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Preface

This text is a very preliminary version of the monograph we would like to com-
plete in a near future. Actually, it is a continuation ofŠtefan Schwabik’s mono-
graph [125] written in Czech and dedicated to the theory of integral over one-
dimensional intervals. In this textbook the author succeeded to explain not only
the classic concepts of the Newton and Riemann integrals but also the McShane
integral and above all, the Kurzweil integral, a non-absolutely convergent inte-
gral defined in a constructive way. This definition belongs to Jaroslav Kurzweil

Thomas Joannes Stieltjes Jaroslav Kurzweil Štefan Schwabik

and was introduced first in the seminal paper published in 1957 in Czechoslovak
Mathematical Journal (see [78]). The new integral, which is today called Kurzweil
integral in the world’s mathematical literature, or rather Kurzweil-Henstock inte-
gral (Ralph Henstock, a specialist in the theory of the integral from the United
Kingdom, published the definition of an analogous integral in 1960 independently
of J. Kurzweil), has since then turned out to be very inspiring not only for the the-
ory of integral (since it includes classic and well-known concepts of Riemann
and Newton integrals including their improper modifications and, even, harder to
manage integrals of Lebesgue and Perron) but also for the theory of differential
and integral equations. From the methodical point of view the emphasis put on
the Kurzweil integral made it possible tǒS. Schwabik to focus on non-absolutely
convergent integrals which were considered to be more difficult to explain in older
methodology of integral theory. Kurzweil’s concept of integral is in finite dimen-
sional setting equivalent to Perron integral which is non-absolutely convergent.
His definition seemingly and almost mechanically ,,copies“ Riemann’s definition
which is with its illustrative nature and strong geometric interpretation the most
reasonable one for a student. Nonetheless, just the comparison with Riemann’s
definition shows how ingenious is its unobtrusive but at the same time very ef-
fective Kurzweil modification. A great advantage of Kurzweil’s integral is also
the fact that it does not need generalization for improper integrals – that the Hake
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theorem holds true here (i.e. the theorem concerning the limiting process with
respect to the upper and/or lower bounds of the integration domain).

In the integrals of Riemann, Newton, Lebesgue, Perron, Kurzweil a given
function is integrated with respect to the identity function. Some physical prob-
lems have exacted the extension of concept of integral to integrals in which the
given function is integrated with respect to a function which does not have to
be the identity in general. The first time when such integral appeared was in
a famous Stieltjes’ treatise [136] from, dedicated to the connection between the
convergence of chain fractions and the problem how to describe the distribution
of matter on a solid line segment when all moments of this line segment of natural
orders are known.

The integrals of this kind have been since then calledStieltjes integralsand
integrals of a functionf (integrand) with respect to functiong (integrator) over
interval [a, b] are since then denoted by

∫ b

a
f dg. To various modifications of the

definition, which with time arose, the names of the authors of these modifications
are then usually added. Soon there were integrals of: Riemann-Stieltjes, Perron-
Stieltjes or Lebesgue-Stieltjes. Another significant impulse which turned attention
to the Stieltjes integral was the fundamental Riesz’s result from 1909 (see [112])
stating that every continuous linear functional in the space of continuous func-
tions can be expressed using the Stieltjes integral. Soon, in 1910, H. Lebesgue
(see [86]) proved that for a continuous functionf and a functiong of bounded
variation Stieltjes integral can be, using suitable substitution, expressed as the
Lebesgue integral in the form of

∫ v(b)

a

f(w(t)) h(t) d t,

where v(x) is the variation of the functiong over the interval[a, x], w is the
generalized inverse function ofv, w(t) = inf{s∈ [a, b] : v(s) = t} for t∈ [a, b],
and

h(t) =
dg(w(t))

d t
for a.e. t∈ [a, v(b)].

In this way, H. Lebesgue arrived at the concept of Lebesgue-Stieltjes integral of
a function f with respect tog. Few years after Riesz’s result, in 1912, Stielt-
jes integral appeared also in the monograph [109] by O. Perron. During the next
roughly two decades the Stieltjes integral and its modifications were the subject of
investigation of many outstanding persons of the theory of functions: W. H. Young
([157]), C. J. de la Valĺee Poussin ([149]), E. B. Van Vleck ([150]), T. H. Hilde-
brandt ([52]), L. C. Young ([155] and [156]), A. J. Ward ([151]) and others. In
1933 S. Saks dedicated a whole chapter in his famous monograph [116] to the
Lebesgue-Stieltjes integral and to functions of bounded variation. Up to now the
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integrals of Stieltjes kind have found wide use in many fields: e.g. in the theory
of curve integrals, the theory of probability, the theory of hysteresis, the theory of
functional-differential, generalized differential equations etc. A range of mono-
graphs are dedicated to the history of the theory of integral. However, we are not
aware if any one of them is dedicated to the history of the Stieltjes integral more
thoroughly. There exists a superb piece of work in Czech ,,Malý průvodce historíı
integrálu“ (in English: Little Guide Through the History of Integral) written by
Š. Schwabik and P.̌Sarmanov́a. Unfortunately, there was not space enough in it to
include also the Stieltjes integral. For the French speakers let us mention at least
a brief historical essay by [94] J. Mawhin.

Given the limited assigned extent of his monograph,Štefan Schwabik could
not include the natural generalization of Kurzweil’s concept of integral to Stieltjes
integrals there although at that time we already had ,,Kurzweil’s theory“ of Stielt-
jes integral in our joint works (cf. e.g. [131]) dedicated to generalized differential
equations processed and prepared to a considerable extent. It is our ambition to
continue in his work and to complete his monograph with the theory of Stieltjes
integral with emphasis on Kurzweil’s definition and some of its applications.

Our book is divided into 8 chapters. In the introductory chapter there are
briefly described two of many motivations to study the Stieltjes integral: the prob-
lems of moments and curve integrals. The next three chapters are preparatory and
provide an overview of properties of the categories of functions with which this
book works most often: functions of bounded variation, absolutely continuous
functions and regulated functions. Chapter 5 provides a survey of the basic prop-
erties of the classical notions of the Riemann-Stieltjes integral. The core of the
whole book is then Chapter 6 dedicated to the definition of the Stieltjes integral in
Kurzweil’s sense. There, the advantages of this definition are demonstrated: the
width of the class of functions integrable in this sense, the broad range of prop-
erties of this integral, in particular, the validity of very general convergence the-
orems including Hake’s theorem. The final two chapters describe some selected
applications in functional analysis and in the theory of generalized differential
equations.

From the bibliography dealing with related topics, we can recommend the
monograph [55] by T. H. Hildebrandt and also the unobtrusive but modernly ap-
proached monograph [95] by R. M. McLeod from 1981 including even the Kurz-
weil-Stieltjes integral. Other stimuli can be found in monographs [29], [70],
[117], [115] or lecture notes [92]. Two demanding monographs [83] and [84] by
J. Kurzweil from 2000 and 2002 dedicated to topological problems related to inte-
grating do not directly concern the Stieltjes integration. Integrals and generalized
differential equations studied in Kurzweil’s latest monograph [85] cover both the
Kurzweil-Stieltjes integral and the linear generalized equations which we discuss
in Chapters 6 and 8 of this book. An outstanding supplement of this publication
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will be, besides already mentioned Schwabik’s monograph [125], also his other
monograph [122] dedicated especially to generalized differential equations.
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Conventions and notation

(i) N is the set of natural numbers (excluding zero),Q is the set of rational
numbers, andR is the set of real numbers.Rm is the m-dimensional
Euclidean space consisting of realm-vectors (m-tuples of real numbers). If
x∈Rm, then itsi-th component is denoted byxi. We write x=

(
xi

)m

i=1
or,

unless a misunderstanding may occur,x =
(
xi

)
. For a Banach spaceX , the

norm of its elementx is denoted by‖x‖X . If X =Rm for somem∈N and
x=

(
xi

)∈Rm, we write |x| instead of‖x‖Rm and define|x|= ∑m
i=1 |xi|.

(ii) {x∈A : B(x)} stands for the set of all elementsx of the setA which
satisfy the conditionB(x).

For given setsP, Q, the symbolP \Q represents the set

P \Q = {x∈P : x /∈Q}.
As usual,P ⊂Q means thatP is a subset ofQ (every element of setP
is also an element of setQ). Unless it may cause a misunderstanding, we
write {xn} instead of {xn ∈R : n∈N} or {xn ∈R : n = 1, . . . , m}. A se-
quence{xn} is callednon-repeatingif xk 6= xn wheneverk 6= n.

(iii) For a givena∈R, we seta+ = max{a, 0} anda− = max{−a, 0}. (Let us
recall thata+ + a− = |a| anda+− a− = a for everya∈R.) Furthermore,

sgn(a) =





1 if a> 0,

−1 if a< 0,

0 if a = 0.

(iv) If −∞<a < b<∞, then [a, b] is theclosedinterval {t∈R : a≤ t≤ b} and
(a, b) is theopeninterval {t∈R : a< t< b}. The correspondinghalf-clo-
sed, or half-openintervals are denoted by[a, b) and (a, b]. In all cases, the
pointsa, b are called the endpoints of the interval. Ifa = b∈R, we say that
the interval[a, b] degeneratesto a one-point set, and we write[a, b] = [a].
If I is an interval (closed or open or half-open) with endpointsa, b, then
|I|= |b− a| stands for its length. Of course,|[a]|= 0.

(v) A finite set of pointsα = {α0, α1, . . . , αm} of the interval [a, b] is called
adivision of the interval, [a, b] if a = α0 <α1 < · · ·<αm = b. The set of all
divisions of the interval[a, b] is denoted byD [a, b].

If α∈D [a, b], then, unless otherwise stated, its elements will be denoted
by αj, |α| is the length of the largest subinterval[αj−1, αj], and ν(α) is

xi
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the number of subintervals, i.e.,

αν(α) = b and |α|= max
j=1,...,ν(α)

(αj −αj−1) for α∈D [a, b].

We will write alsoα = {αj}. If α′⊃α, then we say thatα′ is arefinement
of α.

(vi) For a given setM ⊂R the symbolχM denotes the characteristic function
of M, i.e.,

χM(t) =

{
1 if t∈M,

0 if t /∈M.

(vii) The supremum (or the infimum) of a setM ⊂R is denoted bysup M (or
inf M). If m = sup M is an element ofM (or m = inf M is an element of
M ), i.e., if m is a maximum (or a minimum) ofM, we write m = max M
(or m = min M). If M is the set of all valuesF (x) of a functionF over
the domainB (i.e., if M = {F (x) : x∈B}), we write supx∈B F (x), and
similarly for the infimum, maximum or minimum, respectively.

(viii) Let X be a Banach space. The notationf : [a, b]→ X means thatf is
a function from the interval[a, b] into X . In such a case we say thatf
is a vector-valued function. If X =R, then f is said to be a real-valued
function. For functionsf : [a, b]→ X andg : [a, b]→ X and a real number
λ, we define the functionsf + g andλ f by

(f + g)(x) = f(x) + g(x) for x∈ [a, b]

and

(λ f)(x) = λ f(x) for x∈ [a, b].

For a given functionf : [a, b]→ X , we set‖f‖∞ = supt∈[a,b] |f(t)|. (Of
course, iff is unbounded on[a, b], then‖f‖∞ =∞.)

(ix) If {xn} is an infinite sequence of real numbers which has a limit

lim
n→∞

xn = x∈R∪{−∞}∪{∞},

we will write also shortlyxn→ x. Given a sequence of functions{fn} de-
fined on [a, b], the symbolfn→ f stands for the pointwise convergence,
i.e., it means thatfn(x)→ f(x) for eachx∈ [a, b]. If {fn} converges uni-
formly to f on [a, b], i.e. limn→∞ ‖fn− f‖∞ = 0, we write alsofn ⇒ f
on [a, b].
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(x) If f : [a, b]→R, t∈ [a, b), s∈ (a, b] and the one-sided limits

lim
τ→t+

f(τ) and lim
τ→s−

f(τ)

exist and are finite, we denote

f(t+) = lim
τ→t+

f(τ), f(s−) = lim
τ→s−

f(τ),

∆+f(t) = f(t+)− f(t), ∆−f(s) = f(s)− f(s−),

∆ f(t) = f(t+)− f(t−) for t∈ (a, b).

Customarily, for function defined on the interval[a, b], the following con-
vention is used:

f(a−) = f(a), f(b+) = f(b), ∆−f(a) = ∆+f(b) = 0.

(xi) C([a, b]) is the space of all continuous real functions on the interval[a, b],
with a norm defined by

‖f‖= max
x∈[a,b]

|f(x)| for f ∈C([a, b]).

L1([a, b]) is the space of all real functions that are Lebesgue integrable on
the interval[a, b], with the convention

f = g ∈L1([a, b]) ⇐⇒ f(x) = g(x) for almost allx∈ [a, b],

and with the norm defined by

‖f‖1 =

∫ b

a

|f(x)| dx for f ∈L1[a, b].

The space of all continuous vector-valued functions from[a, b] to a Ba-
nach spaceX is denoted byC([a, b], X ). Symbols such asL1([a, b], X )
corresponding to other function spaces have a similar meaning.

(xii) If M is a subset of a Banach spaceX , then cl(M) stands for the closure
of M in X and Lin(M) denotes the linear span ofM, i.e., the set of all
elementsx∈M of the form

x =
m∑

j=1

cj xj,

wherem∈N, c1, c2, . . . , cm ∈R andx1, x2, . . . , xm ∈M.
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(xiii) The set of all continuous linear mappings from a Banach spaceX to a Ba-
nach spaceY is denoted byL (X , Y ). It is known thatL (X, Y ) is a Ba-
nach space when equipped with the operator norm

‖A‖L (X,Y ) = sup
x∈X
|x‖X≤1

‖Ax‖Y for A∈L (X,Y ).

If Y = X or Y =R, we write simplyL (X) = L (X, X) or X∗= L (X,R),
respectively. In particular,L (Rm,Rn) is the space ofm×n real matrices
andL (Rm,R) is the space of columnm-vectors, which coincides with the
spaceRm. indexsymbSPACES! L (X , Y ), L (Rm,Rn)

(xiv) Given a matrixA∈L (Rm,Rn), the element in thei-th line andj -th col-
umn is denoted byai,j. We write

A =
(
ai,j

)
i=1,...,m
j=1,...,n

.

For everyn∈N, the symbolI stands for the unitn×n-matrix, i.e.,

I =
(
ei,j

)
i=1,...,n
j=1,...,n

, whereei,j =

{
1 if i = j,

0 if i 6= j.

The norm inL (Rm,Rn) is defined by

|A|= max
j=1,...,m

n∑
i=1

|ai,j| for A =
(
ai,j

)
i=1,...,m
j=1,...,n

∈L (Rm,Rn).

In particular, forx∈Rm = L (Rm,R), we have|x|= ∑m
i=1 |xi|, which ag-

rees with the definition in (i). Furthermore, forA∈L (Rm,Rn), we have

|A|= sup
{|Ax| : |x| ≤ 1

}
,

i.e., the norm of a matrix coincides with the operator norm onL (Rm,Rn)
(provided that the norm introduced in (i) is used onRn ).

(xv) To a certain extent, standard logic symbols are used. For example,

∀ ε> 0 ∃ δ > 0 : (A(δ)∧B(δ)) =⇒ C(ε)

means

“for every ε> 0 there exists aδ > 0 such that if bothA(δ) and B(δ) are
true, thenC(ε) holds, as well.”



Chapter 1

Introduction

1.1 Areas of planar regions and moments

It is well known that the value of the Riemann integral
∫ b

a

f(x) dx

of a nonnegative continuous functionf : [a, b]→R equals the area of the plane
region M bounded by the graph off and by the linesy = 0, x = a, and x = b.
This conclusion is justified by the following consideration:

Let α0, α1, . . . , αm be points of the interval[a, b] such that

a = α0 <α1 < · · ·<αm = b,

i.e., the setα = {α0, α1, . . . , αm} is a division of the interval[a, b]. Moreover,
for everyj ∈{1, . . . , m} let us choose a pointξj ∈ [αj−1, αj], the so called tag of
the interval[αj−1, αj], and denote byξ = {ξ1, . . . , ξm} the corresponding set of
tags. The area of the regionM can be approximated by the sum of the areas of
the rectangles created above the line segments[αj−1, αj] with the heightf(ξj),
i.e., by

S(α, ξ) =
m∑

j=1

f(ξj) (αj −αj−1). (1.1.1)

As the following pictures indicate, finer divisions of the interval[a, b] lead to

a=Σ0 Σ1 Σ2 Σ3 Σ4 Σ5=bΞ1 Ξ2 Ξ3 Ξ4 Ξ5 Ξ1 Ξ2 Ξ3 Ξ4 Ξ5 Ξ6 Ξ7 Ξ8 Ξ9 Ξ10a=Σ0 Σ1 Σ2 Σ3 Σ4 Σ5 Σ6 Σ7 Σ8 Σ9 Σ10=b

Riemann integral sums

higher accuracy of the approximation that we get. It can be expected that with

15
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a suitably defined limiting process based on refining the divisions of the interval
[a, b], the sumsS(α, ξ) approach (independently of the choice of the tagsξ )
a certain real numberS(M), which is equal to the area of the regionM. For
a moment, let us settle with the intuitive idea about such a limiting process. We
will describe it more accurately later. The result is the concept of the Riemann
integral of a functionf over an interval[a, b] (that is, “from a to b”), which is
denoted by

∫ b

a
f(x) dx and satisfies

S(M) =

∫ b

a

f(x) dx.

A similar problem is to determine themoment(also known as the static mo-
ment) of a planar or spatial region. Let us restrict ourselves to a bounded line
segment[a, b] lying on the real axisR. The moment of a point massx∈ [a, b] of
massµ with respect to the origin is given by|x|µ. If the mass of the line seg-
ment is concentrated at a finite number of pointsxi ∈ [a, b], i = 1, . . . , n, while
the mass of the pointxi is equal toµi, then the moment of the line segment[a, b]
with respect to the origin is equal to the sum

∑m
i=1 |xi|µi. In the general case

when the mass of the line segment is not concentrated at a finite number of points,
we can proceed as follows:
Let a division α = {α0, α1, . . . , αm} of the interval [a, b] be given and, for
j ∈{1, . . . , m}, let ξj be the tag of the intervalIj = [αj−1, αj]. Further, for
eachx∈ [a, b], let µ(x) be the mass of the line segment[a, x]. Then, for every
j, the mass of the subintervalIj is given byµ(αj)−µ(αj−1). Assuming that the
mass of each subintervalIj is concentrated at the tagξj, the moment of the line
segmentIj with respect to the origin is approximately equal to

|ξj| (µ(αj)−µ(αj−1)),

and the moment of the whole line segment[a, b] can be approximated by the sum

S(α, ξ) =
m∑

j=1

|ξj| (µ(αj)−µ(αj−1)). (1.1.2)

Again, we can expect thatS(α, ξ) will approach the actual value of the moment
if the division α becomes finer, i.e., if it contains more elements. Indeed, with
a suitable definition of the limiting process, the sums (1.1.2) approach a certain
numberS, which equals the static moment of the line segment[a, b] relative to the
origin. We denote

S =

∫ b

a

|x| dµ(x).



KURZWEIL-STIELTJES INTEGRAL 17

The expression on the right-hand side is called theStieltjes integralof the function
x 7→ |x|, x∈ [a, b], with respect toµ over the interval[a, b]. Of course, this very
special function can be replaced by any “reasonable” functionf defined on the
interval [a, b]. In such a way, we can determine the moment of inertia of the line
segment[a, b] as

∫ b

a
x2 dµ(x), and, in general, the moment of thek -th order as∫ b

a
|x|k dµ(x).

1.2 Line integrals

L INE INTEGRAL OF THE FIRST KIND

A continuous mappingϕ : [a, b]→R3 is called apathin R3. Thelength of the
path ϕ will be denoted by the symbolΛ(ϕ, [a, b]).

Let ϕ be a path inR3 having a finite length. Moreover, assume that the
mappingϕ is injective. Let us imagine thatϕ describes the shape of a wire and
f(x)∈R is its density at the pointx. The mass of the part of the wire correspond-
ing to an interval[c, d]⊂ [a, b] is approximately given byf(ϕ(ξ)) Λ(ϕ, [c, d]),
whereξ is a point in the interval[c, d].

Let α = {α0, α1, . . . , αm} be a division of[a, b] andξ = {ξ1, . . . , ξm} be the
set of its tags, i.e.ξj ∈ [αj−1, αj] for j ∈{1, . . . , m}.

Setv(t) = Λ(ϕ, [a, t]) for t∈ [a, b]. Then the sum

m∑
j=1

f(ϕ(ξj)) (v(αj)− v(αj−1))

approximates the mass of the whole wire. Again, it is natural to expect that this
approximation will be more precise when the division becomes finer. If such
a limiting process leads to a uniquely determined valueM, this value will be
equal to the mass of the whole wire and we write

M =

∫

ϕ

f ds or also M =

∫ b

a

f ◦ϕ dv.

The former expression is called theline integral of the first kindof the functionf
along the pathϕ, while the latter expression represents the equivalent concept of
theStieltjes integralof a scalar functionf ◦ϕ with respect to the scalar function
v.

L INE INTEGRAL OF THE SECOND KIND

Consider a point mass travelling along a pathϕ : [a, b]→R3 under the influ-
ence of a force fieldf :R3→R3. Then f(ϕ(t))∈R3 is the the force acting on
the mass at timet.
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Now, let α = {α0, α1, . . . , αm} be a division of the interval[a, b] and let
ξ = {ξ1, . . . , ξm} be a corresponding set of tags. The scalar product

f(ϕ(ξj)) ·
(
ϕ(αj)−ϕ(αj−1)

)
=

3∑

k=1

fk(ϕ(ξj))
(
ϕk(αj)−ϕk(αj−1)

)

approximates the work done by the forcef as the mass moves from the point
ϕ(αj−1) to the pointϕ(αj). Hence, the sum

m∑
j=1

f(ϕ(ξj)) ·
(
ϕ(αj)−ϕ(αj−1)

)
=

3∑

k=1

m∑
j=1

fk(ϕ(ξj))
(
ϕk(αj)−ϕk(αj−1)

)

approximates the total work done by the force fieldf during the whole motion of
the given mass. If the values of these sums approach a uniquely determined value
with respect to the refinements of the divisions of the interval[a, b], this value
will be equal to the total work done by the force fieldf during the motion of the
given point mass along the pathϕ. It is usually denoted by

∫

ϕ

f or also
∫ b

a

f ◦ϕ dϕ =
3∑

k=1

∫ b

a

fk(ϕ) dϕk.

The former expression is called theline integral of the second kindof the vector
function f along the pathϕ, while the latter expression represents the equivalent
concept of theStieltjes integralof the (composite) vector functionf◦ϕ: [a, b]→R3

with respect to the vector functionϕ : [a, b]→R3.



