.

Al.
A2.
A3.

Is there a formal theory capturing this kind of counting?

Is every TFNP-style principle, provable in first-order bounded
arithmetic, already provable in approximate counting?

Is every TFNP-style principle, provable in first-order bounded
arithmetic, already provable in £5-IND / reducible to CPLS?

Yes
No (at least relative to an oracle)
This is the main open problem again

27/32

Approximate counting

Definition [Jefdbek 09]
The theory APC; consists of
. Zf—IND, and

o rWPHP(PNP), the PNP retraction weak pigeonhole principle
stating there is no PNP surjection n — 2n. with PNP inverse.

Theorem [Jefabek 09]

In APC, we can express “a set X has size approximately n, with
some multiplicative error” and can formalize proofs using this
notion, such as the Ramsey theorem, the tournament principle, etc.

Theorem [KT 18]
APC5 does not prove that CPLS is total.

28/32

Proof that APC, does not prove CPLS is total, part 1

Definition
A Zf search problem is like a TENP problem, except that the
relation R(x,y) is coNP, rather than p-time.

Given a purported solution to such a problem, there may be a
counterexample, showing that it is not a solution.
Definition
A TENP problem Q(x,y) is PLS counterexample reducible to a
¥ 7 search problem R(x',y’) if we can solve @ as follows:

1. Given x, compute in p-time an instance x’ of R.

2. Let y’ be a purported solution of R satisfying R(x', y).

3. Compute y from x and y’ by solving a PLS problem.

4. Either y is a solution satisfying Q(x,y), or y is a

counterexample witnessing that R(x’,y’) is false.

29/32

Proof that APC, does not prove CPLS is total, part 2

We formalize the PNP retraction weak pigeonhole principle as a
class rWPHP; of Zf search problems.

Definition

The class APPROX consists of all TFNP problems which are PLS
counterexample reducible to problems in r'WPHP».

Theorem
APPROX = TFNP(APC,)

Theorem
CPLS ¢ APPROX, relative to an oracle.

30/32

Proof that APC, does not prove CPLS is total, last part

Theorem (from last slide)

CPLS ¢ APPROX, relative to an oracle.

Proof. We use a random restriction and a kind of switching
lemma, developed in [PT 19], to construct a partial oracle « for an
instance of CPLS such that

® o does not contain a solution to CPLS

e o fixes replies to every NP query made by a PNP machine on
most inputs, and thus the output of the machine, for a
suitable notion of “fixes”.

We show that o contains a purported solution y’ to our
rWPHP(PNP) problem, but it is still hard to find a solution to
CPLS in « or to find a counterexample witnessing that y’ is not a
solution to r'WPHP(PNP), even if we have the power to solve PLS
problems. O

31/32

TFNP

LI
: Open, for k > 2:
LLliog Gly # Gly1?
PPA({ Our result:
N S i CPLS £ APPROX
PPAD Gly
Gls
CPLS = Gl APPROX

- ey
PLS=Gl; WPHP HOP RAMSEY

l

FP

32/32

	Total Functional NP
	Some logic
	Bounded arithmetic and TFNP
	Approximate counting and TFNP