Chapter 2

Functions of bounded variation

In this chapter, we define the variation of a real function defined on a compact
interval and derive some basic properties of functions having bounded variation.
Such functions are useful in a whole range of physical and technical problems,
in probability theory, in the theory of Fourier series, in differential equations and
other areas of mathematics.

2.1 Definitions and basic properties

Let −∞<a < b<∞. Recall that by a division of the interval[a, b], we mean
a finite setα = {α0, α1, . . . , αm} of points of the interval[a, b] such that

a = α0 <α1 < · · ·<αm = b,

while D [a, b] stands for the set of all divisions of the interval[a, b]. Furthermore,
the elements of the divisionα of [a, b] are usually denoted byαj and

ν(α) = m, αν(α) = b and |α|= max
j∈{1,...,ν(α)}

(αj −αj−1) for α∈D [a, b].

If β⊃α, we say thatβ is arefinementof α.

2.1.1 Definition. For a given functionf : [a, b]→R and a divisionα of the in-
terval [a, b], we define

V (f, α) =

ν(α)∑
j=1

|f(αj)− f(αj−1)| and varbaf = sup
α∈D [a,b]

V (f, α).

For a = b, we define varbaf = varaa f = 0. The quantity varbaf is called thevaria-
tion of the functionf on the interval[a, b]. If var b

af <∞, we say that the function
f hasbounded variationon [a, b] (or is of bounded variation on[a, b]). The set
of functions of bounded variation on[a, b] is denoted byBV([a, b]).

The concept of variation is closely related to the problem of rectifiability
of curves. Let us recall the definition of the length of a parametric curve
c : [a, b]→Rn (where c is a continuous mapping). For each divisionα of the
interval [a, b], the sum

λ(c, α) =

ν(α)∑
j=1

|c(αj)− c(αj−1)|

19
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equals the length of the polygonal path connecting the verticesc(α0), . . ., c(αν(α)).
The lengthΛ(c, [a, b]) of the curvec is then defined as

Λ(c, [a, b]) = sup
α∈D [a,b]

λ(c,α).

The next theorem provides a necessary and sufficient condition for the length
of a curve to be finite. To distinguish it from the Jordan decomposition theorem,
we call it JORDAN’ S SECOND THEOREM.

2.1.2 Theorem(JORDAN’ S SECOND THEOREM). Consider a parametric curve
c : [a, b]→Rn, wherec(t) = (c1(t), . . . , cn(t)) for eacht∈ [a, b]. Then the length
of c is finite if and only if each of the functionsc1, . . . , cn has bounded variation
on the interval[a, b].

Proof. If x1, . . . , xn are arbitrary real numbers, then

x2
i ≤x2

1 + · · ·+ x2
n≤ (|x1|+ · · ·+ |xn|)2, i∈{1, . . . , n},

and therefore

|xi| ≤
√

x2
1 + · · ·+ x2

n≤ |x1|+ · · ·+ |xn|, i∈{1, . . . , n}. (2.1.1)

Thus, for an arbitrary divisionα of [a, b] and eachi∈{1, . . . , n}, we obtain

ν(α)∑
j=1

|ci(αj)− ci(αj−1)| ≤
ν(α)∑
j=1

√√√√
n∑

k=1

(ck(αj)− ck(αj−1))2

≤
ν(α)∑
j=1

n∑

k=1

|ck(αj)− ck(αj−1)|

=
n∑

k=1

ν(α)∑
j=1

|ck(αj)− ck(αj−1)|.

This means that

V (ci, α)≤λ(c, α)≤
n∑

k=1

V (ck, α).

Passing to the supremum, we get

varbaci≤Λ(c, [a, b])≤
n∑

k=1

varback,
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wherefrom the statement of our theorem follows immediately. 2

In practice, one often deals with planar curves defined by an equation
y = f(x), wheref : [a, b]→R is a continuous function. The corresponding para-
metric curvec : [a, b]→R2 is given by c(t) = (t, f(t)), t∈ [a, b], and Theorem
2.1.2implies the following statement.

2.1.3 Corollary. The graph of a functionf : [a, b]→R has finite length if and
only if f has bounded variation on the interval[a, b].

2.1.4 Example.Let f : [a, b]→R be continuous and such that|f ′(x)| ≤M for all
x∈ (a, b), whereM ∈R is independent ofx. Then, by the mean value theorem,
the inequality

|f(y)− f(x)| ≤M |y− x|

holds for all x, y ∈ [a, b]. Hence, for each divisionα of the interval [a, b], we
have

V (f, α)≤M

ν(α)∑
j=1

(αj −αj−1) = M (b− a).

We can see thatevery continuous and real valued function on[a, b] which has
bounded derivative in its interior(a, b) is of bounded variation.

If |f ′| is in addition Riemann integrable on[a, b] (e.g., if f ′ is continuous on
(a, b)), then the variation off on [a, b] can be calculated as follows.

2.1.5 Theorem.If f : [a, b]→R is such that|f ′| is Riemann integrable, then

varbaf =

∫ b

a

|f ′(x)| dx. (2.1.2)

Proof. Let ε> 0 be given. The existence of the Riemann integral
∫ b

a
|f ′(x)| dx

means that there exists aδ > 0 such that the inequality

∣∣∣
ν(α)∑
j=1

|f ′(ξj)| (αj −αj−1)−
∫ b

a

|f ′(x)| dx
∣∣∣ <

ε

2
(2.1.3)

holds for each divisionα of [a, b] such that|α|<δ and for every choice of points
ξj such that

ξj ∈ [αj−1, αj] for j = 1, . . . , ν(α). (2.1.4)
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On the other hand, by the definition of variation, there existsα∈D [a, b] such that
|α|<δ and

varba f ≥V (f, α) > varba f − ε

2
. (2.1.5)

By the mean value theorem, there are pointsξj, j = 1, . . . , ν(α), satisfying (2.1.4)
and such that

V (f, α) =

ν(α)∑
j=1

|f ′(ξj)| (αj −αj−1).

This, together with (2.1.3) and (2.1.5), implies that

∣∣∣varbaf −
∫ b

a

|f ′(x)| dx
∣∣∣

≤ |varbaf −V (f, α)|+
∣∣∣

ν(α)∑
j=1

|f ′(ξj)| (αj−αj−1)−
∫ b

a

|f ′(x)| dx
∣∣∣

<
ε

2
+

ε

2
= ε.

Sinceε> 0 was arbitrary, it follows that (2.1.2) is true. 2

2.1.6 Exercises.Determine varbaf and estimate the length of the graph of the fol-
lowing functionsf :

a) f(x) = sin2 x, a = 0, b = π,

b) f(x) = x3− 3 x + 4, a = 0, b = 2,

c) f(x) = cos x + x sin x, a = 0, b = 2π.

2.1.7 Remark. By Definition 2.1.1, it is obvious that varbaf is nonnegative for
every functionf : [a, b]→R. Furthermore,

varbaf = sup
α⊃β

V (f, α) (2.1.6)

holds for any divisionβ ∈D [a, b]. This follows from several elementary observa-
tions: First, because

{V (f, α) : α∈D [a, b] and α⊃β}⊂{V (f, α) : α∈D [a, b]},

it follows that

sup
α⊃β

V (f, α)≤ varba f.
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Moreover, by the triangle inequality, for arbitrary two divisionsα, α′ of [a, b]
such thatα′⊃α and for any functionf : [a, b]→R we have

V (f, α)≤V (f, α′).

Finally, if α∈D [a, b] is given andα′ = α∪β, thenα′⊃β and thus

V (f, α)≤V (f, α′).

This means that for everyd∈{V (f, α) : α∈D [a, b]} there exists

d ′ ∈{V (f, α) : α∈D [a, b] and α⊃β}
such thatd≤ d′. Thus

varba f ≤ sup
α⊃β

V (f, α),

which implies (2.1.6).

2.1.8 Exercises.Prove the following properties of the variation and of functions
of bounded variation:
(i) If [c, d]⊂ [a, b], then

|f(d)− f(c)| ≤ vardc f ≤ varbaf

holds for every functionf : [a, b]→R.

(ii) If f ∈BV([a, b]), then

|f(x)| ≤ |f(a)|+ varba f <∞ for everyx∈ [a, b]. (2.1.7)

(iii) var b
af = d∈R if and only if for eachε > 0 there isαε ∈D [a, b] such that

d− ε≤V (f, α)≤ d

holds for all refinementsα of αε.

(iv) varb
af=∞ if and only if for eachK > 0 there is a divisionαK∈D [a, b]

such thatV (f, αK)≥K.

(v) varbaf=∞ if and only if there exists a sequence{αn} of divisions of [a, b]
such that

lim
n→∞

V (f, αn) =∞.

(vi) If, for a given functionf : [a, b]→R, there is anL∈R such that

|f(x)− f(y)| ≤L |x− y| for all x, y ∈ [a, b],

then varbaf ≤L (b− a). (In such a case, we say thatf satisfies theLipschitz
conditionon [a, b], or thatf is Lipschitz continuouson [a, b].)
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2.1.9 Remark. The inequality (2.1.7) implies that every function with bounded
variation on[a, b] is necessarily bounded on[a, b]..

2.1.10 Example.Let

f(x) =

{
0 if x = 0,

x sin
(π

x

)
if x∈ (0, 2].

Notice thatf(x) = 0 if and only if x = 0 or x =
1

k
for somek ∈N. Furthermore,

for x∈ (0, 2] we have

f(x) =





x if and only if x = yk =
2

4k + 1
, k ∈N∪{0},

−x if and only if x = zk =
2

4k− 1
, k ∈N.

Thus, for a givenn∈N and forαn = {0, yn, zn, . . . , y1, z1, 2}, we have

V (f, αn) = |f(0)− f(yn)|+
n∑

k=1

|f(yk−1)− f(zk)|+
n∑

k=1

|f(yk)− f(zk)|

= yn +
n∑

k=1

(
yk−1 + zk

)
+

n∑

k=1

(
yk + zk

)

= y0 + 2
n∑

k=1

(
yk + zk

)
= 2 + 4

n∑

k=1

8 k

16k2− 1
≥ 2

(
1 +

n∑

k=1

1

k

)
.

It is known that
∑∞

k=1
1
k

=∞. Hence,limn→∞ V (f, αn) =∞ and, consequently,
var20 f =∞.

We can easily determine the variation of a monotone function.

2.1.11 Theorem.If f is monotone on[a, b], then

varba f = |f(b)− f(a)|.
Proof. If f is nonincreasing on[a, b] andα∈D [a, b], then

V (f, α) =
m∑

j=1

[
f(αj−1)− f(αj)

]

=
[
f(a)− f(α1)

]
+

[
f(α1)− f(α2)

]
+ · · ·

+ [f(αm−2)− f(αm−1)
]
+ [f(αm−2)− f(b)

]

= f(a)− f(b),
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i.e., varba f = f(a)− f(b) =
∣∣f(b)− f(a)

∣∣.
In a similar way, one can show that iff is nondecreasing on[a, b], then

varba f = f(b)− f(a) =
∣∣f(b)− f(a)

∣∣.
2

2.1.12 Exercises.(i) Prove that the functionf : [a, b]→R has a bounded varia-
tion if and only if there exists a nondecreasing functionh : [a, b]→R such that

|f(y)− f(x)| ≤h(y)−h(x) for x, y ∈ [a, b], x≤ y.

(ii) Prove that the inequality

ν(α)∑
j=1

(
|∆+f(αj−1)|+ |f(αj−)− f(αj−1+)|+ |∆−f(αj)|

)
≤ varba f

holds for each functionf : [a, b]→R and each divisionα = {α0, α1, . . . , αν(α)}
of [a, b].

Hint: Consider expressions

ν(α)∑
j=1

(
|f(αj−1+δ)−f(αj−1)|+ |f(αj−δ)−f(αj−1+δ)|+ |f(αj)−f(αj−δ)|

)

and letδ→ 0.

2.1.13 Examples. (i) A simple example of a bounded variation function which
does not have bounded derivative (and hence the statement from Example2.1.4(i)
is not applicable) isf(x) =

√
x, x∈ [0, 1]. Indeed, sincef is increasing on[0, 1],

by Theorem2.1.11we have var10 f = 1.

(ii) An example of a discontinuous function with a bounded variation is

f(x) =





0 if x = 0,

1

k
if x∈ (0, 1] and x∈ ( 1

k+1
, 1

k
] for somek ∈N.

This function is nondecreasing on the interval[0, 1], and therefore var10f = 1 by
Theorem2.1.11.

2.1.14 Theorem.For everyc∈ [a, b] and every functionf : [a, b]→R, we have

varbaf = varcaf + varbcf.
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Proof. Let f : [a, b]→R and c∈ [a, b] be given. If c = a or c = b, the statement
of the theorem is trivial. Thus, assume thatc∈ (a, b).

Let α̃ = {a, c, b} and letα∈D [a, b] be an arbitrary refinement of̃α. Then
necessarilyc∈α and we can split the divisionα in two parts: the divisionα′

of the interval[a, c] and the divisionα′′ of the interval[c, b], i.e., α = α′ ∪α′′,
whereα′ ∈D [a, c] andα′′ ∈D [c, b]. Obviously, we have

V (f, α) = V (f, α′) + V (f, α′′), (2.1.8)

wherefrom, by Remark2.1.7, we deduce

varba f = sup
α⊃eα

V (f, α)≤ varca f + varbc f. (2.1.9)

On the other hand, for every two divisionsα′ ∈D [a, c] and α′′ ∈D [c, b], their
union α = α′ ∪α′′ is a division of the interval[a, b] and (2.1.8) holds again. This
implies

varcaf + varbcf = sup
α′∈D [a,c]

V (f, α′) + sup
α′′∈D [c,b ]

V (f, α′′)≤ varbaf,

which completes the proof of (2.1.9). 2

2.1.15 Example.Let n∈N. Consider the functionfn : [0, 2]→R given by

fn(x) =

{
0 if 0≤ x≤ 1

n
,

x sin
(π

x

)
if 1

n
<x≤ 2.

Its derivative

f ′n(x) =

{
0 if 0≤ x< 1

n
,

sin
(π

x

)
− π

x
cos

(π

x

)
if 1

n
<x≤ 2

is bounded on(0, 1
n
) and on( 1

n
, 2). Evidently, var1/n

0 fn=0. By Example2.1.4(i),
var21/n fn <∞. Thus, Theorem2.1.14yields var10fn <∞ for everyn∈N.

The following evident statement implies that the setBV([a, b]) is closed under
pointwise addition of functions and multiplication by scalars (see Conventions and
Notation, item (viii)).

2.1.16 Lemma.For given functionsf, g : [a, b]→R and a real numberc, the
relations

varba(f + g)≤ varbaf + varbaf (2.1.10)

and

varba(c f) = |c| varbaf (2.1.11)

are true. Furthermore,varbaf = 0 if and only if f is constant on[a, b].
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Proof. It suffices to notice that

V (f + g, α)≤V (f, α) + V (g, α) and V (c f, α) = |c|V (f, α)

holds for every divisionα of [a, b], and that varbaf = 0 implies |f(x)−f(a)|= 0
for eachx∈ [a, b].

2.1.17 Example.Show that the inequality

varba (f + g)≥ |varba f − varba g| (2.1.12)

holds for any couple of functionsf, g ∈BV([a, b]).

Hint: Notice thatf = (f + g)− g andg = (f + g)− f and make use of (2.1.10).

2.1.18 Remark.A trivial example

f(x) = cos x, g(x) =− cos x, with varπ/2
0 f = varπ/2

0 g = 1 and f + g≡ 0,

shows that in general, the inequality in (2.1.10) cannot be replaced by equality.
On the other hand, it is possible to formulate conditions sufficient to ensure that
(2.1.10) holds with equality. This is done by the following lemma.

2.1.19 Lemma.Let f ∈BV([a, b]) andg ∈BV([a, b]) be such that for eachε> 0
there aren∈N and aj, bj ∈ [a, b], j ∈{1, . . . , n}, such that

a≤ a1≤ b1≤ · · ·≤ an≤ bn≤ b, (2.1.13)
n∑

j=1

varbj
aj

f > varba f − ε, (2.1.14)

n∑
j=1

varbj
aj

g < ε. (2.1.15)

Then

varba (f + g) = varba f + varba g. (2.1.16)

Proof. Let ε> 0 be given and let{aj, bj}⊂ [a, b] with j ∈{1, . . . , n} be such
that relations (2.1.13)-(2.1.15) are true.

Put b0 = a andan+1 = b. Then

varba f =
n∑

j=1

varbj
aj

f +
n∑

j=0

varaj+1

bj
f

This together with (2.1.14) means that

n∑
j=0

varaj+1

bj
f < ε. (2.1.17)
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Similarly, by (2.1.15),

n∑
j=0

varaj+1

bj
g > varba g− ε. (2.1.18)

Now, using (2.1.13), (2.1.14), (2.1.17), (2.1.18) and Example2.1.17, we deduce
that

varba (f + g) =
n∑

j=1

varbj
aj

(f + g) +
n∑

j=0

varaj+1

bj
(f + g)

≥
n∑

j=1

(varbj
aj

f − varbj
aj

g) +
n∑

j=0

(varaj+1

bj
g− varaj+1

bj
f)

> varba f − 2 ε + varba g− 2 ε = varba f + varba g− 4 ε,

i.e.

varba (f + g) > varba f + varba g− 4 ε

holds for everyε> 0. Consequently,

varba (f + g)≥ varba f + varba g

wherefrom, by (2.1.10) the desired equality (2.1.16) follows. 2

2.1.20 Remark. Some important examples of functionsf, g satisfying the as-
sumptions of Lemma2.1.19will be provided later, cf. Propositions2.5.7 and
3.3.5.

2.1.21 Theorem.A functionf : [a, b]→R has bounded variation on[a, b] if and
only if there exist nondecreasing functionsf1, f2 : [a, b]→R such thatf = f1−f2.

Proof. If f1 and f2 are nondecreasing on[a, b] and f = f1− f2, then, by Theo-
rem2.1.11, both f1 andf2 have bounded variation on[a, b]. Hence, by (2.1.10),
we have varba f <∞.

Conversely, assume thatf ∈BV([a, b]), and define

f1(x) = varxa f and f2(x) = f1(x)− f(x) for x∈ [a, b].

Let x, y ∈ [a, b] andy≥ x. Then, by Theorem2.1.14, f1(y) = f1(x) + varyxf, and
since the variation is always nonnegative, it follows thatf1 is nondecreasing on
[a, b]. Furthermore, by Theorem2.1.14we have

f2(y) = f1(x) + varyx f − f(y)

and
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f2(y)− f2(x) = varyx f − (f(y)− f(x))≥ 0

(see Exercise2.1.8(i)). This means that the functionf2 is also nondecreasing and
the proof is complete. 2

2.1.22 Exercise.Let f ∈BV([a, b]). Prove that the functions

p (x) =





0 if x = a,

sup
α∈D [a,x]

ν(α)∑
j=1

(
f(αj)− f(αj−1)

)+
if x∈ (a, b]

and

n(x) =





0 if x = a,

sup
α∈D [a,x]

ν(α)∑
j=1

(
f(αj)− f(αj−1)

)−
if x∈ (a, b]

are nondecreasing and nonnegative on[a, b], and that the relations

f(x) = f(a) + p (x)− n(x) and varxaf = p (x) + n(x)

hold for all x∈ [a, b].

2.1.23 Corollary. For any functionf ∈BV([a, b]) and all t∈ [a, b) and s∈ (a, b]
there exist finite limits

f(t+) = lim
τ→t+

f(τ) and f(s−) = lim
τ→s−

f(τ).

Proof. By Theorem2.1.21, we can assume thatf is nondecreasing on[a, b]. Then
f(a)≤ f(x)≤ f(b) for everyx∈ [a, b]. Consequently,

f(a)≤ sup
x∈[a,s)

f(x)≤ f(b) for s∈ (a, b]

and
f(a)≤ inf

x∈(t,b]
f(x)≤ f(b) for t∈ [a, b).

Next, we will show that

f(t+) = inf
x∈(t,b]

f(x) if t∈ [a, b). (2.1.19)

Let d = infx∈(t,b] f(x) and choose an arbitraryε > 0. Then, by the definition of
the infimum, there is at′ ∈ (t, b] such thatd≤ f(t′) <d + ε. By the monotonicity
of the functionf, it follows thatd≤ f(x) <d + ε for everyx∈ (t, t′], wherefrom
the relation (2.1.19) follows immediately.

In a similar way, one can show that

f(s−) = sup
x∈[a,s)

f(x) if s∈ (a, b]. (2.1.20)
2
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2.2 Space of functions of bounded variation

By Lemma2.1.16, every linear combination of functions of bounded variation has
a bounded variation, too. It follows that the setBV([a, b]) is a linear space whose
zero element is given by the identically zero function. We will show that, with
suitably chosen norm,BV([a, b]) becomes a normed linear space.

2.2.1 Theorem. BV([a, b]) is a normed linear space with respect to the norm
defined by

‖f‖BV = |f(a)|+ varbaf for f ∈BV([a, b]). (2.2.1)

Proof. BV([a, b]) is a linear space by Lemma2.1.16. By the same lemma, the
relations

‖f + g‖BV≤‖f‖BV + ‖g‖BV and ‖c f‖BV = |c| ‖f‖BV (2.2.2)

hold for all f, g ∈BV([a, b]) and everyc∈R. Finally, if ‖f‖BV = 0, thenf(a) =
0 and varbaf = 0. Hence, by Lemma2.1.16, f(x)− f(a) = 0 on [a, b], i.e., f is
the zero element ofBV([a, b]). Consequently, the relation (2.2.1) defines a norm
on BV([a, b]). 2

Next, we prove thatBV([a, b]) is a Banach space with respect to the norm
given by (2.2.1). This fact will enable us to use the results of functional analysis
in the study of the bounded variation functions.

2.2.2 Theorem.BV([a, b]) is a Banach space.

Proof. It is sufficient to prove thatBV([a, b]) is complete, i.e., that every Cauchy
sequence inBV([a, b]) has a limit inBV([a, b]). To this aim, let{fn}⊂ BV ([a, b])
be a Cauchy sequence, i.e.,

for eachε> 0 there isnε ∈N such that

|fn(x)− fm(x)| ≤ ‖fn− fm‖BV <ε for x∈ [a, b] andn,m ≥nε.

}
(2.2.3)

a) By (2.2.3), the sequence{fn(x)} is a Cauchy sequence of real numbers for
everyx∈ [a, b]. Hence, for anyx∈ [a, b] it has a finite limit

lim
n→∞

fn(x) = f(x).

b) Let an arbitraryε > 0 be given and letnε ∈N be determined by (2.2.3). Then
for everyx∈ [a, b] we have

|f(x)− fnε(x)|= lim
n→∞

|fn(x)− fnε(x)| ≤ ε,
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and hence the inequalities

|f(x)− fn(x)| ≤ |f(x)− fnε(x)|+ |fnε(x)− fn(x)|< 2 ε

hold for everyn≥nε and everyx∈ [a, b]. This means that

lim
n→∞

‖f − fn‖∞ = 0.

In other words, the sequence{fn} tends tof uniformly on [a, b].

c) By (2.2.2) and (2.2.3), there isn1 ∈N such that

varba fn≤‖fn‖BV≤‖fn1‖BV + 1 for n≥n1.

Consequently, the sequence{varbafn} of real numbers is bounded by a certain
d∈ [0,∞). As a result, we have

V (f, α) = lim
n→∞

V (fn, α)≤ d for all α∈D [a, b],

which implies

varbaf = sup
α∈D [a,b]

V (f, α)≤ d.

In particular,f ∈BV([a, b]).

d) It remains to show that

lim
n→∞

‖f − fn‖BV = 0. (2.2.4)

Let an arbitraryε > 0 be given. By (2.2.3), there exists annε ∈N such that

V (fn− fm,α)≤ varba (fn− fm) <ε for all n,m≥nε and α∈D [a, b],

wherefrom, by lettingm→∞, we deduce that

V (fn− f, α) = lim
m→∞

V (fn− fm,α)≤ ε for all n≥nε andα∈D [a, b],

and consequently

lim
n→∞

varba (fn− f) = 0.

This fact together with part a) of the proof implies that (2.2.4) is true. 2
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2.3 Bounded variation and continuity

2.3.1 Definition. Let a functionf : [a, b]→R be given. We say thatx∈ (a, b) is
its point of discontinuity of the first kindif both the one-sided limits

f(x−) = lim
t→x−

f(t) and f(x+) = lim
t→x+

f(t)

exist and are finite, while eitherf(x−) 6=f(x) and/or f(x+) 6= f(x). Analo-
gously,a is the point of discontinuity of the first kind off if the limit

f(a+) = lim
t→a+

f(t)

is finite andf(a+) 6= f(a), and b is the point of discontinuity of the first kind of
f if the limit

f(b−) = lim
t→b−

f(t)

is finite andf(b−) 6= f(b).

By Corollary2.1.23, functions of bounded variation can only have discontinu-
ities of the first kind. Now, let us have a closer look on the properties of bounded
variation functions related to continuity.

2.3.2 Theorem.Every functionf ∈BV([a, b]) has at most countably many dis-
continuities in the interval[a, b].

Proof. By virtue of Theorem2.1.21, it is enough to prove the statement for the
case whenf is a nondecreasing function. LetD be the set of all discontinuity
points of f. For eachx∈D, choose an arbitrary rationalq(x) in the interval
(f(x−), f(x+)). Sincef is nondecreasing, it follows thatq(x) 6= q(y) whenever
x, y ∈D andx 6= y. Hence, the mappingq provides a one-to-one correspondence
betweenD and a subset of rational numbers. This proves thatD is at most
countable. 2

Let f ∈BV([a, b]) and

v(x) = varxaf for x∈ [a, b]. (2.3.1)

From the proof of Theorem2.1.21, we know that the functionsv and v− f are
nondecreasing on[a, b]. We now will show that the functionv inherits the conti-
nuity properties of the functionf.
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2.3.3 Lemma. Let f ∈BV([a, b]) and let v : [a, b]→R be defined by(2.3.1).
Then

∆−v(x) = |∆−f(x)| for x∈ (a, b] (2.3.2)

and

∆+v(x) = |∆+f(x)| for x∈ [a, b). (2.3.3)

Proof. a) If x∈ (a, b], then

v(x)− v(s) = varxsf ≥ |f(x)− f(s)| holds for everys∈ [a, x].

For s→x−, we get the inequality

∆−v(x)≥ |∆−f(x)| for x∈ (a, b]. (2.3.4)

Let ε> 0 be given. Choose aδ > 0 such that

|f(x−)− f(s)|< ε

2
for s∈ (x− δ, x). (2.3.5)

Furthermore, choose a divisionα = {α0, α1, . . . , αm} of [a, x] such that

αm−1≥ x− δ
2

and v(x)−V (f, α) <
ε

2
. (2.3.6)

Then, by (2.3.6) and (2.3.5), we have

v(x)−
m−1∑
j=1

|f(αj)− f(αj−1)|<V (f, α) +
ε

2
−

m−1∑
j=1

|f(αj)− f(αj−1)|

= |f(x)− f(αm−1)|+ ε

2
≤ |∆−f(x)|+ |f(x−)− f(αm−1)|+ ε

2
≤ |∆−f(x)|+ ε.

Moreover, since

m−1∑
j=1

|f(αj)− f(αj−1)| ≤ v(αm−1)

andv(t)≥ v(αm−1) for every t∈ (αm−1, x), it follows that

v(x)− v(t)≤ v(x)− v(αm−1)≤ v(x)−
m−1∑
j=1

|f(αj)− f(αj−1)|

≤ |∆−f(x)|+ ε
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holds for everyt∈ (αm−1, x) and everyε> 0. Letting t→ x− and recalling that
ε> 0 can be arbitrary, we get the inequality∆−v(x)≤ |∆−f(x)|, which together
with (2.3.4) proves the equality (2.3.2).

b) The second relation (2.3.3) can be proved by a symmetry argument based on
reflecting the graph off about the vertical axis: Let̃f : [−b,−a]→R be given
by f̃(x) = f(−x), x∈ [−b,−a]. Observe that vardcf = var−c

−df̃ whenever[c, d]⊂
[a, b], and∆+f(x) =−∆−f̃(−x) for eachx∈ [a, b). Therefore,

∆+v(x) = lim
δ→0+

(
varx+δ

a f − varxaf
)
= lim

δ→0+
varx+δ

x f

= lim
δ→0+

var−x
−x−δf̃ = lim

δ→0+

(
var−x

−b f̃ − var−x−δ
−b f̃

)

= |∆−f̃(−x)|= |∆+f(x)|,

where the first equality on the last line follows from part (a) applied to the function
f̃ at the point−x. 2

The following statement is an immediate consequence of Lemma2.3.3.

2.3.4 Corollary. Let f ∈BV([a, b]) and let the functionv : [a, b]→R be defined
by the relation(2.3.1). Thenf is right-continuous at a pointx∈ [a, b) if and only
if the functionv is right-continuous at this point. Similarly,f is left-continuous
at the pointx∈ (a, b] if and only if the functionv is left-continuous at this point.

From the next theorem it will follow that the sum of absolute values of the
jumps of a bounded variation function is always finite. For its proof, we need the
following statement.

2.3.5 Lemma. If f : [a, b]→R has bounded variation and the functionsp and n

are defined as in Exercise2.1.22, then

∆−p(x) = (∆−f(x))+, ∆−n(x) = (∆−f(x))− for x∈ (a, b], (2.3.7)

and

∆+p(x) = (∆+f(x))+, ∆+n(x) = (∆+f(x))− for x∈ [a, b). (2.3.8)

The proof can be carried out analogously as the proof of Lemma2.3.3; it
suffices to work with

(f(αj)− f(αj−1))
+ or (f(αj)− f(αj−1))

−

instead of |f(αj)− f(αj−1)|. The detailed proof is left as an exercise for the
reader.
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2.3.6 Theorem.Let f ∈BV([a, b]) and letD = {sk} be a non-repeating sequen-
ce (i.e.,sk 6= s` wheneverk 6= `) of points from the open interval(a, b). Then

|∆+f(a)|+
∞∑

k=1

(
|∆+f(sk)|+ |∆−f(sk)|

)
+ |∆−f(b)| ≤ varba f. (2.3.9)

Proof. a) First, assume thatf is nondecreasing. Then

|∆+f(a)|+
∞∑

k=1

(
|∆+f(sk)|+ |∆−f(sk)|

)
+ |∆−f(b)|

= ∆+f(a) +
∞∑

k=1

∆ f(sk) + ∆−f(b).

Choose an arbitraryn∈N. Denote α0 = a, αk = sk for k ∈{1, . . . , n}, and
αn+1 = b. Then

∆+f(a) +
n∑

k=1

∆ f(sk) + ∆−f(b)

=∆+f(α0) +
n∑

k=1

(
f(αk+)− f(αk−)

)
+ ∆−f(αn+1)

=− f(α0) +
n∑

k=0

(
f(αk+)− f(αk+1−)

)
+ f(αn+1)

≤− f(α0) + f(αn+1) = f(b)− f(a) = varbaf,

where the last inequality follows from the fact thatf is nondecreasing. Passing
to the limit n→∞, we obtain (2.3.9).

b) Now, let f be an arbitrary function of bounded variation on[a, b] and let the
functionsp andn be defined as in Exercise2.1.22. We know thatf = f(a)+p−n

on [a, b]. Obviously,

∆+f(t) = ∆+p(t)−∆+n(t) and ∆−f(s) = ∆−p(s)−∆−n(s)

for t∈ [a, b) ands∈ (a, b]. Finally, using Lemma2.3.5, we can easily deduce that
the relations

|∆+f(t)|= ∆+p(t) + ∆+n(t) and |∆−f(s)|= ∆−p(s) + ∆−n(s) (2.3.10)

hold for t∈ [a, b), s∈ (a, b].

By the first part of the proof we have

∆+p(a) +
∞∑

k=1

(
∆+p(sk) + ∆−p(sk)

)
+ ∆−p(b)≤ p(b)

and
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∆+n(a) +
∞∑

k=1

(
∆+n(sk) + ∆−n(sk)

)
+ ∆−n(b)≤ n(b).

By adding these two inequalities, we obtain

|∆+f(a)|+
n∑

k=0

(
|∆+f(sk)|+|∆−f(sk)|

)
+ |∆−f(b)|

≤ p(b) + n(b) = varbaf.
2

2.3.7 Remark. Let f : [a, b]→R have a bounded variation and let the setD of
its discontinuity points in(a, b) be infinite. By Theorem2.3.2, the elements ofD
can be arranged into a sequence{sk}. (Naturally, there is an infinite number of
such sequences.) By Theorem2.3.6, the series

∞∑

k=1

(
|∆+f(sk)|+ |∆−f(sk)|

)

is absolutely convergent and its sum does not depend on the ordering of points of
D. Since forx∈ (a, b), the expression|∆+f(x)|+ |∆−f(x)| is nonzero if and
only if x∈D, it makes sense to define

∑

a<x<b

(
|∆+f(x)|+|∆−f(x)|

)
=

∑
x∈D

(
|∆+f(x)|+|∆−f(x)|

)

=
∞∑

k=1

(
|∆+f(sk)|+|∆−f(sk)|

)
,

where{sk} is an arbitrary non-repeating sequence of points from(a, b) such that
D = {sk}. The symbols

∑

a≤x<b

,
∑

a<x≤b

,
∑

a≤x≤b

, or
∑

x∈[a,b)

,
∑

x∈(a,b ]

,
∑

x∈[a,b]

etc.

should be understood in an analogous way.

Theorem2.3.6implies the following result.

2.3.8 Corollary. Each functionf ∈BV([a, b]) satisfies the inequality

∑

x∈[a,b)

|∆+f(x)|+
∑

x∈(a,b]

|∆−f(x)| ≤ varba f. (2.3.11)
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2.4 Derivatives of bounded variation functions

In this section we will consider the properties of functions of bounded variation
related to differentiation. To this aim, let us first recall the concept of the Lebesgue
outer measure.

For an arbitrary setM ⊂R, we define itsLebesgue outer measure

µ∗(M) := inf
∑

k

(bk− ak),

where the infimum is taken over all at most countable collections{(ak, bk)} of
open intervals inR such that

M ⊂
⋃

k

(ak, bk).

The Lebesgue outer measure is either a nonnegative real number, or∞ . Further-
more,µ∗(M1)≤µ∗(M2) wheneverM1⊂M2.

Obviously, for any finite collection{Ik} of disjoint open intervals inR, the
equality

µ∗
(⋃

k

Ik

)
=

∑

k

|Ik|

holds.

We say that a certain property holdsalmost everywhere(a.e.) on the interval
[a, b] if there exists a setN ⊂ [a, b] whose Lebesgue outer measure is zero and
such that the property holds for allx∈ [a, b] \N. Equivalently, we say that the
property holds for almost allx∈ [a, b].

If not stated otherwise, in what follows byouter measurewe always under-
stand the Lebesgue outer measure.

2.4.1 Exercises.Prove the following assertions:

(i) Every countable setS⊂R has outer measure equal to zero.

(ii) If I is an interval, thenµ∗(I) equals its length|I|.
(iii) If {Mk} is a countable collection of subsets ofR, then

µ∗
(⋃

k

Mk

)
≤

∑

k

µ∗(Mk).
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(iv) The union of countably many sets whose outer measure is zero has outer
measure equal to zero.

2.4.2 Theorem(LEBESGUEDIFFERENTIATION THEOREM). Every monotone
functionf : [a, b]→R has a finite derivativef ′(x) for almost allx∈ [a, b].

The proof of Theorem2.4.2can be found in many real analysis textbooks (see
e.g. Appendix E in [11], Theorem 7.9 in [16], Theorem 4.9 in [43] or Theorem
6.2.1 in [111].

2.4.3 Remark. In particular, by Theorem2.1.21, each functionf ∈BV([a, b])
has a bounded derivative almost everywhere on the interval[a, b]. It is even known
(see Theorem3.2.1) that the derivatives of functions of bounded variation are
Lebesgue integrable. However, the seemingly natural equation

f(x)− f(a) =

∫ x

a

f ′(t) dt for x∈ [a, b]

is not true for every functionf ∈BV([a, b]). For example, there exist functions
f ∈BV([a, b]) which are non-constant on[a, b] and such thatf ′ = 0 a.e. on[a, b].

2.4.4 Definition. A function f ∈BV([a, b]) is calledsingular if f ′(x) = 0 for
almost allx∈ [a, b].

2.5 Step functions

The simplest example of non-constant singular functions are functions of the form
f = χ[a,c], wherec∈ (a, b). Their natural generalizations are thefinite step func-
tions, sometimes called alsosimple functions.

2.5.1 Definition. A function f : [a, b]→R isa finite step function on[a, b] if there
exists a divisionα = {α0, α1, . . . , αm} of [a, b] such thatf is constant on each
of the open intervals(αj−1, αj), j = 1, . . . ,m. The set of finite step functions on
the interval[a, b] is denoted byS([a, b]).

By definition, the functionf : [a, b]→R is a finite step function if and only
if there exists anm∈N, sets{c̃j: j = 0, 1, . . . , m}⊂R, {d̃j : j = 1, . . . , m}⊂R
and a division{a = s0 <s1 < · · ·<sm = b} of [a, b] such that

f(sj) = c̃j for j = 0, 1, . . . ,m,
and

f(x) = d̃j for x∈ (sj−1, sj) and j = 1, . . . , m,
i.e.,
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f(x) =
m∑

j=0

c̃j χ[sj ](x) +
m∑

j=1

d̃j χ(sj−1,sj)(x)

= c̃0 (χ[a,b](x)−χ(a,b](x)) +
m−1∑
j=1

c̃j (χ[sj ,b]−χ(sj ,b](x))

+ c̃m χ[b](x) +
m−1∑
j=1

d̃j (χ(sj−1,b](x)−χ[sj ,b](x))

+ d̃m (χ(sm−1,b](x)−χ[b](x))

= c̃0 +
m−1∑
j=0

(d̃j+1−c̃j) χ(sj ,b](x)

+
m−1∑
j=1

(c̃j−d̃j) χ[sj ,b](x) + (c̃m−d̃m) χ[b](x).

Equivalently,

f(x) = c +
m−1∑
j=0

cj χ(sj ,b](x) +
m−1∑
j=1

dj χ[sj ,b](x) + dχ[b](x)

for x∈ [a, b],





(2.5.1)

where

c = c̃0, cj = d̃j+1− c̃j for j = 0, 1, . . . , m− 1,

and

dj = c̃j − d̃j for j = 1, . . . ,m− 1, d = c̃m− d̃m.

Obviously,f(a) = c,

f(x−) = f(x) for x∈ (a, b ] \{sk}, f(x) = f(x+) for x∈ [a, b) \{sk}
and

∆+f(sj) = d̃j+1− c̃j = cj for j = 0, 1, . . . ,m− 1,

∆−f(sj) = c̃j − d̃j = dj for j = 1, . . . , m.

A generalization of a finite step function is provided bystep functions, some-
times called alsojump functions.

2.5.2 Definition. A function f : [a, b]→R is a step function on[a, b] if either
f is a finite step function or there existc, c0, d∈R, a non-repeating sequence
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{sk}⊂ (a, b), and sequences{ck}⊂R and{dk}⊂R such that

∞∑

k=1

(|ck|+ |dk|) <∞ (2.5.2)

and

f(x) = c + c0 χ(a,b](x) +
∞∑

k=1

(
ck χ(sk,b](x) + dk χ[sk,b](x)

)

+ dχ[b ](x) for x∈ [a, b].





(2.5.3)

The set of all step functions on the interval[a, b] is denoted byB([a, b]).

If f ∈B([a, b]) is not a finite step function, then the sequence{sk} from De-
finition 2.5.2 is infinite and, in general, it is not possible to reorder it into an
increasing sequence. However, thanks to condition (2.5.2) we have

∞∑

k=1

∣∣ck χ(sk,b](x) + dk χ[sk,b](x)
∣∣≤

∞∑

k=1

(|ck|+ |dk|
)
<∞. (2.5.4)

This means that the series on the right-hand side of (2.5.3) is absolutely convergent
for eachx∈ [a, b]. Hence, the valuesf(x) do not depend on the particular order-
ing of the sequence{sk}. Consequently, for eachx∈ [a, b] the relation (2.5.3)
can be equivalently rewritten as

f(x) =





c if x = a,

c + c0 +
∑

a<sk< x

ck +
∑

a<sk≤x

dk if x∈ (a, b),

c + c0 +
∑

a<sk< b

ck +
∑

a<sk<b

dk + d if x = b,

(2.5.5)

where the sum
∑

a<sk< x ck runs over all indicesk∈N such thatsk ∈ (a, x), the
sum

∑
a<sk≤x ck runs over all indicesk ∈N such thatsk ∈ (a, x], and analo-

gously in the case of
∑

a<sk< b dk.

From (2.5.5) we see that the functionf ∈B([a, b]) defined by (2.5.3) satisfies
f(a) = c. From (2.5.5) we see that if there is aδ > 0 such that(a, a+δ)∩{sk}= ∅,
then

f(a+) = c + c0. (2.5.6)

In the general case, one has to take into account that since

lim
t→a+

( ∑
a<sk< t

ck +
∑

a<sk≤t

dk

)
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is in fact the limit of the remainder of an absolutely convergent series, it must be
zero. Hence (2.5.6) holds also in the case whena is a limit point of the set{sk}.
Similar argument can be used to prove the following formulas:

f(x−) = c + c0 +
∑

a<sk<x

ck +
∑

a<sk<x

dk if x∈ (a, b],

and

f(x+) = c + c0 +
∑

a<sk≤x

ck +
∑

a<sk≤x

dk if x∈ [a, b).





(2.5.7)

Subtracting (2.5.5) from (2.5.7) leads to

f(x−) = f(x) = f(x+) for x∈ (a, b) \{sk} (2.5.8)

and
∆+f(sk) = ck for k ∈N, ∆+f(a) = c0,

∆−f(sk) = dk for k ∈N, ∆−f(b) = d.

}
(2.5.9)

Thus, the relation (2.5.3) from Definition2.5.2can be reformulated in further two
equivalent ways:

f(x) =





c if x = a,

c + ∆+f(a) +
∑

a<sk< x

∆+f(sk) +
∑

a<sk≤x

∆−f(sk)

if x∈ (a, b),

c + ∆+f(a) +
∑

a<sk< b

∆+f(sk) +
∑

a<sk<b

∆−f(sk) + ∆−f(b)

if x = b,

(2.5.10)

or

f(x) = f(a) +
∑

d∈D

[
∆+f(d) χ(d,b](x) + ∆−f(d) χ[d,b](x)

]

+ ∆+f(a) χ(a,b](x) + ∆−f(b) χ[b](x) for x∈ [a, b],





(2.5.11)

whereD = {sk}. Recall that we assume thatD⊂ (a, b). Hence, with respect to
(2.5.9) we can see thatD is the set of points of discontinuity off in the open
interval (a, b), while the set of points of discontinuity off on the closed interval
[a, b] is contained in the setD∪{a}∪ {b}. (The pointsa, b do not necessarily
have to be discontinuity points off.)
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2.5.3 Theorem.S([a, b])⊂B([a, b])⊂BV([a, b]) and the inequality

varbaf = |∆+f(a)|+
∑

x∈(a,b)

(
|∆+f(x)|+ |∆−f(x)|

)
+ |∆−f(b)|<∞ (2.5.12)

holds for each step functionf ∈B([a, b]).

Proof. By Definition2.5.1, we have

S([a, b])⊂B([a, b]) and S([a, b])⊂BV([a, b]).

Obviously, (2.5.12) holds for all finite step functionsf ∈ S([a, b]). Thus, we can
restrict ourselves to the case thatf ∈B([a, b]) \ S([a, b]), i.e., we may assume that
f is given by (2.5.5), and (2.5.2) is true. Using (2.5.9) we have

|∆+f(a)|+
∑

a<x<b

(
|∆+f(x)|+ |∆−f(x)|

)
+ |∆−f(b)|

= |c0|+
∞∑

k=1

(
|ck|+ |dk|

)
+ |d|<∞.





(2.5.13)

Notice that

|f(y)− f(x)| ≤
∑

x≤sk<y

|ck|+
∑

x<sk≤y

|dk|

holds for arbitraryx, y ∈ (a, b) such thatx< y. Furthermore,

|f(y)− f(a)| ≤ |c0|+
∑

a<sk<y

|ck|+
∑

a<sk≤y

|dk| if a< y < b,

and

|f(b)− f(x)| ≤
∑

x≤sk<b

|ck|+
∑

x<sk<b

|dk|+ |d| if a< x< b.

Hence, for any divisionα of [a, b] with ν(α)≥ 3 we can deduce

V (f, α) =

ν(α)∑
j=1

|f(αj)− f(αj−1)| ≤ |c0|+
( ∑

a<sk<α1

|ck|+
∑

a<sk≤α1

|dk|
)

+

ν(α)−1∑
j=2


 ∑

αj−1≤sk<αj

|ck|+
∑

αj−1<sk≤αj

|dk|



+


 ∑

αν(α)−1≤sk<b

|ck|+
∑

αν(α)−1<sk<b

|dk|

 + |d|

≤ |c0|+
∞∑

k=1

(|ck|+ |dk|) + |d|.
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Consequently, by (2.5.2) we have

varba f ≤ |c0|+
∞∑

k=1

(|ck|+ |dk|) + |d|<∞, (2.5.14)

i.e., f ∈BV([a, b]) and B([a, b])⊂BV([a, b]). Finally, using Theorem2.3.6we
get

|∆+f(a)|+
∑

x∈(a,b)

(
|∆+f(x)|+ |∆−f(x)|

)
+ |∆−f(b)| ≤ varba f. (2.5.15)

Now, using (2.5.13), (2.5.14) and (2.5.15), we obtain the relation (2.5.12). 2

Obviously, if f is a finite step function on[a, b], then f ′ = 0 on [a, b] \M
whereM ⊂ [a, b] is a finite (possibly empty) set. Finite step functions on[a, b]
are thus singular on[a, b]. We will show that every step function on[a, b] is also
singular on[a, b]. For this purpose, we need the following statement known as the
little Fubini theorem.

2.5.4 Theorem(”L ITTLE” FUBINI ). Let {fk} be a sequence of nondecreasing
functions on[a, b] such that the seriesf(x) =

∑∞
k=1 fk(x) converges for every

x∈ [a, b]. Thenf ′(x) =
∑∞

k=1 f ′k(x)∈R for almost allx∈ [a, b].

Proof. a) Denote

g(x) = f(x)− f(a), gk(x) = fk(x)− fk(a) for k ∈N, x∈ [a, b],

and

sn(x) =
n∑

k=1

gk(x) for n∈N, x∈ [a, b].

Then the functionsg, gk, k ∈N, are nonnegative and nondecreasing on[a, b],
while

g(x) =
∞∑

k=1

gk(x) = lim
n→∞

sn(x) for x∈ [a, b].

By Theorem2.4.2, for everyk ∈N there exists a setDk ⊂ ab of zero outer mea-
sure such that the functiongk has a finite derivativeg′k(x) for everyx∈ [a, b] \Dk.
Similarly, there exists a finite derivativeg′(x) for every x∈ [a, b] \D where
D⊂ [a, b] has zero outer measure. Thus, if we letD̃ = D∪ ⋃∞

k=1 Dk, we can
summarize that there exist finite derivativesg′(x), g′k(x) for each eachk ∈N and
eachx∈ [a, b] \ D̃. By Exercise2.4.1(iv) the setD̃ also has zero outer measure.
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For anyx∈ [a, b] \ D̃ and ξ ∈ [a, b] such thatξ 6= x, we have

∞∑

k=1

gk(ξ)− gk(x)

ξ− x
=

g(ξ)− g(x)

ξ− x
.

Since every term in the sum on the left-hand side is nonnegative (becausegk is
nondecreasing), it follows that

sn(ξ)− sn(x)

ξ− x
=

n∑

k=1

gk(ξ)− gk(x)

ξ− x
≤ g(ξ)− g(x)

ξ− x

holds for anyx∈ [a, b], ξ ∈ [a, b] \ {x} andn∈N. Letting ξ→x we get

s′n(x) =
n∑

k=1

g′k(x)≤ g′(x) for x∈ [a, b] \ D̃ and n∈N.

Sinceg′k(x)≥ 0 for x∈ [a, b] \ D̃ and k ∈N, the sequence{s′n(x)} is bounded
and nondecreasing for eachx∈ [a, b] \ D̃. Thus, for everyx∈ [a, b] \ D̃ there ex-
ists a finite limit

lim
n→∞

s′n(x) =
∞∑

k=1

g′k(x)≤ g′(x), (2.5.16)

i.e., the series
∑∞

k=1 g′k(x) converges for almost allx∈ [a, b].

b) On the other hand, for everỳ∈N there existsn` such that

0≤ g(b)− sn`
(b) <

1

2`
.

Since bothg and sn`
are nondecreasing on[a, b], it follows that

0≤ g(x)− sn`
(x) =

∞∑

k=n`+1

gk(x)≤
∞∑

k=n`+1

gk(b) = g(b)− sn`
(b) <

1

2`

and hence also

0≤
∞∑

`=1

(
g(x)− sn`

(x)
)≤

∞∑

`=1

1

2`
= 1 for x∈ [a, b].

Repeating the considerations from part a) with{gk} replaced by
{
g(x)− sn`

(x)
}

we deduce that the series
∑∞

`=1

(
g′(x)−s′n`

(x)
)

is convergent for almost all
x∈ [a, b]. In particular,

lim
`→∞

(
g′(x)− s′n`

(x))
)
= 0 for almost all x∈ [a, b].
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Naturally, this could not be true if the inequality in (2.5.16) was strict. Conse-
quently,

f ′(x) = (f(x)− f(a))′ = g′(x) =
∞∑

k=1

g′k(x)

=
∞∑

k=1

(
fk(x)− f(a)

)′
=

∞∑

k=1

f ′k(x) for almost all x∈ [a, b].

This completes the proof. 2

2.5.5 Theorem.Every step function on[a, b] is singular on[a, b].

Proof. Let f be a step function on[a, b]. If f ∈ S([a, b]), the statement of the
theorem is obvious. Otherwise,f has the form (2.5.3) and (2.5.2) holds. Define

va(x) =





0 if x = a,

|c0| if x> a,
vb(x) =





0 if x< b,

|d| if x = b,

and

vk(x) =





0 if x< sk,

|dk| if x = sk,

|ck|+ |dk| if x> sk





and k ∈N.

All these functions are nondecreasing on[a, b],

v′a(x) = 0 for x 6= a, v′b(x) = 0 for x 6= b,

v′k(x) = 0 for k ∈N and x 6= sk.

Moreover, by (2.5.2) we have

∞∑

k=1

|vk(x)| ≤
∞∑

k=1

(|ck|+ |dk|
)
<∞ for x∈ [a, b].

Thus, the series
∑∞

k=1 vk(x) is absolutely convergent for eachx∈ [a, b] and the
function

v(x) = va(x) +
∞∑

k=1

vk(x) + vb(x)

is well defined for eachx∈ [a, b]. In view of Theorem2.5.4, we have

v′(x) = v′a(x) +
∞∑

k=1

v′k(x) + v′b(x) = 0 for almost allx∈ [a, b].



46

Now, since
∣∣∣f(x)− f(y)

x− y

∣∣∣≤
∣∣∣v(x)− v(y)

x− y

∣∣∣

holds for all x, y ∈ [a, b] such thatx 6= y, it follows easily thatf ′(x) = 0 for al-
most allx∈ [a, b]. 2

2.5.6 Remark. A well-known example of a continuous, nondecreasing and sin-
gular function is the so-called Cantor function; see e.g. [43], pages 14–15.

Next two assertions are interesting in the context of Remark2.1.18and Lem-
ma2.1.19.

2.5.7 Proposition. Let f be a step function on[a, b] and let g ∈BV([a, b]) be
continuous on[a, b]. Thenvarba(f + g) = varba f + varba g.

Proof. We will verify that the assumptions of Lemma2.1.19are satisfied.
Let f be given as in Definition2.5.2, whereK =N and D = {sk} is the set

of discontinuity points off in (a, b). By Theorem2.5.3, we have

|∆+f(a)|+
∞∑

k=1

(|∆−f(sk)|+ |∆+f(sk)|
)
+ |∆−f(b)|= varba f <∞.

Let ε> 0 be given and letn∈N be such that

|∆+f(a)|+
n∑

k=1

(|∆−f(sk)|+ |∆+f(sk)|
)
+ |∆−f(b)|> varba f − ε

2
.

Let x0, x1, . . . , xn, xn+1 be such that

{sk}n
k=1 = {xk}n

k=1 and a = x0 <x1 < · · ·< xn <xn+1 = b.

Further, choose pointsak, bk, k ∈{0, 1, . . . , n, n + 1}, in such a way that

a = x0 = a0 <b0 <a1 <x1 <b1 < · · ·<an <xn < bn <an+1 <xn+1 = bn+1 = b,

|f(bk)− f(xk)|> |∆+f(xk)| − ε

4(n + 2)
for k ∈{0, 1, . . . , n}

and

|f(xk)− f(ak)|> |∆−f(xk)| − ε

4(n + 2)
for k ∈{1, . . . , n, n + 1}.

Furthermore, asvg(x) = varxa g is continuous on[a, b] by Corollary2.3.4, we can
also assume that

vg(bk)− vg(ak) <
ε

n + 2
for all k ∈{0, . . . , n + 1}.
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To summarize, we have

n+1∑

k=0

varbk
ak

g < ε

and
n+1∑

k=0

varbk
ak

f ≥
n+1∑

k=0

(|f(bk)− f(xk)|+ |f(xk)− f(ak)|)

>

n+1∑

k=0

(
|∆+f(xk)|+ |∆−f(xk)| − ε

2(n + 2)

)
> varba f − ε.

Thus, the assumptions of Lemma2.1.19and the proof is complete. 2

2.6 Jordan decomposition of a function of bounded
variation

2.6.1 Theorem. For each f ∈BV([a, b]) there are f1 ∈BV([a, b])∩C([a, b])
and f2 ∈B([a, b]) such thatf = f1 + f2 on [a, b].

If f = f̃1 + f̃2 is another decomposition with̃f1 ∈C([a, b])∩BV([a, b]) and
f̃2 ∈B([a, b]), then the functionsf1− f̃1 and f2− f̃2 are constant on[a, b].

Proof. a) Let D be the set of all discontinuity points off in the open interval
(a, b). The setD contains at most countably many points, i.e.,

D = {sk ∈ (a, b): k ∈K}, whereK = {1, . . . , m} for somem∈N or K =N.

Define

f2(x) = f(a) + ∆+f(a) χ(a,b](x)

+
∑

k∈K

(
∆+f(sk) χ(sk,b](x) + ∆−f(sk) χ[sk,b](x)

)

+∆−f(b) χ[b](x) for x∈ [a, b].





(2.6.1)

By Corollary2.3.8we have

|∆+f(a)|+
∑

k∈K

(|∆+f(sk)|+ |∆−f(sk)|
)
+ |∆−f(b)| ≤ varba f <∞

and thusf2 ∈B([a, b]). Further, using (2.5.9) we get

∆+f2(t) = ∆+f(t) and ∆−f2(s) = ∆−f(s)

for t∈ [a, b) and s∈ (a, b].

}
(2.6.2)
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Hence
(
f(t+)−f2(t+)

)− (
f(t)−f2(t)

)
= ∆+f(t)−∆+f2(t) = 0 for t∈ [a, b)

and (
f(s)−f2(s)

)− (
f(s−)−f2(s−)

)
= ∆−f(s)−∆−f2(s) = 0 for s∈ (a, b ].

Thus, the functionf1 = f − f2 is continuous on[a, b] andf = f1 + f2 on [a, b].

b) Let f = f̃1 + f̃2 where f̃1 ∈C([a, b])∩BV([a, b]) and f̃2 ∈B([a, b]). Then
the relations

0 = ∆+f̃1(t) =
(
f(t+)−f̃2(t+)

)− (
f(t)−f̃2(t)

)
= ∆+f(t)−∆+f̃2(t)

and

0 = ∆−f̃1(s) =
(
f(s)−f̃2(s)

)− (
f(s−)−f̃2(s−)

)
= ∆−f(s)−∆−f̃2(s)

hold for all t∈ [a, b) ands∈ (a, b]. Using (2.6.2), we see that

∆+f̃2(t) = ∆+f2(t) = ∆+f(t) for t∈ [a, b)

and

∆−f̃2(s) = ∆−f2(s) = ∆−f(s) for s∈ (a, b].





(2.6.3)

Since f̃2 is a step function whose discontinuities are contained inD, there
exist real numbers̃c, c̃0, d̃ and sequences{c̃k}, {d̃k} such that

f̃2(x) = c̃ + c̃0 χ(a,b](x) +
∑

k∈K

(
c̃k χ(sk,b](x) + d̃k χ[sk,b](x)

)
+ d̃ χ[b](x)

for all x∈ [a, b], where

∑

k∈K

(|c̃k|+ |d̃k|) <∞,

∆+f̃2(sk) = c̃k for k ∈N, ∆+f̃2(a) = c̃0,

∆−f̃2(sk) = d̃k for k ∈N, ∆−f̃2(b) = d.

Using (2.6.3), we have

f̃2(x) = c̃ + ∆+f(a) χ(a,b](x) + ∆−f(b) χ[b](x)

+
∑

k∈K

(
∆+f(sk) χ(sk,b](x) + ∆−f(sk) χ[sk,b](x)

)

= (c̃− f(a)) + f2(x) for x∈ [a, b].
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It follows that on the whole interval[a, b], f̃2− f2 is equal to the constant
κ := c̃− f(a). Hence also

f1(x)− f̃1(x) = (f(x)− f2(x))− (f(x)− f̃2(x))

= f̃2(x)− f2(x) =κ for x∈ [a, b].
2

2.6.2 Remark. By Theorem2.6.1 every function of bounded variation can be
decomposed into the sum of a continuous function and a step function. Such
a decomposition is called theJordan decompositionof a function of bounded
variation.

2.6.3 Definition. Every functionf2 assigned tof by Theorem2.6.1is called the
jump partof the functionf. The differencef − f2 is called thecontinuous part
of the functionf. The jump part and the continuous part of the functionf are
usually denoted byf B andf C, respectively.

2.6.4 Exercises.Let {fn} be a sequence of functions with bounded variations on
[a, b] and let{f C

n } and {f B
n } be the sequences of continuous and jump parts of

{fn}, respectively.

(i) Show that varbafn = varbaf
C
n + varbaf

B
n for eachn∈N .

(ii) Prove that lim
n→∞

varba fn = 0 if and only if

lim
n→∞

(varba f C
n ) = lim

n→∞
(varba f B

n ) = 0.

For dealing with step functions, it is useful to know that every step function
may be approximated in the norm of the spaceBV([a, b]) by finite step functions.
This is the content of the following lemma, which will be particularly useful in
Chapter 6.

2.6.5 Lemma. For each step functionf ∈B([a, b]) there is a sequence
{fn}⊂ S([a, b]) of finite step functions such that

lim
n→∞

‖f − fn‖BV = 0. (2.6.4)

Proof. Let f ∈B([a, b]). If the setD of its discontinuity points in(a, b) is finite,
then f ∈ S([a, b]) and the assertion of the lemma is obvious. Therefore assume
that D = {sk} is a non-repeating infinite sequence. By Theorem2.3.6an Corol-
lary 2.3.8, the series

∞∑

k=1

(
∆+f(sk) χ(sk,b](x) + ∆−f(sk) χ[sk,b](x)

)
(2.6.5)
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is absolutely convergent forx∈ [a, b]. Therefore (cf. (2.5.3) and (2.5.9))

f(x) = f(a) + ∆+f(a) χ(a,b](x)

+
∞∑

k=1

(
∆+f(sk) χ(sk,b](x) + ∆−f(sk) χ[sk,b](x)

)

+ ∆−f(b) χ[b](x) for x∈ [a, b].





(2.6.6)

Define

fn(x) = f(a) + ∆+f(a) χ(a,b](x)

+
n∑

k=1

(
∆+f(sk) χ(sk,b](x) + ∆−f(sk) χ[sk,b](x)

)

+ ∆−f(b) χ[b](x) for x∈ [a, b] and n∈N.





(2.6.7)

Thenfn ∈ S([a, b]) for eachn∈N. Moreover, for eachn∈N we have

f(a) = fn(a), (2.6.8)

and

f(x)−fn(x) =
∞∑

k=n+1

(
∆+f(sk) χ(sk,b](x) + ∆−f(sk) χ[sk,b](x)

)
for x∈ [a, b].

Now, by Theorem2.5.3we have

varba(f − fn) =
∞∑

k=n+1

(|∆−f(sk)|+ |∆+f(sk)|
)
. (2.6.9)

Since the right hand side of (2.6.9) is the remainder of an absolutely convergent
series, it converges to0 as n→∞. This means thatlimn→∞ varba(f − fn) = 0
and hence (2.6.4) holds due to (2.6.8). This completes the proof. 2

2.7 Pointwise convergence

2.7.1 Example.Consider again the functions

fn(x) =





0 if 0≤ x≤ 1
n
,

x sin
(π

x

)
if 1

n
≤ x≤ 2

for n∈N

and

f(x) =

{
0 if x = 0,

x sin
(π

x

)
if x> 0.
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From Example2.1.15we know that var20 fn <∞ for eachn∈N. It can be easily
verified that{fn} converges tof uniformly on [0, 2], while by Example2.1.10,
f has unbounded variation on[0, 2].

The previous example shows that the limit of bounded variation functions need
not have bounded variation even if the convergence is uniform. On the other hand,
the following theorem shows that uniform boundedness of variations offn to-
gether with the pointwise convergencefn→ f already guarantee that the limit
function f has bounded variation. (Notice that, using the argument from Exam-
ple 2.1.10, it is possible to show that the sequence{fn} from Examples2.1.15
and2.7.1satisfieslimn→∞ var20 fn =∞, and thereforesupn∈N var20 fn =∞.)

2.7.2 Theorem.Let f : [a, b]→R be given and let{fn} be a sequence of func-
tions such that

varbafn≤κ<∞ for n∈N, and lim
n→∞

fn(x) = f(x) for x∈ [a, b].

Thenvarba f ≤κ.

Proof. Given an arbitraryα∈D [a, b], we have

V (f, α) = lim
n→∞

V (fn,α)≤κ.

Consequently, varbaf ≤κ. 2

2.7.3 Exercise.Let

f(x) =





2−k if x = 1
k+1

for somek ∈N,

0 otherwise.

Prove thatf ∈BV([0, 1]).

We now formulate and prove Helly’s Choice Theorem, which will be use-
ful e.g. in the proof of compactness of certain operators defined on the space
BV([a, b]). The theorem states that every sequence of functions with uniformly
bounded variations has a subsequence which is pointwise convergent to a function
of bounded variation.

2.7.4 Theorem(HELLY ’ S CHOICE THEOREM). Let {fn}⊂BV([a, b]), κ ∈R,
|fn(a)| ≤κ and varbafn≤κ for all n∈N.

Then there exist a functionf ∈BV([a, b]) and a subsequence{nk} of N such
that

|f(a)| ≤κ, varbaf ≤κ and lim
k→∞

fnk
(x) = f(x) for x∈ [a, b].



52

To prove Theorem2.7.4we need the following two assertions.

Assertion 1. Let |fn(x)| ≤M <∞ for all x∈ [a, b] and all n∈N. Then for
any countable subsetP of [a, b], there is a subsequence{nk} of N such that
lim
k→∞

fnk
(p) exists and is finite for allp∈P.

Proof. Let P = {pk}. We have|fn(pk)| ≤M <∞ for all n, k ∈N. Hence, by the
Bolzano-Weierstrass theorem, there is a sequence{nk,1 : k ∈N} and a number
q1 ∈R such that

lim
k→∞

fnk,1
(p1) = q1.

Similarly, there are{fnk,2
: k ∈N}⊂{fnk,1

: k ∈N} andq2 ∈R such that

lim
k→∞

fnk,2
(p2) = q2 ∈R, and lim

k→∞
fnk,2

(p1) = q1 ∈R.

In this way, for eachj ∈{2, 3, . . . } we can find a sequence

{fnk,j
: k ∈N}⊂{fnk,j−1

: k ∈N}
and a numberqj ∈R such that

lim
k→∞

fnk,`
(p `) = q ` ∈R for all `∈{1, . . . , j}.

Put fnk
= fnk,k

for k ∈N. Then

lim
k→∞

fnk
(pj) = qj ∈R for j ∈N. 2

Assertion 2. Let functions fn, n∈N, be nondecreasing on[a, b] and let
M ∈ [0,∞) be such that||fn||∞≤M for all n∈N. Then there is a subsequence
{nk} of N and a nondecreasing functionf : [a, b]→R such that

lim
k→∞

fnk
(x) = f(x) for x∈ [a, b].

Proof. Let P =
(
Q∩ (a, b)

)∪{a}∪ {b} be the set of all rational numbers from
the open interval(a, b) together with the pointsa, b. Then P is countable and
[a, b] \P ⊂ (a, b). By Assertion 1 there is a subsequence{nk}⊂N and a function
ϕ : P →R such that

lim
k→∞

fnk
(p) = ϕ(p) for p∈P.

Obviously,ϕ(p′)≤ϕ(p′′) if p′, p′′ ∈P andp′≤ p′′. Furthermore, define

ϕ(x) = sup
p∈P ∩ [a,x)

ϕ(p) for x∈ (a, b) \P.
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The functionϕ is nondecreasing on[a, b] and

ϕ(x) = lim
p→x−
p∈P

ϕ(p) for x∈ (a, b) \P.

We will show that

lim
k→∞

fnk
(x0) = ϕ(x0) (2.7.1)

wheneverx0 ∈ (a, b) andϕ is continuous atx0. Indeed, assume thatx0 ∈ (a, b) is
a continuity point ofϕ and let an arbitraryε> 0 be given. Then there is aδε > 0
such that

ϕ(x0)− ε< ϕ(x) <ϕ(x0) + ε for all x∈ (x0− δε, x0 + δε).

Further, let us chooser′ ∈P ∩ (x0− δε, x0) andr′′ ∈P ∩ (x0, x0 + δε) arbitrarily.
Then

ϕ(x0)− ε< ϕ(r′)≤ϕ(x0)≤ϕ(r′′) <ϕ(x0) + ε.

Moreover, there is akε such that

ϕ(r′)− ε< fnk
(r′) <ϕ(r′) + ε

and
ϕ(r′′)− ε< fnk

(r′′) <ϕ(r′′) + ε

for all k≥ kε. Hence, for eachk≥ kε we have

ϕ(x0)− 2 ε< ϕ(r′)− ε< fnk
(r′)≤ fnk

(x0)

≤ fnk
(r′′) <ϕ(r′′) + ε< ϕ(x0) + 2 ε.

Thus, (2.7.1) is true.
To summarize, we have proved that ifD is the set of all discontinuity points

of the functionϕ in (a, b), then

lim
k→∞

fnk
(x) = ϕ(x) for x∈ [a, b] \D.

By Theorem2.3.2, the setD is countable. Thus, we can use once more Asser-
tion 1 to prove that there is a subsequence

{fnk`
: `∈N}⊂{fnk

: k ∈N}
of {fnk

} which has a limitψ(x)∈R for eachx∈D. Now, define

f(x) =

{
ϕ(x), if x∈ [a, b] \D,

ψ(x), if x∈D.
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Then

lim
`→∞

fnk`
(x) = f(x) for x∈ [a, b],

andf is nondecreasing on[a, b] because it is the pointwise limit of a sequence of
nondecreasing functions. The proof of Assertion 2 is complete. 2

P r o o f of Theorem2.7.4
For givenn∈N andx∈ [a, b], let

gn(x) = varxa fn and hn(x) = gn(x)− fn(x).

For eachn∈N we havefn = gn−hn and the functionsgn, hn with n∈N are
nondecreasing on[a, b] (see Exercise2.1.22). Furthermore,

‖gn‖∞≤ varba fn≤κ and ‖hn‖∞≤‖fn‖∞ + ‖gn‖∞≤ 3κ for n∈N.

By Assertion 2, there exist functionsg, h∈BV([a, b]) and a sequence{nk}⊂N
such that

‖g‖∞≤κ, ‖h‖∞≤ 2κ, varbag≤κ, varbah≤ 2κ,

lim
k→∞

gnk
(x) = g(x) and lim

k→∞
hnk

(x) = h(x) for all x∈ [a, b].

Denotef = g−h. Then

lim
k→∞

fnk
(x) = lim

k→∞

(
gnk

(x)−hnk
(x)

)
= g(x)−h(x) = f(x)

for all x∈ [a, b]. Obviously, |f(a)| ≤κ. Finally, Theorem2.7.2 implies that
varba f ≤κ. This completes the proof. 2

2.8 Variation on elementary sets

First, motivated by Definition 6.1 from [44], we introduce the definition of the va-
riation over arbitrary intervals.

2.8.1 Definition. Let J be a bounded interval inR. We say that a finite set

α = {α0, α1, . . . , αν(α)}⊂ J

is ageneralized division ofJ if α0 <α1 < · · ·<αν(α).

The set of all generalized divisions of the intervalJ is denoted byD ∗(J).
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Let f : [a, b]→R and letJ be an arbitrary subinterval of[a, b]. Then we de-
fine the variation off on J by

var(f, J) = sup





ν(α)∑
j=1

|f(αj)− f(αj−1)| : α∈D ∗(J)



 .

We say thatf is of bounded variation onJ if var (f, J) <∞. In such a case, we
write f ∈BV(J). We also set var(f, ∅) = 0 and var(f, [c]) = 0 for c∈ [a, b].

2.8.2 Remark. It is easy to see that Definition2.8.1coincides with the definition
of the variation in the sense of Definition2.1.1 if J is a compact interval; that
is, for f : [a, b]→R and J = [c, d]⊂ [a, b], we have var(f, J) = var d

c f. For this
reason, in the case of a compact intervalJ, we may always restrict ourselves to
divisions containing the endpoints ofJ.

Moreover, it is easy to see that ifJ is a bounded interval andf ∈BV(J), then
f is bounded onJ.

The next proposition follows immediately from Definition2.8.1.

2.8.3 Proposition.Let f : [a, b]→R and let J1 and J2 be subintervals of[a, b]
such thatJ2⊂ J1. Then var(f, J2)≤ var(f, J1).

In particular, if J is a subinterval of[a, b] and f ∈BV(J), then f ∈BV(I)
for every intervalI ⊂ J.

The next theorem presents formulas for the variation over half-open and open
intervals.

2.8.4 Theorem.Let f : [a, b]→R and c, d∈ [a, b], with c< d.

(i) If f ∈BV([c, d)), then

var(f, [c, d)) = lim
δ→0+

vard−δ
c f = sup

t∈[c,d)

vartcf.

(ii) If f ∈BV((c, d]), then

var(f, (c, d]) = lim
δ→0+

var d
c+δf = sup

t∈(c,d]

var d
t f.

(iii) If f ∈BV((c, d)), then

var(f, (c, d)) = lim
δ→0+

vard−δ
c+δf.
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Proof. We prove only the assertion (i); the other ones follow in a similar way.
For a fixedδ > 0, consider a divisionα = {α0, α1, . . . , αν(α)} of [c, d− δ].

Of course,α is also a generalized division of[c, d) and hence

ν(α)∑
j=1

|f(αj)− f(αj−1)| ≤ var(f, [c, d)).

Thus, taking the supremum over all divisions of[c, d− δ], we get

var d−δ
c f ≤ var(f, [c, d)).

Since this inequality holds for everyδ > 0, it follows that

M := sup
t∈[c,d)

vartcf = lim
δ→0+

vard−δ
c f ≤ var(f, [c, d)).

Now, assume thatM < var(f, [c, d)). Then, forε = var(f, [c, d))−M, there ex-
ists a generalized divisionα = {α0, α1, . . . , αν(α)} of [c, d) such that

M = var(f, [c, d))− ε<

ν(α)∑
j=1

|f(αj)− f(αj−1)| ≤ var
αν(α)
c f ≤M,

a contradiction. This completes the proof of (i). 2

Dealing with functions taking values in a metric space, Chistyakov presents in
[21] an extensive study of the properties of the variation over subsets of the real
line. Here, we call the reader’s attention to a particular result (see [21], Corollary
4.7) connecting the variation over arbitrary intervals and the usual variation over
a compact interval. This will be the content of Theorem2.8.6, whose proof is
included for the sake of completeness. To this aim, the next lemma will be useful.

2.8.5 Lemma. Let f : [a, b]→R, a≤ c< d≤ b and f ∈BV((c, d)). Then both
the limitsf(c+) and f(d−) exist.

Proof. Let ε> 0 and an increasing sequence{tn}⊂ (c, d) tending tod be given.
By Theorem2.8.4(iii) there is δ > 0 such that

0 < var(f, (c, d))− vard−δ
c+δf < ε.

Choosen0 ∈N in such a way thattn >d− δ for every n≥n0. Therefore, for
n> m≥n0, we have

|f(tn)− f(tm)| ≤ vartntmf = vartnc+δf − vartmc+δf

≤ var(f, (c, d))− vard−δ
c+δf < ε,

wherefrom the existence of the limitf(d−) follows immediately.
The existence of the limitf(c+) can be proved analogously. 2
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2.8.6 Theorem.Let f : [a, b]→R and a≤ c< d≤ b.

(i) If f ∈BV([c, d)), thenf(d−) exists and

var d
c f = var(f, [c, d)) + |∆−f(d)|.

(ii) If f ∈BV((c, d]), thenf(c+) exists and

var d
c f = var(f, (c, d]) + |∆+f(c)|.

(iii) If f ∈BV((c, d)), then both the limitsf(c+) and f(d−) exist and

var d
c f = var(f, (c, d)) + |∆+f(c)|+ |∆−f(d)|.

Proof. The existence of all the limits follows from Lemma2.8.5.
Assume thatf ∈BV([c, d)). Let ε> 0 and

α = {α0, α1, . . . , αm+1}∈D[c, d]

be given. We can chooseξ ∈ [c, d] in such a way that

αm <ξ <d and |f(d−)− f(ξ)|<ε.

Consequently,

m+1∑
j=1

|f(αj)− f(αj−1)|

≤
m∑

j=1

|f(αj)− f(αj−1)|+ |f(ξ)− f(αm)|

+ |f(d−)− f(ξ)|+ |∆−f(d)|
< var ξ

c f + ε + |∆−f(d)| ≤ var(f, [c, d)) + ε + |∆−f(d)|.
As α∈D[c, d] andε > 0 were chosen arbitrarily, we conclude that

var d
c f ≤ var(f, [c, d)) + |∆−f(d)|. (2.8.1)

On the other hand, for anyδ > 0 we have

|f(d)− f(d− δ)| ≤ var d
d−δf = var d

c f − vard−δ
c f.

Hence, lettingδ→ 0+ we get

|∆−f(d)| ≤ var d
c f − lim

δ→0+
vard−δ

c f = var d
c f − var(f, [c, d)),
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wherefrom we conclude that

var d
c f ≥ var(f, [c, d)) + |∆−f(d)|.

This completes the proof of (i).
Similarly, we can prove the assertions (ii) and (iii). 2

2.8.7 Corollary. Let f : [a, b]→R and c, d∈ [a, b], with c< d. Then the follow-
ing assertions are equivalent:

(i) f ∈BV([c, d]),

(ii) f ∈BV((c, d]),

(iii) f ∈BV([c, d)),

(iv) f ∈BV((c, d)).

2.8.8 Remark. In view of Theorem2.8.6, we can also observe that for every
f : [a, b]→R andc∈ [a, b] we have

lim
δ→0+

var c+δ
c−δf = |∆−f(c)|+ |∆+f(c)|

provided the one-sided limits exist at the pointc (see Proposition I.2.8 in [59]).
Furthermore, by Theorem2.8.6, if f ∈BV([a, b])∩C([a, b]), then

var(f, [c, d)) = var(f, (c, d)) = var(f, (c, d]) = var d
c f

for c, d∈ [a, b] such thatc< d.

We now extend the notion of the variation on intervals to elementary sets.

2.8.9 Definition. Let E⊂R be bounded. We say thatE is anelementary setif
it is a finite union of intervals.

A collection of intervals{Jk: k = 1, . . . , N} is called aminimal decomposi-
tion of E if E =

⋃N
k=1 Jk and the unionJk ∪ J` is not an interval wheneverk 6= `.

If S⊂R, thenE(S) stands for the set of all elementary subsets ofS.

Note that the minimal decomposition of an elementary set is uniquely de-
termined. Moreover, the intervals of such decomposition are pairwise disjoint.
Having this in mind, we define the variation over elementary sets as follows.

2.8.10 Definition.Given a functionf : [a, b]→R and an elementary subsetE of
[a, b], the variation off over E is

var(f, E) =
N∑

k=1

var(f, Jk),

where{Jk: k = 1, . . . , N} is the minimal decomposition ofE.



KURZWEIL-STIELTJES INTEGRAL 59

It is worth highlighting that iff ∈BV([a, b])∩C([a, b]), then var(f, · ) de-
fines a finitely additive measure onE([a, b]). More precisely, we have

var(f, E)≤ varbaf for any E ∈E([a, b])

and

var(f, E1 ∪E2) = var(f, E1) + var(f, E2)

wheneverE1, E2 ∈E([a, b]) andE1 ∩E2 = ∅.
2.8.11 Remark. Let us note that e.g. in [43] Definition 2.8.1is applied also to
arbitrary subsetsE of [a, b]. Unfortunately, such a definition is not convenient for
our purposes, as the variation would lose the additivity property even for contin-
uous functions. Indeed, leta< c< d < b andE = [a, c]∪ [d, b ]. Then, according
to such a definition we would have

var(f, E)≥ varcaf + varbdf + |f(d)− f(c)|> var(f, [a, c]) + var(f, [d, b ])

wheneverf(d) 6= f(c). This is why for elementary subsets of[a, b] we define the
variation in a way different from Gordon’s in [43].
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Chapter 3

Absolutely continuous functions

A special case of functions of bounded variation are absolutely continuous func-
tions, which are closely related to the Lebesgue integration theory and which are
well-known from Carath́eodory’s theory of ordinary differential equations. The
integrals contained in this chapter are the Lebesgue ones.

3.1 Definition and basic properties

3.1.1 Definition. A function f : [a, b]→R is absolutely continuouson the inter-
val [a, b] if for every ε> 0 there existsδ > 0 such that

m∑
j=1

|f(βj)− f(αj)|<ε (3.1.1)

holds for every finite set of intervals{[αj, βj] : j = 1, 2, , . . . ,m} satisfying

a≤α1 <β1≤α2 <β2≤ · · ·<βm−1≤αm <βm≤ b

and
m∑

j=1

(βj −αj) <δ.





(3.1.2)

The set of functions which are absolutely continuous on[a, b] is denoted by
AC([a, b]).

3.1.2 Exercise.Prove the statement:
Every Lipschitz function on the interval[a, b] (see Exercise2.1.8 (iv)) is ab-
solutely continuous on this interval. In particular, if the derivativef ′ of the
functionf is continuous on[a, b] 1, thenf is absolutely continuous on[a, b].

3.1.3 Theorem.If f is absolutely continuous on[a, b] and [c, d]⊂ [a, b], thenf
is absolutely continuous on[c, d], too.

If a< c < b and f is absolutely continuous on[a, c] and [c, b ], then f is
absolutely continuous on[a, b].

1 More precisely,f ′ is continuous on(a, b) and there are finite limitsf ′(a+)= lim
t→a+

f ′(t),

f ′(b−)= lim
t→b−

f ′(t) and f ′(a)=f ′(a+), f ′(b)=f ′(b−).
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Proof. The first statement is evident.

So, assumec∈ (a, b), f ∈AC[a, c] and f ∈AC[c, b ] and letε> 0 be given.
We can chooseδ > 0 such that

m∑
j=1

|f(βj)− f(αj)|< ε

2

holds for every system of intervals{[αj, βj] : j = 1, 2, , . . . ,m} such that

a≤α1 <β1≤α2 <β2. . . < βm−1≤αm <βm≤ c

and
m∑

j=1

(βj −αj) <δ.





(3.1.3)

Simultaneously
p∑

j=1

|f(δj)− f(γj)|< ε

2

holds for every system of intervals{[γj, δj] : j = 1, . . . , p} such that

c≤ γ1 < δ1≤ γ2 <δ2. . . < δp−1≤ γp <δp≤ b and
p∑

j=1

(δj − γj) <δ. (3.1.4)

Now, consider a system of intervals{[aj, dj] : j = 1, 2, , . . . , n} such that

a≤ a1 < d1≤ a2 <d2. . . < dn−1≤ an <dn≤ b and
n∑

j=1

(dj − aj) <δ. (3.1.5)

We may assume thatc does not belong to any of the intervals(aj, dj), j=1, . . . , n.
(If we had c∈ (ak, dk) for somek ∈{1, . . . , n}, we would divide the interval
[ak, dk] into the union [ak, c]∪ [c, dk] and the new system would again satisfy
(3.1.5).) Therefore we can divide the given system{[aj, dj] : j = 1, 2, , . . . , n}
into the systems

{[αj, βj] : j = 1, 2, , . . . , m} and {[γj, δj] : j = 1, 2, , . . . , p}
satisfying (3.1.3) and (3.1.4). Thus, the sum

∑n
j=1 |f(dj)− f(aj)| can be divided

into two sums which are both less thanε
2
. As a result,

n∑
j=1

|f(dj)− f(aj)|<ε.

This completes the proof. 2
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3.1.4 Example.By Exercise3.1.2every function which has a continuous deriv-
ative on(a, b) is absolutely continuous on[a, b]. A simple example of absolutely
continuous function on[a, b] which does not have a continuous derivative on
(a, b) is the function

f(x) =





x− a for x∈ [a,
a + b

2
],

b− x for x∈ [
a + b

2
, b ],

which is obviously absolutely continuous on the intervals[a, a+b
2

] and [a+b
2

, b ].
By Theorem3.1.3this means thatf is absolutely continuous also on[a, b].

3.1.5 Remark. If f : [a, b]→R, K⊂N and if for everyε > 0 there existsδ > 0
such that

∑

j∈K
|f(βj)− f(αj)|<ε (3.1.6)

holds for every (not necessarily finite) system of intervals

{[αj, βj]⊂ [a, b]: j ∈K}
satisfying

(αj, βj)∩ (αk, βk) = ∅ for j 6= k and
∑

j∈K
(βj −αj) <δ, (3.1.7)

then the functionf : [a, b]→R is, of course, absolutely continuous on[a, b].

The following lemma shows that also the converse implication holds.

3.1.6 Lemma.If f ∈AC([a, b]), then for everyε> 0 there existsδ > 0 such that
the inequality(3.1.6) holds for any (possibly infinite) system

{[αj, βj]⊂ [a, b] : j ∈K}
of subintervals of the interval[a, b] satisfying(3.1.7).

Proof. Assumef ∈AC([a, b]). Obviously, it is sufficient to prove the statement
of the lemma for the case whenK=N. Let ε> 0 be given and letδ > 0 be deter-
mined by Definition3.1.1for ε/2 instead ofε. Let {[αj, βj] : j ∈N} be a system
of subintervals in[a, b] satisfying (3.1.7). Then for everym∈N we have

m∑
j=1

(βj −αj) <δ, and thus
m∑

j=1

|f(βj)− f(αj)|< ε

2
.
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Hence

∞∑
j=1

|f(βj)− f(αj)|= lim
m→∞

m∑
j=1

|f(βj)− f(αj)| ≤ ε

2
<ε.

This completes the proof. 2

3.1.7 Theorem.Every function which is absolutely continuous on an interval
[a, b] has bounded variation on this interval.

Proof. Let f ∈AC([a, b]). Chooseδ > 0 such that

m∑
j=1

|f(dj)− f(aj)|< 1

holds for every finite system of intervals{[aj, dj] : j = 1, 2, , . . . ,m} satisfying
(3.1.2). Next, choose a division{x0, x1, . . . , xk} of [a, b] such that

0 <xi− xi−1 <δ for everyi = 1, . . . , k.

Then for everyi = 1, . . . , k and every divisionαi = {αi
0, α

i
1, . . . , α

i
mi
} of the in-

terval [xi−1, xi], we have

mi∑
j=1

(αi
j −αi

j−1) = xi− xi−1 <δ,

and consequently (by Theorem2.1.14)

varba f =
k∑

i=1

var xi
xi−1

f =
k∑

i=1

sup
αi∈D [xi−1,xi]

V (f, αi)≤ k <∞.
2

3.1.8 Theorem.If f, g ∈AC([a, b]), then

|f |, f + g, f g, max{f, g}, min{f, g}∈AC([a, b]).

If, in addition, |f(x)|> 0 on [a, b], then
1

f
∈AC([a, b]).

Proof. Let f, g ∈AC([a, b]).

a) |f(x)| ≤ |f(x)− f(y)|+ |f(y)| holds for anyx, y ∈ [a, b]. Hence

|f(x)− f(y)| ≥
∣∣|f(x)| − |f(y)|

∣∣ for all x, y ∈ [a, b]

and consequently
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m∑
j=1

∣∣|f(βj)| − |f(αj)|
∣∣≤

m∑
j=1

|f(βj)− f(αj)|.

This shows that|f | ∈AC([a, b]).

b) The statementsf + g ∈AC([a, b]) and f g ∈AC([a, b]) follow from the in-
equalities

|(f(x) + g(x))− (f(y) + g(y))| ≤ |f(x)− f(y)|+ |g(x)− g(y)|
and

|f(x) g(x)− f(y) g(y)| ≤ ‖f‖ |g(x)− g(y)|+ ‖g‖ |f(x)− f(y)|.
c) For anyx∈ [a, b] we have

max{f(x), g(x)}=
1

2

(
f(x) + g(x) + |f(x)− g(x)|

)

and

min{f(x), g(x)}=
1

2

(
f(x) + g(x)− |f(x)− g(x)|

)
.

Therefore

max{f, g}∈AC([a, b]) and min{f, g}∈AC([a, b])

holds as a consequence of a) and b).

d) Finally, if, in addition, |f |> 0 on [a, b], then there existsµ> 0 such that
|f(x)| ≥µ holds forx∈ [a, b]. Hence

∣∣∣ 1

f(x)
− 1

f(y)

∣∣∣≤ |f(x)− f(y)|
µ2

is true for allx, y ∈ [a, b]. Now, it is easy to show that
1

f
∈AC([a, b]). 2

We will close this section by stating and proving two further interesting prop-
erties of absolutely continuous functions.

3.1.9 Lemma. Let f ∈AC([a, b]) and v(x) = varxa f for x∈ [a, b]. Then v is
also absolutely continuous on[a, b].

Proof. Assume thatε> 0 is given and letδ > 0 be such that

m∑
j=1

|f(dj)− f(aj)|< ε

2

is true for every system of intervals{[aj, dj] : j = 1, 2, , . . . , m} satisfying (3.1.2).
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Let [αj, βj], j=1, . . . , n, be an arbitrary system of intervals satisfying (3.1.3)
in which m = n. For anyj ∈{1, . . . , m}, let αj = {αj

0, α
j
1, . . ., α

j
nj
} be an arbi-

trary division of the interval[αj, βj]. Then

n∑
j=1

nj∑
i=1

(
αj

i −αj
i−1

)
=

n∑
j=1

[
βj −αj

]
<δ,

and hence

n∑
j=1

V (f, αj) =
n∑

j=1

nj∑
i=1

∣∣f(σj
i )− f(σj

i−1)
∣∣<

ε

2
.

This implies that

n∑
j=1

(
v(βj)− v(αj)

)
=

n∑
j=1

varβj
αj

f =
n∑

j=1

(
sup

αj∈D [αj ,βj ]

V (f, αj)
)
≤ ε

2
<ε.

This completes the proof of the lemma. 2

3.1.10 Corollary. A functionf : [a, b]→R is absolutely continuous on the inter-
val [a, b] if and only if there exist functionsf1 and f2 which are nondecreas-
ing and absolutely continuous on[a, b] and such thatf = f1− f2 on the interval
[a, b].

Proof. a) Let f = f1− f2 on [a, b], wheref1, f2 are absolutely continuous and
nondecreasing on[a, b]. Then by Theorem3.1.8 f is absolutely continuous on
[a, b], too.

b) Let f ∈AC([a, b]). By Theorems3.1.7and2.1.21there exist such func-
tions f1, f2 nondecreasing on[a, b] that f = f1− fA. By the proof of Theo-
rem2.1.21we can set

f1(x) = varxa f and f2(x) = f1(x)− f(x) for x∈ [a, b].

By Theorem3.1.8, it is sufficient to prove thatf1 is absolutely continuous on
[a, b]. But that follows from Lemma3.1.9. 2

3.2 Absolutely continuous functions and Lebesgue
integral

Let us recall that by Theorem2.4.2every function of bounded variation on an
interval [a, b] has a bounded derivativef ′(x) for a.e.x∈ [a, b]. By Theorem3.1.7
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every function which is absolutely continuous on[a, b] thus has the same property.
In the remaining part of this chapter, we will recall some other basic properties
of the derivatives of absolutely continuous functions and the connection between
absolute continuity and indefinite Lebesgue integral. In the cases when the proofs
or their parts are based on the theory of measure in the extent beyond this text, the
proofs (or their parts) are not included and we only refer to accessible literature.
The integral in this section is supposed to be the Lebesgue one.

By the next theorem the derivatives of the functions of bounded variation (and
thus all the more so of absolutely continuous functions) are Lebesgue integrable.
Its proof substantially uses a range of knowledge from the theory of measure and
Lebesgue integration which will not fit in this text. The full proof can be found in
relevant literature (see e.g. Theorem 4.10 in [43] or Theorem 6.2.9 in [111]).

3.2.1 Theorem. If a function f : [a, b]→R has a bounded variation on[a, b],
then its derivativef ′ is Lebesgue integrable on[a, b].

If f is also nondecreasing on[a, b], then

0≤
∫ b

a

f ′(x) dx≤ f(b)− f(a). (3.2.1)

The next statement concerns the differentiation of indefinite integrals of inte-
grable functions. For the proof see, e.g. Theorem 4.12 in [43] or Theorem 6.3.1
in [111]. Let us recall (cf. Conventions and Notation (xi)) thatL1([a, b]) stands
for the space of all real functions that are Lebesgue integrable on[a, b].

3.2.2 Theorem.If g ∈L1([a, b]) and

f(x) =

∫ x

a

g(t) dt for x∈ [a, b],

thenf is absolutely continuous on[a, b] and f ′(x) = g(x) for a.e. x∈ [a, b].

Let a functiong ∈L1([a, b]) be given. By Theorem3.2.2its indefinite Lebes-
gue integralf is absolutely continuous on[a, b] andf ′= g a.e. on[a, b]. We want
to show thatf is absolutely continuous on[a, b] if and only if f is the indefinite
integral of some Lebesgue integrable function. The following lemma known as
Riesz’s lemma is essential for the proof of such a statement. For the proof see e.g.
Lemma 7.5 in [16].

3.2.3 Lemma(RIESZ RISING SUN LEMMA ). Let f ∈C[a, b] and

E = {x∈ (a, b) : there is ξ ∈ (x, b ] such thatf(ξ) >f(x)}.
Then the setE is open and it is a union of at most countable system of disjoint
open intervals(ak, dk) while f(ak)≤ f(dk) holds for any of them.
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3.2.4 Lemma.If f ∈AC([a, b]) is nondecreasing on[a, b] and f ′(x) = 0 for a.e.
x∈ [a, b], thenf is constant on[a, b].

Proof. Due to its monotonicity, the functionf maps the interval[a, b] on the
interval [f(a), f(b)]. We will prove thatf(a) = f(b).

Let ε> 0 be given and letδ > 0 be as in Lemma3.1.6. Let Z be the set
of all x∈ [a, b] for which f ′(x) = 0 holds. Its complement[a, b] \Z has zero
measure (µ([a, b] \Z) = 0) by assumption. This means that there exists a finite or
countable system{(αj, βj) : j ∈K} satisfying (3.1.7) and

[a, b] \Z ⊂
⋃

j∈K
(αj, βj).

The imagef([a, b] \Z) of the set[a, b] \Z is thus contained in the union of open
intervals {(f(αj), f(βj)) : j ∈K}. Since (3.1.6) holds by Lemma3.1.6, the set
f([a, b] \Z) has zero measure, i.e.

µ(f([a, b] \Z)) = 0. (3.2.2)

Now, let x∈Z. Thenf ′(x) = 0 and thus there is∆ > 0 such that

f(t)− f(x)

t− x
< ε for every t such that0 < |t− x|< ∆.

This implies

ε x− f(x) <ε t− f(t) for every t∈ (x, x + ∆).

By Riesz’s lemma3.2.3, which we apply to the functionε x− f(x) instead of
f(x), the setZ is thus contained in the union of a finite or countable system of
disjoint intervals{(ak, dk)⊂[a, b] : k ∈K}, while

ε ak− f(ak)≤ ε dk− f(dk), i.e.f(dk)− f(ak)≤ ε (dk− ak)

holds for everyk ∈K. Hence
∑

k∈K

[
f(dk)− f(ak)

]≤ ε
∑

k∈K

[
dk− ak

]≤ ε (b− a).

Now we can already deduce that the setf(Z) has also zero measure, i.e.

µ(f(Z)) = 0. (3.2.3)

By (3.2.2) and (3.2.3) the interval [f(a), f(b)] = f(Z)∪ (f([a, b] \Z)) has zero
length, i.e., thanks to the monotonicity off, f(a) = f(x) = f(b) for every
x∈ (a, b). 2
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3.2.5 Theorem.A functionf : [a, b]→R is absolutely continuous on[a, b] if and
only if

f(x)− f(a) =

∫ x

a

g(t) dt for x∈ [a, b] (3.2.4)

for some functiong ∈L1([a, b]). Thenf ′ = g a.e. on[a, b].

Proof. a) Let g ∈L1([a, b]) and

f(x) = f(a) +

∫ x

a

g(t) dt for x∈ [a, b].

Then f is absolutely continuous on[a, b] and by Theorem3.2.2, f ′ = g a.e. on
[a, b].

b) First, assume the functionf ∈AC([a, b]) is nondecreasing on[a, b]. By The-
orems3.1.7and3.2.1, f ′ ∈L1([a, b]). Set

h(x) =

∫ x

a

f ′(t) dt and g(x) = f(x)−h(x) for x∈ [a, b].

We will show that the functiong is nondecreasing on[a, b], too. By Theo-
rem3.2.1we have

g(y)− g(x) =
(
f(y)−h(y)

)− (
f(x)−h(x)

)

=
(
f(y)− f(x)

)−
∫ y

x

f ′(t) dt≥ 0

for all pointsx, y ∈ [a, b] such thatx≤ y.

Moreover, by Theorem3.2.2the functionh is absolutely continuous on[a, b]
andh′ = f ′ a.e. on[a, b]. Hence,g′ = (f −h)′ = 0 a.e. on[a, b]. By Lemma3.2.4
the functiong is therefore constant on[a, b]. Thus we get

g(x) = f(x)−h(x) = f(a)−h(a) = f(a) for x∈ [a, b],

i.e.

f(x) = f(a) + h(x) = f(a) +

∫ x

a

f ′(t) dt for x∈ [a, b].

This means that (3.2.4) holds for every functionf ∈AC([a, b]) nondecreasing on
[a, b].
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In the general case off ∈AC([a, b]), by Corollary3.1.10, there exist func-
tions f1, f2 absolutely continuous on[a, b], nondecreasing on[a, b] and such that
f = f1− f2 on [a, b]. We thus have

f(x) = f1(x)− f2(x) =
(
f1(a) +

∫ x

a

f ′1(t) dt
)
−

(
f2(a) +

∫ x

a

f ′2(t) dt
)

= f(a) +

∫ x

a

f ′(t) dt for x∈ [a, b].

The proof has been completed. 2

Next result is an extension of Theorem2.1.5

3.2.6 Theorem.If f ∈AC([a, b]), then varba f =
∫ b

a
|f ′(t)| dt.

Proof. Put v(a) = 0 and v(x) = varxa f for x∈ [a, b]. Then, using Lemma3.1.9
and Theorem3.2.5, we get

v ∈AC([a, b]) and v(x) =

∫ x

a

v′(t) dt for x∈ [a, b].

In particular,

varba f = v(b) =

∫ b

a

v′(t) dt.

Furthermore, by the proof of Theorem2.1.21, we know thatv− f is nondecreas-
ing on [a, b]. Similarly, we can verify thatv + f is nondecreasing on[a, b], as
well. Since v′− f ′≥ 0 and v′ + f ′≥ 0 almost everywhere in[a, b], it follows
that |f ′(t)| ≤ v′(t) for almost allt∈ [a, b] and thus

varba f ≥
∫ b

a

|f ′(t)| dt. (3.2.5)

On the other hand, for an arbitrary divisionα of [a, b] we have

V (f, α) =

ν(α)∑
j=1

∣∣
∫ αj

αj−1

f ′(t) dt
∣∣≤

ν(α)∑
j=1

∫ αj

αj−1

|f ′(t)| dt =

∫ b

a

|f ′(t)| dt,

i.e.,

varba f ≤
∫ b

a

|f ′(t)| dt,

which together with (3.2.5) completes the proof. 2

3.2.7 Exercise.Prove the following assertion:
Let f ∈AC([a, b]) and let v be given as in the proof of Theorem3.2.6. Then
v′(t) = |f ′(t)| for almost all t∈ [a, b].



KURZWEIL-STIELTJES INTEGRAL 71

3.3 Lebesgue decomposition of functions of boun-
ded variation

We know (see Theorem2.6.1 and Remark2.6.2) that every function of boun-
ded variation on[a, b] can be decomposed into a sum of a continuous function
and a step function or into a difference of two functions nondecreasing on[a, b]
(see Theorem2.1.21). Another option of decomposition of functions of bounded
variation is offered by the following theorem.

3.3.1 Theorem(LEBESGUEDECOMPOSITIONTHEOREM). For every function
f ∈BV([a, b]), there exist an absolutely continuous functionf AC, a singular con-
tinuous functionf SC and a step functionf B such that

f = f AC + f SC+ f B on [a, b].

If f = f1 + f2 + f3, where the functionf1 is absolutely continuous on[a, b], the
functionf2 is singular and continuous on[a, b] and the functionf3 is a step func-
tion on [a, b], then the functionsf AC− f1, f SC− f2 and f B− f3 are constant
on [a, b].

Proof. a) By Theorem2.6.1there exists a step functionf B such that the function
f C = f − f B is continuous on[a, b]. Furthermore,f ′ ∈L1([a, b]) due to Theo-
rem3.2.1. Set

f AC(x) =

∫ x

a

f ′(t) dt and f SC(x) = f C(x)− f AC(x) for x∈ [a, b].

By Theorems2.5.5and3.2.2we have(f B)′ = 0 a.e. on[a, b] and (f AC)′ = f ′

a.e. on[a, b], respectively. This means that

(f SC)′ = f ′− (f AC)′− (f B)′ = 0 a.e. on [a, b].

b) Let f = f1 + f2 + f3, where f1 ∈AC([a, b]), f2 is singular and continuous on
[a, b] andf3 ∈B[a, b]. By Theorem2.6.1the differences

(
f AC + f SC

)− (
f1 + f2

)
and f B− f3

are constant on[a, b]. Since

f AC + f SC+ f B = f1 + f2 + f3,

it means that there exists suchc∈R that
(
f AC + f SC

)− (
f1 + f2

)
= f3− f B = c.
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Hence
(
f AC− f1

)
= c− (

f SC− f2

)
and

(
f AC− f1

)′
= 0 a.e. on [a, b].

As both the functionsf AC and f1 are absolutely continuous on the interval[a, b],
it follows by Theorem3.2.5that the differencef AC− f1 is constant on[a, b]. This
completes the proof. 2

3.3.2 Definition. If f ∈BV([a, b]), then the functionf AC, or f SC, or f B from
Theorem3.3.1is called theabsolutely continuous part, or thecontinuous singular
part, or thejump partof the functionf, respectively. In addition, the sumf SC+
f B is called thesingular partof f and denoted byf SING.

3.3.3 Exercise.Prove the following statement:

f AC(x)− f AC(a) =

∫ x

a

f ′(t) dt

holds for every functionf ∈BV([a, b]) and everyx∈ [a, b].

Next assertion is a useful addition to Theorem3.3.1.

3.3.4 Theorem.If f ∈BV([a, b]) is nondecreasing on[a, b], then the functions
f AC, f SC, and f B from Theorem3.3.1 are nondecreasing on[a, b], too.

Proof. Let f ∈BV([a, b]) be nondecreasing on[a, b] and let the functionsf AC,
f SC, f B be assigned to the functionf by Theorem3.3.1. Furthermore, let{sk}
be the set of the points of discontinuity of the functionf andx, y be any pair of
points from[a, b] such thatx≤ y.

Sincef is nondecreasing on[a, b], we have

∆+f(t)≥ 0 and ∆−f(s)≥ 0 for t∈ [a, b), s∈ (a, b ],

and therefore

f B(y)− f B(x) =
∑

x<sk≤y

∆−f(sk) +
∑

x≤sk<y

∆+f(sk)≥ 0.

The jump partf B of the functionf is thus nondecreasing on[a, b].

Let g be the continuous part off, i.e. g = f − f B. By Corollary 2.3.8we
have

f B(y)− f B(x)≤ varyxf = f(y)− f(x),

and hence

g(y)− g(x) =
(
f(y)− f(x)

)− (
f B(y)− f B(x)

)≥ 0.
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The continuous part of the functionf is thus nondecreasing on[a, b].

For a.e.t∈ [a, b] we have

f ′(t) = lim
s→t

f(s)− f(t)

s− t
∈R.

Sincef is nondecreasing on[a, b], the inequality f ′(t)≥ 0 holds for a.e.t∈
[a, b]. By the proof of Theorem3.3.1we thus get

f AC(y)− f AC(x) =

∫ y

x

f ′(t) dt≥ 0 wheneverx, y ∈ [a, b] and x≤ y.

This means thatf AC is nondecreasing on[a, b].

By Theorem2.5.5, (f B)′ = 0 a.e. on[a, b], and hence

g′ = f ′− (f B)′ = f ′ a.e. on[a, b].

Using (3.2.1) and the proof of Theorem3.3.1we can deduce that

g(y)− g(x)≥
∫ y

x

g′(t) dt =

∫ y

x

f ′(t) dt = f AC(y)− f AC(x)

is true, i.e.

f SC(y)− f SC(x) =
(
g(y)− f AC(y)

)− (
g(x)− f AC(x)

)

=
(
g(y)− g(x)

)− (
f AC(y)− f AC(x)

)≥ 0.

The continuous singular partf SC of the function f is thus nondecreasing on
[a, b], too. This completes the proof. 2

We can now state the following assertion, which is in some sense complemen-
tary to Proposition2.5.7.

3.3.5 Proposition.Let f be singular on[a, b] and letg be absolutely continuous
on [a, b]. Thenvarba (f + g) = varba f + varba g.

For the proof we will need the Vitali Covering Theorem, which is based on
the notion of aVitali cover.

3.3.6 Definition. Let E be a subset ofR and letV be a collection of nondegen-
erate2 closed subintervals of[a, b]. We say thatV is a Vitali cover ofE, if for
eachε > 0 and anyx∈E, there is an interval[α, β]∈V containingx and such
that β−α <ε.

2 It means that no singletons (i.e. one-point sets) are allowed.
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3.3.7 Theorem(Vitali Covering Theorem). Let E be a subset of[a, b] and let
V be a Vitali cover ofE. Then, for everyε> 0, there is a finite collection
{I1, . . . , IN} of disjoint intervals fromV such that

µ∗(E \
N⋃

j=1

Ij) <ε,

whereµ∗ stands for the outer Lebesgue measure (see section2.4).

Proof of Proposition 3.3.5.
We will verify that the assumptions of Lemma2.1.19are satisfied.
Let ε> 0 be given. By Lemma3.1.9the functionvg(x) = varxa g is absolutely

continuous. Hence, we can chooseδ > 0 in such a way that

m∑
j=1

var βj
αj

g =
m∑

j=1

|vg(βj)− vg(αj)|< ε whenever
m∑

j=1

(βj −αj) <δ. (3.3.1)

Further, choose a divisionσ of [a, b] in such a way that

V (f, σ) > varbaf −
ε

2
. (3.3.2)

As f is singular, there is a setN ⊂ [a, b] such that

f ′(x) = 0 for all x∈ [a, b] \N and µ(N) = 0.

Let V be the set of all nondegenerate intervals[ξ, η]⊂ [a, b] \σ such that the
inequality

|f(η)− f(ξ)| ≤ ε

2

η− ξ

b− a
(3.3.3)

holds. Obviously,V is a Vitali cover of the setE := [a, b] \ (N ∪σ). Hence,
by Theorem3.3.7, there is a finite system

{
[ξj, ηj] : j ∈{1, . . . , r}} of disjoint

intervals such that

a< ξ1 <η1 < · · ·<ξr <ηr <b and µ∗(E \
r⋃

j=1

[ξj, ηj]) <δ.

Now, let α be the division of[a, b] consisting of all elements of the set
{
ξj, ηj :

j ∈{1, . . . , r}}∪ σ. Let K be the set of all indicesk ∈{1, . . . , ν(α)} for which
the intersection(αk−1, αk)∩ [ξj, ηj] is empty for eachj ∈{1, . . . , r}. Then

⋃

k∈K

(αk−1, αk)⊂E \
r⋃

j=1

[ξj, ηj].
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Hence

∑

k∈K

(αk−αk−1) = µ∗(
⋃

k∈K

(αk−1, αk))≤µ∗(E \
r⋃

j=1

[ξj, ηj]) <δ.

Consequently, we can apply (3.3.1) to get
∑

k∈K

varαk
αk−1

g < ε. (3.3.4)

On the other hand, by (3.3.2) and sinceα is a refinement ofσ, we have

varba f−ε

2
<V (f, α) =

∑

k∈K

|f(αk)−f(αk−1)|+
∑

k∈K ′
|f(αk)−f(αk−1)|, (3.3.5)

whereK ′ = {1, . . . , ν(α)} \K . Of course,

∑

k∈K ′
|f(αk)− f(αk−1)|=

r∑
j=1

|f(ηj)− f(ξj)|

and, due to (3.3.3),
∑

k∈K ′
|f(αk)− f(αk−1)|< ε

2 (b− a)

r∑
j=1

(ηj − ξj) <
ε

2
.

Moreover,
∑

k∈K

|f(αk)−f(αk−1)| ≤
∑

k∈K

varαk
αk−1

f.

To summarize, by (3.3.5) we have
∑

k∈K

varαk
αk−1

f ≥
∑

k∈K

|f(αk)− f(αk−1)|

= V (f, α)−
∑

k∈K ′
|f(αk)− f(αk−1)|

>V (f, α)− ε

2
> varba f − ε,

i.e.
∑

k∈K

varαk
αk−1

f > varba f − ε. (3.3.6)

Now, if we relabel the pointsαk in such a way that it will be
{
[αk−1, αk] : k ∈K

}
=

{
[aj, bj] : j ∈{1, . . . , n}

}
,

we can check that, thanks to (3.3.4) and (3.3.6), the conditions (2.1.13)-(2.1.15)
of Lemma2.1.19are satisfied. This completes the proof. 2
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3.3.8 Exercises.Use Proposition 3.3.5 to prove the following statements:

• Let {fn} be a sequence of functions with bounded variations on[a, b] and
let {f AC

n } and {f SING
n } be the sequences of absolutely continuous and sin-

gular parts of{fn}, respectively. Then

lim
n→∞

(varba fn) = 0 if and only if lim
n→∞

(varba f AC
n ) = lim

n→∞
(varba f SING

n ) = 0.

• If ∈BV([a, b]), then varba f ≥ ∫ b

a
|f ′(t)| dt.

By Theorem3.1.8, AC([a, b]) is a linear subspace ofBV([a, b]). We will close
this chapter by a further corollary of Proposition3.3.5which shows that, when
equipped with the norm ofBV([a, b]), the spaceAC([a, b]) becomes a Banach
space.

3.3.9 Proposition. AC([a, b]) is a Banach space when equipped with the norm

‖f‖AC := ‖f‖BV = |f(a)|+ varba f for f ∈AC([a, b]).

Proof. We will show thatAC([a, b]) is a closed subspace ofBV([a, b]). To this
aim assume that{fn} is a sequence of absolutely continuous functions which is
convergent in the BV norm to a functionf : [a, b]→R , i.e.,

lim
n→∞

‖fn− f‖BV = 0. (3.3.7)

Clearly, f ∈BV([a, b]) and f = f AC + f SING on [a, b], where f AC is the ab-
solutely continuous part off andf SING is the singular part off. Without any loss
of generality we may assume thatfn(a) = f(a) = 0 for all n∈N. Then, thanks to
Proposition3.3.5, relation (3.3.7) can be rewritten as

0 = lim
n→∞

‖f − fn‖BV = lim
n→∞

varba (f − fn)

= lim
n→∞

varba (f AC + f SING− fn) = lim
n→∞

varba (f AC− fn) + varba f SING,

which is possible only if varba f SING = 0, i.e., if f SING≡ 0 on [a, b]. In other
words,f = f AC ∈AC([a, b]), wherefrom the proof immediately follows. 2

More details about absolutely continuous functions can be found e.g. in monographs [5],
[43], [70], or in the lecture notes [92].



Chapter 4

Regulated functions

The analysis of functions of bounded variation is one of the crucial keys for the
development of Stieltjes integration theory. Of similar importance is the class
of regulated functions, which represent a very natural generalization of both the
continuous functions and the functions of bounded variation. This chapter is fully
devoted to the study of regulated functions.

Throughout the chapter, we assume that−∞< a< b <∞. For a given func-
tion f : [a, b]→R, we set

‖f‖∞ = sup
t∈[a,b]

|f(t)|.

4.1 Introduction

4.1.1 Definition. A function f : [a, b]→R is said to be regulated on[a, b] if the
left limit f(t+) exists and is finite for everyt∈ [a, b), and the right limitf(t−)
exists and is finite for everyt∈ (a, b]. The set of all regulated functions on[a, b]
will be denoted byG([a, b]). Recall that

∆+f(t) = f(t+)− f(t) and ∆−f(s) = f(s)− f(s−) for t∈ [a, b), s∈ (a, b].

4.1.2 Remark. Evidently, the following relations hold:

BV([a, b])∪C([a, b])⊂G([a, b]),

G([a, b]) \C([a, b]) 6= ∅ and G([a, b]) \BV([a, b]) 6= ∅

For an example of a regulated function which does not have bounded variation,
see Example2.1.10.

4.1.3 Theorem.If a sequence{fn} of regulated functions converges uniformly
on the interval[a, b] to a functionf : [a, b]→R, then this function is also regu-
lated on[a, b].

Proof. Let t∈ [a, b) and let{tk}⊂ (t, b] be an arbitrary decreasing sequence such
that tk→ t for k→∞. Given an arbitraryε> 0, choosen0 ∈N andk0 ∈N such
that

‖f − fn0‖∞ <
ε

3
and |fn0(tk)− fn0(t`)|<

ε

3
for all k, `≥ k0.
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Then

|f(tk)− f(t`)| ≤ |f(tk)− fn0(tk)|+ |fn0(tk)− fn0(t`)|
+ |f(t`)− fn0(t`)|

≤ 2 ‖f − fn0‖∞ + |fn0(tk)− fn0(t`)|<ε for k, `≥ k0.

Consequently, there exists a limit

f(t+) = lim
k→∞

f(tk)∈R.

Similarly, we would show that for everyt∈ (a, b] there exists a limitf(t−)∈R.
2

4.1.4 Exercises.(i) In the context of Theorem4.1.3, prove that

f(t+) = lim
n→∞

fn(t+) for everyt∈ [a, b)

and

f(t−) = lim
n→∞

fn(t−) for everyt∈ (a, b].

This statement represents a special case of the Moore-Osgood theorem; an even
stronger result will be obtained in Lemma4.2.3.

(ii) Let f(x) = x if x = 1/k for a certaink ∈N, andf(x) = 0 otherwise. Show
that f is regulated on[0, 1].

(iii) Let fD(x) = 1 if x is a rational number, andfD(x) = 0 otherwise (fD is
theDirichlet function). Show thatfD is not regulated on[0, 1].

Let us now formulate the crucial result of this chapter.

4.1.5 Theorem(HÖNIG). The following three statements are equivalent:

(i) f ∈G([a, b]).

(ii) There exists a sequence{fn}⊂ S([a, b]) which converges uniformly tof
on [a, b].

(iii) For everyε> 0 there exists a divisionα of [a, b] such that

|f(t)− f(s)|<ε

holds for everyj ∈{1, . . . , ν(α)} and each pairt, s∈ (αj−1, αj).
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Proof. a) The implication (ii)=⇒ (i) is proved by Theorem4.1.3.
b) Assume (i) holds and let an arbitraryε> 0 be given. Denote byB the set of
all pointsτ ∈ (a, b] with the following property:

There is a divisionα of [a, τ ] such that|f(t)− f(s)|<ε

for each pairt, s∈ (αj−1, αj), wherej ∈{1, . . . , ν(α)}.
}

(4.1.1)

Our goal is to prove thatb∈B. First, we show thatB is nonempty. By Definition
4.1.1, there is aδa ∈ (0, b− a) such that

|f(t)− f(a+)|< ε

2
holds for all t∈ (a, a + δa).

Thus, for arbitraryt, s∈ (a, a + δa), we get

|f(t)− f(s)| ≤ |f(t)− f(a+)|+ |f(s)− f(a+)|<ε.

Denote τ = a + δa. Then {a, τ} is a division of [a, τ ] satisfying (4.1.1). This
means that the setB is nonempty andτ ∗ := sup B ∈ (a, b].

Next, we will show thatτ ∗ ∈B. Indeed, by Definition4.1.1we can choose
a δ1 ∈ (0, τ ∗− a) in such a way that

|f(t)− f(τ ∗−)|< ε

2
holds for all t∈ (τ ∗− δ1, τ

∗).

Hence, for arbitraryt, s∈ (τ ∗− δ1, τ
∗), we have

|f(t)− f(s)| ≤ |f(t)− f(τ ∗−)|+ |f(s)− f(τ ∗−)|<ε. (4.1.2)

Furthermore, by the definition of the supremum, there is aτ ∈B ∩ (τ ∗− δ1, τ
∗).

Let α be a division of[a, τ ] such that (4.1.1) is true and let̃α = α∪{τ ∗}. Then
α̃ = {α0, α1, . . . , τ, τ

∗} is a division of [a, τ ∗] with ν(α̃) = ν(α) + 1, whose di-
vision points are

α̃j =

{
αj if j ∈{1, . . . , ν(α)},
τ ∗ if j = ν(α̃).

Using (4.1.1) and (4.1.2), we get|f(t)− f(s)|<ε for all t, s∈ (α̃j−1, α̃j), where
j ∈{1, . . . , ν(α̃)}. This means thatτ ∗ ∈B.

Finally, we prove thatτ ∗ = b. Assume, on the contrary, thatτ ∗ < b. By Defi-
nition 4.1.1, we can choose aδ2 ∈ (0, b− τ ∗) in such a way that

|f(t)− f(τ ∗+)|< ε

2
holds for all t∈ (τ ∗, τ ∗ + δ2).
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Similarly as before in this proof, we can deduce that the inequality

|f(t)− f(s)| ≤ |f(t)− f(τ ∗+)|+ |f(s)− f(τ ∗+)|<ε (4.1.3)

holds for arbitraryt, s∈ (τ ∗, τ ∗ + δ2). Let α be a division of the interval[a, τ ∗]
such that (4.1.1) holds. Setτ = τ ∗+ δ2 and α̃ = α∪{τ}. Then

α̃ = {α0, α1, . . . , τ
∗, τ}

is a division of[a, τ ] with ν(α̃) = ν(α) + 1, whose division points are

α̃j =

{
αj if j ∈{1, . . . , ν(α)},
τ if j = ν(α̃).

Using (4.1.1) and (4.1.3), we have

|f(t)− f(s)|<ε for all t, s∈ (α̃j−1, α̃j) and j ∈{1, . . . , ν(α̃}.
It follows that τ ∈B. However, since we haveτ > τ ∗, this contradicts the defin-
ition of τ ∗ = sup B. Hence,τ ∗ = b, and the proof of the implication (i)=⇒ (iii)
is complete.

c) Assume that (iii) holds. Letn∈N be given and letα be a division of[a, b]
such that|f(t)− f(s)|< 1

n
for all t, s∈ (αj−1, αj) and j ∈{1, . . . , ν(α)}.

For everyj ∈{1, . . . , ν(α)} choose an arbitraryτj ∈ (αj−1, αj) and put

fn(t) =

{
f(t) if t∈α,

f(τj) if t∈ (αj−1, αj).

Obviously, fn ∈ S([a, b]) and ‖f − fn‖∞ < 1
n

for every n∈N, i.e. fn ⇒ f on
[a, b] whenn→∞. This proves the implication (iii)=⇒ (ii). 2

4.1.6 Corollary. Every regulated functionf : [a, b]→R is bounded.

Proof. By statement (iii) of Ḧonig’s Theorem4.1.5, there is a divisionα of the
interval [a, b] such that

|f(t)− f(s)| ≤ 1 whenevert, s∈ (αj−1, αj) and j ∈{1, . . . , ν(α)}.
For everyj ∈{1, . . . , ν(α)}, choose an arbitraryτj ∈ (αj−1, αj). Then

|f(t)| ≤ |f(τj)|+ 1 for t∈ (αj−1, αj) and j ∈{1, . . . , ν(α)}.
Hence|f(t)| ≤M for all t∈ [a, b], where

M = max{|f(α0)|, . . . , |f(αν(α))|, |f(τ1)|+ 1, . . . , |f(τν(α))|+ 1}<∞. 2
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4.1.7 Corollary. For every regulated functionf : [a, b]→R and everyε > 0, the-
re are at most finitely many pointst∈ [a, b] such that

t∈ [a, b) and |∆+f(t)|>ε or t∈ (a, b] and |∆−f(x)|>ε.

Proof. Let ε> 0 be given. By the statement (iii) from Ḧonig’s Theorem4.1.5,
we can find a divisionα of [a, b] such that

|f(t)− f(s)|<ε for t, s∈ (αj−1, αj) and j ∈{1, . . . , ν(α)}.

This implies that

|∆+f(t)| ≤ ε and |∆−f(t)| ≤ ε for t∈ [a, b] \α,

wherefrom the statement of the corollary follows immediately. 2

4.1.8 Theorem.Every regulated functionf : [a, b]→R has at most countably
many discontinuities.

Proof. For eachk ∈N, denote

D+
k = {t∈ [a, b) : |∆+f(t)|> 1

k
} and D−

k = {t∈ (a, b] : |∆−f(t)|> 1
k
}.

Then

D+ =
⋃

k∈N
D+

k = {t∈ [a, b) : |∆+f(t)|> 0}

is the set of all points wheref is discontinuous from the right, and

D− =
⋃

k∈N
D−

k = {t∈ (a, b] : |∆−f(t)|> 0}

is the set of all points where the functionf is discontinuous from the left. Obvi-
ously, D = D+ ∪D− is the set of all discontinuity points off on [a, b].

By Corollary4.1.7every setD+
k , D−

k , k ∈N, is finite. As a result,D is at
most countable. 2

4.1.9 Corollary. Let f ∈G([a, b]) and

f̃(t) =

{
f(t+) if t∈ [a, b),

f(b) if t = b,
(4.1.4)

f̂(t) =

{
f(a) if x = a,

f(t−) if t∈ (a, b].
(4.1.5)
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Then bothf̃ and f̂ are regulated on[a, b] and

f̃(t+) = f(t+) if t∈ [a, b), f̃(t−) = f(t−) if t∈ (a, b], (4.1.6)

and

f̂(t+) = f(t+) if t∈ [a, b), f̂(t−) = f(t−) if t∈ (a, b]. (4.1.7)

Proof. a) Let ε> 0 be given. By Ḧonig’s Theorem4.1.5(iii), there exists a divi-
sion α of the interval[a, b] such that the inequality

|f(t)− f(s)|< ε

2

holds whenevert, s∈ (αj−1, αj) for somej ∈{1, . . . , ν(α)}. In particular,

|f(t + δ)− f(s + δ)|< ε

2

holds for every pairt, s∈ [αj−1, αj) with j ∈{1, . . . , ν(α)} and everyδ > 0 such
that t + δ, s + δ ∈ (αj−1, αj). Therefore

|f(t+)− f(s+)|= lim
δ→0+

|f(t + δ)− f(s + δ)| ≤ ε

2
<ε

holds for eachj ∈{1, . . . , ν(α)} and each pairt, s∈ [αj−1, αj), as well. In other
words,

|f̃(t)− f̃(s)|<ε for everyj ∈{1, . . . , ν(α)} and t, s∈ [αj−1, αj). (4.1.8)

Similarly, it can be shown that

|f̂(t)− f̂(s)|<ε for everyj ∈{1, . . . , ν(α)} and t, s∈ (αj−1, αj]. (4.1.9)

By Hönig’s Theorem4.1.5, it follows that bothf̃ and f̂ are regulated on[a, b].

b) Let x∈ [a, b) andε> 0 be given, and letα be a division of[a, b] such that
|f(t)− f(s)|< ε

2
for every pair t, s∈ (αj−1, αj) and everyj ∈{1, . . . , ν(α)}.

There is a unique indexi∈{1, . . . , ν(α)} such thatx∈ [αi−1, αi). By (4.1.8),
we have

|f̃(t)− f(x+)|= |f̃(t)− f̃(x)|<ε for t∈ (x, αi).

In other words,f̃(x+) = f(x+). This proves the first statement from (4.1.6).

c) Analogously, letx∈ (a, b], ε> 0, and letα be a division of[a, b] such that
|f(t)− f(s)|< ε

2
holds for every pairt, s∈ (αj−1, αj) and everyj ∈{1, . . . , ν(α)}.

There is a uniquei∈{1, . . . , ν(α)} such thatx∈ (αi−1, αi]. If t∈ (αi−1, x) and
0 <δ < min{x− t, x−αi−1}, then

αi−1 <x− δ <αi and αi−1 <t + δ < x.
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Therefore, by the definition of the divisionα, we have

|f(x−)− f̃(t)|= lim
δ→0+

|f(x− δ)− f(t + δ)| ≤ ε

2
<ε for t∈ (αi−1, x).

In other wordsf̃(x−) = f(x−) and this completes the proof of the second state-
ment from (4.1.6).

d) The relations (4.1.7) can be proved similarly to (4.1.6). 2

4.2 The space of regulated functions and its sub-
spaces

The setG([a, b]) is a linear space equipped with the natural operations of point-
wise addition and multiplication by scalars, i.e.,

(f + g)(t) = f(t) + g(t) for f, g ∈G([a, b]), t∈ [a, b],

(c f)(t) = c f(t) for c∈R, f ∈G([a, b]), t∈ [a, b].

}
(4.2.1)

It is also easy to verify that

‖f‖G := ‖f‖∞ = sup
x∈[a,b]

|f(x)| (4.2.2)

defines a norm onG([a, b]).

4.2.1 Theorem.G([a, b]) is a Banach space with respect to the operations(4.2.1)
and the norm(4.2.2).

Proof. It suffices to show that the spaceG([a, b]) is complete with respect to the
norm given by (4.2.2). Thus, assume that{fn} is a Cauchy sequence inG([a, b]).

Using the completeness of the spaceR, analogously to the parts a) and b) of
the proof of Theorem2.2.2, we can prove that there is a functionf : [a, b]→R such
that fn ⇒ f. By Theorem4.1.3it follows that f ∈G([a, b]) and this completes
the proof. 2

4.2.2 Remark. (i) By Definition 2.5.1, f ∈ S([a, b]) if and only if there exists
a division α of the interval [a, b] such thatf is constant on every subinterval
(αj−1, αj). Every function fromS([a, b]) is a finite linear combination of func-
tions of the formχ(α,β) andχ[τ ], where(α, β) is an arbitrary subinterval in[a, b]
andτ is any point in[a, b]. Note that

χ(α,β) = χ(α,b]−χ[β,b] for all α, β ∈ [a, b], α < β

and



84

χ[τ ] = χ[τ,b]−χ(τ,b] for all τ ∈ [a, b).

Hencef ∈ S([a, b]) if and only if f is a finite linear combination of functions of
the formsχ[b], χ[τ,b], χ(τ,b], whereτ can be an arbitrary point in[a, b), i.e.,

S([a, b]) = Lin
(
{χ[τ,b], χ(τ,b], χ[b] : τ ∈ [a, b)}

)
, (4.2.3)

where Lin(M) denotes the linear span of the setM.

(ii) Similarly, we can show that also

S([a, b]) = Lin
(
{χ[a,τ ], χ[a,τ), χ[a] : τ ∈ (a, b]}

)
. (4.2.4)

(iii) By H önig’s Theorem4.1.5, the set S([a, b]) is dense inG([a, b]), i.e.,
cl(S([a, b])) = G([a, b]), where cl(M) stands for the closure of a setM.

4.2.3 Lemma.Let {fn}⊂G([a, b]) and fn ⇒ f on [a, b]. For n∈N, set

f̃n(t) =

{
fn(t+), if t∈ [a, b),

fn(b), if t = b,
f̂n(t)=

{
fn(a), if t = a,

fn(t−), if t∈ (a, b],

and

f̃(t) =

{
f(t+), if t∈ [a, b),

f(b), if t = b,
f̂(t) =

{
f(a), if t = a,

f(t−), if t∈ (a, b].

Thenf̃n ⇒ f̃ and f̂n ⇒ f̂ on [a, b].

Proof. By Corollary 4.1.9, the functionsf̃ , f̃n, f̂ , f̂n, n∈N, are regulated on
[a, b]. Let ε> 0 be given. Choosenε ∈N such that|fn(s)− f(s)|< ε

2
for every

n≥nε and everys∈ [a, b]. Letting s→ t from the right we get that

|f̃n(t)− f̃(t)|= lim
s→t+

|fn(s)− f(s)| ≤ ε
2
<ε

holds for everyt∈ [a, b) and everyn≥nε. Consequently,

lim
n→∞

‖f̃n− f̃‖∞ = 0, i.e., f̃n ⇒ f̃ on [a, b].

Similarly, we would show thatf̂n ⇒ f̂ on [a, b]. 2

In the remaining part of this chapter, we present several statements which will
be useful later (in particular, in Chapters 6 and 7). Note that if the assumptions of
Lemma4.2.3are satisfied, then it follows that

f(t+) = lim
n→∞

fn(t+) for eacht∈ [a, b),

and
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f(t−) = lim
n→∞

fn(t−) for eacht∈ (a, b] ;

this observation leads to the following corollary.

4.2.4 Corollary. The sets

GL([a, b]) = {f ∈G([a, b]) : f(t−) = f(t) for t∈ (a, b]},

G̃L([a, b]) = {f ∈G([a, b]) : f(t−) = f(t) for t∈ (a, b)},
GR([a, b]) = {f ∈G([a, b]) : f(t+) = f(t) for t∈ [a, b)},

G̃R([a, b]) = {f ∈G([a, b]) : f(t+) = f(t) for t∈ (a, b)},
Greg([a, b]) = {f ∈G([a, b]) : f(t−) + f(t+) = 2 f(t) for t∈ (a, b),

f(a+) = f(a), f(b−) = f(b)},

G̃reg([a, b]) = {f ∈G([a, b]) : f(t−) + f(t+) = 2 f(t) for t∈ (a, b)}

are closed inG([a, b]).

4.2.5 Remark. If a regulated functionf satisfiesf(t−)+f(t+) = 2f(t) for
t∈ (a, b), we say thatf is regularon (a, b). Functions from the spaceGreg([a, b])
are said to be regular on the closed interval[a, b].

4.2.6 Lemma.The following relations hold:

cl(GL([a, b])∩ S([a, b])) = GL([a, b]),

cl(G̃L([a, b])∩ S([a, b])) = G̃L([a, b]),

cl(GR([a, b])∩ S([a, b])) = GR([a, b]),

cl(G̃R([a, b])∩ S([a, b])) = G̃R([a, b]),

cl(Greg([a, b])∩ S([a, b])) = Greg([a, b]),

cl(G̃reg([a, b])∩ S([a, b])) = G̃reg([a, b]).

Proof. We will prove only the next to last assertion, the other ones can be proved
similarly.

Let arbitraryf ∈Greg([a, b]) and ε> 0 be given. By Ḧonig’s Theorem (The-
orem4.1.5), there is aϕ∈ S([a, b]) such that

‖f −ϕ‖∞ <ε. (4.2.5)
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It follows that

|f(t−)−ϕ(t−)|= lims→t− |f(s)−ϕ(s)| ≤ ε for t∈ (a, b],

and
|f(t+)−ϕ(t+)|= lims→t+ |f(s)−ϕ(s)| ≤ ε for t∈ [a, b).





(4.2.6)

Define

ϕ̃(t) =





ϕ(a+) if t = a,

1
2

(
ϕ(t+) + ϕ(t−)

)
if t∈ (a, b),

ϕ(b−) if t = b.

(4.2.7)

Then ϕ̃∈ S([a, b])∩Greg([a, b]). Furthermore, by (4.2.5) and (4.2.7), we have

|f(a)− ϕ̃(a)|= |f(a+)−ϕ(a+)| ≤ ε, |f(b)− ϕ̃(b)|= |f(b−)−ϕ(b−)| ≤ ε

and, by (4.2.6) and (4.2.7),

|f(t)− ϕ̃(t)|=
∣∣1
2
(f(t+) + f(t−))− 1

2
(ϕ(t+) + ϕ(t−))

∣∣

≤ 1
2

(∣∣f(t+)−ϕ(t+)
∣∣ +

∣∣f(t−)−ϕ(t−)
∣∣
)
≤ ε

for t∈ (a, b). In other words, we have‖f − ϕ̃‖∞≤ ε, wherefrom the desired
equality cl(Greg([a, b])∩ S([a, b])) = Greg([a, b]) follows. 2

4.2.7 Exercise.Prove the remaining assertions of Lemma4.2.6.

4.2.8 Lemma.The following relations hold:

GL([a, b])∩ S([a, b]) = Lin
(
{χ[a,τ ] : τ ∈ [a, b]}

)
,

G̃L[a, b]∩ S([a, b]) = Lin
(
{χ[a,τ ], χ[b] : τ ∈ [a, b]}

)
,

GR([a, b])∩ S([a, b]) = Lin
(
{χ[τ,b] : τ ∈ [a, b]}

)
,

G̃R[a, b]∩ S([a, b]) = Lin
(
{χ[a], χ[τ,b] : τ ∈ [a, b]}

)
,

Greg([a, b])∩ S([a, b]) = Lin
(
{χ[a,b],

1

2
χ[τ ] + χ(τ,b] : τ ∈ (a, b)}

)
,

G̃reg[a, b]∩ S([a, b]) = Lin
(
{χ[a,b], χ(a,b ],

1

2
χ[τ ] + χ(τ,b], χ[b] : τ ∈ (a, b)}

)
.

Proof. Notice that the first statement follows from Remark4.2.2 (ii); from the
set (4.2.4) of functions generating the whole setS([a, b]), we have selected those
which are left-continuous on(a, b].
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Next, we will show the proof of the fifth relation. To this aim, letf ∈S([a, b])∩
Greg([a, b]) be given. Then there arem∈N, x0, x1, . . ., xm+1 ∈R and a division
α =

{
α0, α1, . . . , αm

}
of [a, b] such that

f(t) =





x1, if t∈ [a, α1),

xj, if t∈ (αj−1, αj) for a certainj ∈{2, . . . , m},
xj+xj+1

2
, if t = αj for a certainj ∈{1, . . . , m−1},

xm, if t∈ (αm−1, b].

Therefore,

f(t) = χ[a,α1)(t) x1 +
m−1∑
j=2

χ(αj−1,αj)(t) xj + χ(αm−1,b](t) xm

+
1

2

( m−1∑
j=1

χ[αj ](t)
(
xj + xj+1

))
for t∈ [a, b].





(4.2.8)

This relation can be rearranged as follows:

f(t) = χ[a,b](t) x1−χ[α1](t) x1−χ(α1,b](t) x1

+
m∑

j=2

χ(αj−1,b](t) xj −
m−1∑
j=2

χ[αj ](t) xj −
m−1∑
j=2

χ(αj ,b](t) xj

+
1

2

( m−1∑
j=1

χ[αj ](t)
(
xj + xj+1

))

= χ[a,b](t) x1 +
m−1∑
j=1

χ(αj ,b](t) xj+1−
m−1∑
j=1

χ(αj ,b](t) xj

−
m−1∑
j=1

χ[αj ](t) xj +
1

2

( m−1∑
j=1

χ[αj ](t)
(
xj + xj+1

))

= χ[a,b](t) x1 +
m−1∑
j=1

[χ(αj ,b](t) + 1
2
χ[αj ](t)] (xj+1− xj)

= χ[a,b](t) x̃1 +
m∑

j=2

[χ(αj−1,b](t) + 1
2
χ[αj−1](t)] x̃j,

where

x̃1 = x1, and x̃j = xj −xj−1 for j ∈{2, . . . , m}. (4.2.9)
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This means that

f ∈Lin
(
{χ[a,b],

1

2
χ[τ ]+χ(τ,b] : τ ∈ (a, b)}

)
,

wherefrom the fifth statement of the lemma follows.

The other statements of the lemma may be proved in a similar way. 2

4.3 Relatively compact subsets ofG([a, b])

Recall that a subsetM of a Banach spaceX is relatively compactif any sequence
of its elements contains a convergent subsequence. It is known (see e.g. [30],
Theorem I.6.15 or [154], Theorem, p.13) thatM is relatively compact if and only
if it is totally bounded, i.e., if for eachε> 0 there is a finite setDε⊂X such that
for everyx∈M there exists ad∈Dε satisfying‖x− d‖X <ε. Such a setDε is
called anε-netfor M in X.

The following assertion is not surprising.

4.3.1 Lemma.Each totally bounded set is bounded.

Proof. Let M ⊂X be totally bounded and let

D = {d1, d2, . . . , dm}⊂X

be such that for eachx∈M, there isd̃x ∈D satisfying ‖x− d̃x‖X < 1. Thus, for
an arbitraryx∈M we have

‖x‖X ≤‖x− d̃x‖X + ‖d̃x‖X ≤K,

whereK = 1 + max{‖d1‖X , . . . , ‖dn‖X} does not depend onx∈M. 2

In the spaceC([a, b]) of continuous functions we have the following criterion
for relative compactness known as the Arzelà-Ascoli theorem. Its proof can be
found in many functional analysis textbooks, see e.g. Theorem 8.2.12 in [143].

4.3.2 Theorem(ARZELÀ-ASCOLI). A subsetM of the spaceC([a, b]) is rela-
tively compact if and only if the following conditions are satisfied:

(i) There is ac∗ ∈ [0,∞) such that‖f‖∞≤ c∗ for eachf ∈M.

(ii) For each ε> 0 there is aδ > 0 such that |f(t)− f(s)|< ε holds for
eachf ∈M and eacht, s∈ [a, b] satisfying|t− s|<δ.
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If the condition (i) from the Arzel̀a-Ascoli theorem is satisfied, we say that the
setM is uniformly bounded, while if the condition (ii) is satisfied, we say that the
setM is equicontinuous. Thus, Theorem4.3.2can be reformulated as follows:

A subset ofC([a, b]) is relatively compact if and only if it is uniformly bounded
and equicontinuous.

We will derive an analogous criterion for subsets of the spaceG([a, b]) with
the notion of equicontinuity replaced by the related notion ofequiregulatedness.
The definition of this notion resembles the definition of equicontinuity with ordi-
nary limits replaced by the one-sided ones.

4.3.3 Definition. A subsetM of G([a, b]) is calledequiregulatedif the following
conditions hold:

• For eachε> 0 andτ ∈ (a, b] there is aδ1(τ)∈ (0, τ − a) such that

|f(τ−)− f(t)|< ε for all t∈ (τ − δ1(τ), τ) and f ∈M.

• For eachε> 0 andτ ∈ [a, b) there is aδ2(τ)∈ (0, b− τ) such that

|f(τ+)− f(t)|<ε for all t∈ (τ, τ + δ2(τ)) and f ∈M.

The next characterization of equiregulated sets of functions will be helpful
later.

4.3.4 Lemma.The following statements are equivalent:

(i) M ⊂ G([a, b]) is equiregulated.

(ii) For everyε> 0 there exists a divisionα of [a, b] such that for everyf ∈M,
j ∈{1, . . . , ν(α)} and s, t∈ (αj−1, αj), we have|f(s)− f(t)|<ε.

Proof. a) The proof of the implication (i)=⇒ (ii) is almost identical with the
proof of the implication (i)=⇒ (iii) in Theorem4.1.5; we leave it as an exercise
for the reader.

b) Let an arbitraryε> 0 be given, and letα be the corresponding division from
condition (ii).

Choose an arbitraryτ ∈ (a, b]. There is a uniquej ∈{1, . . . , ν(α)} such that
τ ∈ (αj−1, αj]. For all t, s∈ (αj−1, τ) andf ∈M we have|f(s)− f(t)|<ε. Let-
ting s→ τ− we get

|f(τ−)− f(t)| ≤ ε for all t∈ (τ − δ1, τ) and f ∈M,

whereδ1 = τ −αj−1.
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Analogously, if τ ∈ [a, b), there exists a uniquej ∈{1, . . . , ν(α)} such that
τ ∈ [αj−1, αj). Hence, |f(s)− f(t)|<ε holds for all t, s∈ (τ, αj) and f ∈M.
Letting s→ τ+ yields

|f(τ+)− f(t)| ≤ ε for all t∈ (τ, τ + δ2), f ∈M,

whereδ2 = αj − τ.

This shows thatM ⊂ G([a, b]) is equiregulated. 2

4.3.5 Exercise.Prove the implication (i)=⇒ (ii) from Lemma4.3.4.

We now proceed to the analogue of the Arzelà-Ascoli theorem in the world of
regulated functions, which reads as follows.

4.3.6 Theorem(FRAŇKOVÁ). A subsetM of G([a, b]) is relatively compact if
and only if it is uniformly bounded and equiregulated.

Proof. a) Let M ⊂G([a, b]) be relatively compact. We will show thatM is
uniformly bounded and equiregulated. The uniform boundedness of functions
from M follows from Lemma4.3.1. It remains to show thatM is equiregulated.

Let ε> 0 and τ ∈ [a, b] be given and let F = {f1, f2, . . . , fm} be
an ε/3– net for the setM in G([a, b]). This means that

for any f ∈M there is anf̃ ∈F such that‖f − f̃‖∞ <
ε

3
. (4.3.1)

Consequently, the inequalities

|f(t−)− f̃(t−)| ≤ ε
3

for t∈ (a, b],

|f(t+)− f̃(t+)| ≤ ε
3

for t∈ [a, b)



 (4.3.2)

hold for anyf ∈M and anyf̃ satisfying (4.3.1). All the functionsfk ∈F are
regulated on[a, b]. Hence, for a givenτ ∈ (a, b ] and everyk ∈{1, 2, . . . , m},
there is aδ1

k ∈ (0, τ − a) such that

|fk(t)− fk(τ−)|<ε for t∈ (τ − δ1
k, τ). (4.3.3)

Similarly, for a given τ ∈ [a, b) and every k ∈{1, 2, . . . , m}, there is
a δ2

k ∈ (0, b− τ) such that

|fk(t)− fk(τ+)|<ε for t∈ (τ, τ + δ2
k). (4.3.4)

Set

δ =





min{δi
k : i = 1, 2; k = 1, . . . , m} if τ ∈ (a, b),

min{δ1
k : k = 1, . . . , m} if τ = b,

min{δ2
k : k = 1, . . . , m} if τ = a.
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If a≤ τ−δ < t < τ ≤ b, then by (4.3.1)–(4.3.4) the inequalities

|f(t)− f(τ−)| ≤ |f(t)− f̃(t)|+ |f̃(t)− f̃(τ−)|+ |f̃(τ−)− f(τ−)|<ε

hold for any f ∈M and anyf̃ corresponding tof by (4.3.1). Similarly, we can
prove that

|f(t)− f(τ+)|<ε for all f ∈M

whenevera≤ τ−δ < t < τ ≤ b. Consequently, the setM is equiregulated.

b) Now, assume thatM is uniformly bounded and equiregulated. We will show
that M is relatively compact inG([a, b]). It suffices to show thatM is totally
bounded, i.e., that for everyε> 0 the setM has a finiteε– net inG([a, b]).

Let an arbitraryε> 0 be given, and letα be the corresponding division of
[a, b] from part (ii) of Lemma4.3.4.

SinceM is uniformly bounded, there is ac∗ > 0 such that‖f‖∞≤ c∗ for all
f ∈M. Let z = {z0, z1, . . . , zn} be a division of[−c∗, c∗] such that

|z|= max
1≤j≤n

(zj − zj−1) <
ε

2
.

Let F be the set of all functions̃f : [a, b]→R which are constant on each of
the intervals(αj−1, αj), j = 1, . . . , ν(α), and whose values belong to the setz.
The number of elements ofF is obviously finite.

We will show thatF is an ε– net for M in G([a, b]). To this aim, consider
an arbitrary functionf ∈M. By the definition ofz, we know that

• for eachj ∈{0, 1, . . . , ν(α)} there is akj ∈{0, 1, . . . , n} such that
∣∣f(αj)− zkj

∣∣ <
ε

2
,

• for eachj ∈{1, . . . , ν(α)} there is aǹ j ∈{0, 1, . . . , n} such that

∣∣f
(

αj−1 + αj

2

)
− z`j

∣∣ <
ε

2
.

Furthermore, by the definition ofα, we have

|f(t)− z`j
| ≤

∣∣f(t)− f

(
αj−1 + αj

2

) ∣∣ +
∣∣f

(
αj−1 + αj

2

)
− z`j

∣∣<ε

for all j ∈{1, . . . , ν(α)} and t∈ (αj−1, αj), as well. Let us define

f̃(t) =

{
zkj

if t = αj for some j ∈{0, 1, . . . , m},
z`j

if t∈ (αj−1, αj) for some j ∈{1, . . . , m}.
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Obviously, f̃ ∈F and ‖f − f̃‖∞ <ε. Thus F is an ε– net for M in G([a, b]),
and the proof is complete. 2

The next assertion shows that the condition of uniform boundedness can be
weakened.

4.3.7 Corollary. A subsetM of the spaceG([a, b]) is relatively compact if and
only if it is equiregulated and

the set{f(t) : f ∈M} is bounded for eacht∈ [a, b]. (4.3.5)

Proof. If M ⊂G([a, b]) is uniformly bounded, then it obviously satisfies condi-
tion (4.3.5). Hence, by Frǎnková’s Theorem4.3.6, any relatively compact sub-
set M of G([a, b]) is equiregulated and satisfies (4.3.5). It remains to prove the
reverse implication. To this aim, assume thatM is equiregulated and satisfies
condition (4.3.5). We will show thatM is uniformly bounded. By Lemma4.3.4,
we can choose a divisionα of [a, b] such that

|f(t)− f(s)|< 1

for all t, s∈ (αj−1, αj), j ∈{1, . . . ,m} and f ∈M,

}
(4.3.6)

wherem = ν(α). By our assumption (4.3.5), there exist constants

γj, j = 0, 1, . . . , m, and γ̃j, j = 1, . . . , m,

such that the estimates

|f(αj)| ≤ γj for j = 0, 1, . . . ,m,

∣∣f(1
2
(αj−1 + αj))

∣∣≤ γ̃j for j = 1, . . . , m



 (4.3.7)

hold for all f ∈M. This, together with (4.3.6), implies that the estimate

|f(t)|<
∣∣f(1

2
(αj−1 + αj))

∣∣ + 1≤ γ̃j + 1

if t∈ (αj−1, αj) and j ∈{1, . . . , m}

}
(4.3.8)

holds for eachf ∈M. According to (4.3.7) and (4.3.8) we have‖f‖∞ <c∗ for
any f ∈M, where

γ∗ = max{γj : j = 0, 1, . . . , m}, γ̃∗ = max{γ̃j : j = 1, . . . , m},
c∗ = max{γ∗, γ̃∗}+ 1.

Hence, the setM is uniformly bounded and the proof is complete. 2

We conclude this section by another useful criterion for the relative compact-
ness inG([a, b]).
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4.3.8 Corollary. Let M ⊂G([a, b]). Assume that the set{f(a) : f ∈M} is boun-
ded and there exists a nondecreasing functionh : [a, b]→R such that

|f(t)− f(s)| ≤ |h(t)−h(s)| for all t, s∈ [a, b] andf ∈M. (4.3.9)

ThenM is relatively compact inG([a, b]).

Proof. By assumption, there isK ∈ [0,∞) such that |f(a)| ≤K for any f ∈M.
Consequently,

|f(x)| ≤ |f(a)|+ |f(x)− f(a)| ≤K + h(b)−h(a)

for all x∈ [a, b] andf ∈M. Thus, the setM is uniformly bounded.
Now, let an arbitraryε> 0 be given. Obviously,h∈G([a, b]). Hence, by

Hönig’s Theorem4.1.5, there is a divisionα of [a, b] such that

|h(t)−h(s)|<ε for all t, s∈ (αj−1, αj) and j ∈{1, . . . , ν(α)}.

It follows that

|f(t)− f(s)| ≤ |h(t)−h(s)|<ε

for arbitrary t, s∈ (αj−1, αj), j ∈{1, . . . , ν(α)}, and f ∈M. By Lemma4.3.4,
the setM is equiregulated. Finally, by Fraňková’s Theorem4.3.6, M is relatively
compact inG([a, b]). 2

4.3.9 Remark. Corollary 4.3.8 provides a sufficient condition for the relative
compactness of sets inG([a, b]). Note that this condition is not necessary: If
(4.3.9) holds, it is easy to verify that varb

af ≤h(b)−h(a) for eachf∈M. How-
ever, in general, regulated functions need not have bounded variation.

The next assertion shows that ifM ⊂G([a, b]) is a pointwise convergent se-
quence of functions which satisfy (4.3.9), then necessarily this sequence con-
verges uniformly.

4.3.10 Corollary. Assume that{fn}⊂G([a, b]) is a sequence which is point-
wise convergent tof : [a, b]→R. Moreover, suppose there exists a nondecreasing
functionh : [a, b]→R such that

|fn(t)− fn(s)| ≤ |h(t)−h(s)| for all t, s∈ [a, b] andn∈N.

Then{fn} converges uniformly tof on [a, b].

Proof. Corollary4.3.8implies that each subsequence of{fn} has a subsequence
which is uniformly convergent. Obviously, the uniform limit of this subsequence
is necessarilyf.
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Now, suppose that{fn} is not uniformly convergent tof. Then there exists
an ε > 0 such that for eachk ∈N, there is an indexnk ∈N with the property that
‖fnk

− f‖∞≥ ε. It follows that {fnk
}k has no subsequence which is uniformly

convergent tof, and this is a contradiction. 2

More information about regulated functions can be found in Hönig’s monograph [60] (see
Section I.3 there). Other useful results (e.g., characterization of compact sets inG([a, b])
or a generalization of Helly’s Choice Theorem) are included in D. Fraňková’s paper [39].



Chapter 5

Riemann-Stieltjes integral

The answer to some problems mentioned in the introductory chapter is provided
by the Riemann-Stieltjes integral, which is a natural generalization of the well-
known Riemann integral.

5.1 Definition and basic properties

Recall that a setα = {α0, α1, . . . , αm} of points from an interval[a, b] is called
adivision of the interval[a, b] if

a = α0 <α1 < · · ·<αm = b.

The set of all divisions of the interval[a, b] is denoted byD [a, b]. The elements
of a division α of [a, b] are usually denoted byαj, ν(α) is the index of the
maximum element (i.e.,αν(α) = b) and

|α|= max
j=1,...,m

(αj −αj−1).

We say that a divisionα′ of [a, b] is arefinementof α if α′⊃α.

5.1.1 Definition. A pair P = (α, ξ) of finite subsets of[a, b] is called apartition
(or also atagged division) of the interval[a, b] if α is a division of [a, b], ξ =
{ξ1, . . . , ξν(α)}, and

αj−1≤ ξj ≤αj for all j = 1, . . . , ν(α).

We say thatξj is thetag of the subinterval[αj−1, αj ] and ξ is theset of tagsof
the divisionα.

Sequences of divisions or partitions will be denoted by{αn} or {(βn,ηn)}, re-
spectively; we use upper indices to avoid confusion with the elements of the sets
α, β, η, etc.

5.1.2 Definition. Given a pair of functionsf, g : [a, b]→R and a partitionP =
(α, ξ) of the interval[a, b], we define

S(f, dg, P ; [a, b]) :=

ν(α)∑
j=1

f(ξj) [g(αj)− g(αj−1)].

If [a, b] andf, g are fixed and no misunderstanding can happen, we writeS(f, dg, P ),
S(α, ξ), or evenS(P ) instead ofS(f, dg, P ; [a, b]).

95
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5.1.3 Definition. Let f, g : [a, b]→R.

(i) We say that theRiemann-Stieltjes(δ)-integral (shortly (δ)RS-integral) off
with respect tog

(δ)

∫ b

a

f(x) dg(x)
(
we also write(δ)

∫ b

a

f dg
)

exists and has a valueI ∈R if

for everyε> 0 there is aδε > 0 such that

|S(P )− I|<ε

for all partitions P = (α, ξ) of [a, b] such that|α|<δε.





(5.1.1)

(ii) We say that theRiemann-Stieltjes(σ)-integral (shortly (σ)RS-integral) off
with respect tog

(σ)

∫ b

a

f(x) dg(x)
(
we also write(σ)

∫ b

a

f dg
)

exists and has a valueI ∈R if

for everyε> 0 there is a divisionαε of [a, b] such that

|S(P )− I|<ε

for all partitions P = (α, ξ) of [a, b] such thatα⊃αε.





(5.1.2)

(iii) For any c∈ [a, b] we set

(δ)

∫ c

c

f dg = (σ)

∫ c

c

f dg = 0.

If the integral(δ)
∫ b

a
f dg or (σ)

∫ b

a
f dg exists, we define

(δ)

∫ a

b

f dg =−(δ)

∫ b

a

f dg or (σ)

∫ a

b

f dg =−(σ)

∫ b

a

f dg,

respectively.

5.1.4 Remark. Our (δ)RS-integral corresponds to the original Stieltjes’ defini-
tion, while the(σ)RS-integral is also known as theMoore-Pollardintegral.

The classical Riemann integral is a special case of the(δ)RS-integral for
g(x)≡ x on [a, b].

If we speak about the RS-integral without distinguishing between the(δ) or
(σ) variant, we mean that the given statement holds for both integrals. In such and
other cases when no misunderstanding can occur we do not include the symbol
(δ) or (σ) before the integral sign.

The functionf in the integral
∫ b

a
f dg is called theintegrand, while the func-

tion g is called theintegrator.
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5.1.5 Exercise.Prove that Definition5.1.3is correct in the sense that the value of
the integral is determined uniquely, i.e., ifI1 ∈R andI2 ∈R satisfy (5.1.1) (with
I replaced byI1 or I2 ), thenI1 = I2 (and similarly for (5.1.2)).

5.1.6 Exercises.Prove the following assertions for both kinds of the RS-integral:

(i) If the function g is constant, then
∫ b

a
f dg = 0 for any function

f : [a, b]→R.

(ii) If the function f is constant, then
∫ b

a
f dg = f(a) (g(b)− g(a)) for any

function g : [a, b]→R.

From Definition5.1.3we can easily conclude that the(δ)RS-integral is a spe-
cial case of the(σ)RS-integral in the following sense.

5.1.7 Theorem.If (δ)
∫ b

a
f dg exists, then(σ)

∫ b

a
f dg exits as well and has the

same value.

Proof. The statement follows immediately from the fact that the inequality
|α′′| ≤ |α′| holds for all divisionsα′,α′′ of [a, b] such thatα′′⊃α′. 2

5.1.8 Remark. Let an arbitraryδ0 > 0 be given. Then, in Definition5.1.1(i), the
condition (5.1.1) can be replaced by the following weaker condition:

For everyε> 0 there is aδε ∈ (0, δ0) such that

|S(P )− I|<ε

for all partitions P = (α, ξ) of [a, b] such that|α|<δε.





(5.1.1’)

Similarly, if a division α0 of [a, b] is given, then, in Definition5.1.3 (ii), the
condition (5.1.2) can be replaced by the following weaker condition:

For everyε> 0 there is anαε ∈D [a, b] such thatαε⊃α0 and

|S(P )− I|<ε

for all partitions P = (α, ξ) of [a, b] such thatα⊃αε.





(5.1.2’)

5.1.9 Exercise.Verify the statements mentioned in Remark5.1.8.

5.1.10 Example.Let a =−1, b = 1 and

f(x) =

{
0 if x≤ 0,

1 if x> 0,
and g(x) =

{
1 if x< 0,

0 if x≥ 0.

Setα0 = {−1, 0, 1}. Then, for every divisionα of [−1, 1] which is a refinement
of α0 and for every partitionP = (α, ξ) of [a, b], there is ak ∈N such that
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αk = 0. Then

S(P ) = f(ξk) (g(0)− g(αk−1)) + f(ξk+1) (g(αk+1)− g(0)) = 0,

because

f(ξk) = 0 and g(αk+1)− g(0) = 0.

By the second part of Remark5.1.8, we see that(σ)
∫ 1

−1
f dg = 0.

On the other hand, for every partitionP = (α, ξ) of the interval[−1, 1] such
that 0 /∈α there is ak ∈N such thatαk−1 < 0 <αk, and consequently

S(P ) = f(ξk) (g(αk)− g(αk−1)) =−f(ξk) =−




0 if ξk≤ 0,

1 if ξk > 0.

Now it is clear that the integral(δ)
∫ 1

−1
f dg does not exist.

The following two lemmas hold for both kinds of the RS-integral and are direct
corollaries of Definition5.1.3.

5.1.11 Lemma.(i) If the integral
∫ b

a
f dg exists, then

∣∣∣∣
∫ b

a

f dg

∣∣∣∣≤‖f‖∞varbag.

(ii) If, in addition, g ∈BV([a, b]) and the integral
∫ b

a
f(x) d(varxa g) exists, then

∣∣∣∣
∫ b

a

f dg

∣∣∣∣≤
∫ b

a

|f(x)| d(varxa g)≤‖f‖∞ varbag.

5.1.12 Remark. We will show later (cf. Corollary5.3.10) that if f is bounded
on [a, b] then for both kinds of the RS-integral, the existence of the integral∫ b

a
f(x) d(varxa g) already follows from the existence of the integral

∫ b

a
f dg.

5.1.13 Lemma.Let f, f1, f2, g, g1, g2 : [a, b]→R and let all the integrals

∫ b

a

f1 dg,

∫ b

a

f2 dg,

∫ b

a

f dg1 and
∫ b

a

f dg2

exist. Then for anyc1, c2 ∈R, the following relations hold:

∫ b

a

(c1f1 + c2f2) dg = c1

∫ b

a

f1 dg + c2

∫ b

a

f2 dg,

∫ b

a

f d(c1g1 + c2g2) = c1

∫ b

a

f dg1 + c2

∫ b

a

f dg2.
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5.1.14 Exercises.(i) Prove Lemmas5.1.11and5.1.13.
(ii) Prove the following statement for both kinds of the RS-integral:

If f, g : [a, b]→R are such thatg is nondecreasing and the integral
∫ b

a
f dg ex-

ists, then

(
inf

x∈[a,b]
f(x)

)
(g(b)− g(a))≤

∫ b

a

f dg≤
(

sup
x∈[a,b]

f(x)
)

(g(b)− g(a)).

Both kinds of the RS-integral are, in a sense, generalized limits of integral sums
with respect to partitions. It is thus not surprising that the following statement,
which is an analogue of the classical Bolzano-Cauchy condition, holds.

5.1.15 Theorem(BOLZANO-CAUCHY CONDITION).
Given a pair of functionsf, g : [a, b]→R, the integral (δ)

∫ b

a
f dg exists if and

only if

for everyε> 0 there is aδε > 0 such that

|S(P )−S(Q|<ε

for all partitions P = (α, ξ), Q = (β,η) of [a, b]

such that|α|<δε and |β|<δε.





(5.1.3)

Similarly, the integral(σ)
∫ b

a
f dg exists if and only if

for everyε> 0 there is a divisionαε of [a, b] such that

|S(P )−S(Q|< ε

for all partitionsP = (α, ξ), Q = (β,η) of [a, b]

with α⊃αε andβ⊃αε.





(5.1.4)

Proof. The necessity of the conditions (5.1.3) and (5.1.4) for the existence of the
corresponding integrals is obvious from Definition5.1.3.

We will prove that condition (5.1.4) guarantees the existence of the integral
(σ)

∫ b

a
f dg. If (5.1.4) is satisfied, there is a sequence{Pk}= {(αk, ξk)} of par-

titions of [a, b] such that

|S(P )−S(Pk)|< 1
k

for all partitions P = (α, ξ) of [a, b] such thatα⊃αk,

and
αk⊂α` for `∈N and `≥ k.





(5.1.5)

In particular,

|S(Pk)−S(P`)|< 1
k

wheneverk, `∈N and `≥ k. (5.1.6)
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The sequence{S(Pk)} is a Cauchy sequence of real numbers. Hence there exists
an I ∈R such that lim

k→∞
S(Pk) = I. Now, let ε> 0 be given. Choosekε in such

a way that

1

kε

<
ε

2
and |S(Pkε)− I|< ε

2
. (5.1.7)

Then, combining (5.1.5) and (5.1.7), we deduce that

|S(P )− I| ≤ |S(P )−S(Pkε)|+ |S(Pkε)− I|<ε

for every partition P = (α, ξ) of [a, b] such that α⊃αkε . Therefore
I = (σ)

∫ b

a
f dg.

In a similar way we can prove that condition (5.1.3) implies the existence of
the integral(δ)

∫ b

a
f dg. 2

5.1.16 Exercises.(i) Prove the assertion of Theorem5.1.15for (δ)RS-integrals.

(ii) Prove that conditions (5.1.3) or (5.1.4) are respectively equivalent to the fol-
lowing ones:

For everyε > 0 there is aδε > 0 such that

|S(P )−S(Q)|<ε

for all partitions P = (α, ξ), Q = (β,η) of [a, b]
such that|α|<δε, β⊃α.





(5.1.3’)

For everyε > 0 there is a divisionαε of [a, b] such that

|S(P )−S(Q)|<ε

for all partitions P = (α, ξ), Q = (β,η) of [a, b]
such thatβ⊃α⊃αε.





(5.1.4’)

Hint: Let α, β be divisions of[a, b] andα ′=α∪β. Thenα ′ is also a division
of [a, b], α ′⊃α, α ′⊃β and

∣∣S(α, ξ)−S(β,η)
∣∣≤

∣∣S(α, ξ)−S(α ′, ξ ′)
∣∣ +

∣∣S(α ′, ξ ′)−S(β, η)
∣∣

for all partitions(α, ξ), (β,η) and (α ′, ξ ′) of [a, b].

The following theorem is a direct corollary of Theorem5.1.15. It is valid for
both kinds of the RS-integral.

5.1.17 Theorem.If the integral
∫ b

a
f dg exists and[c, d]⊂ [a, b], then the integral∫ d

c
f dg exists, as well.
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Proof. Assume that the integral(σ)
∫ b

a
f dg exists and letε> 0 be given. By

Theorem5.1.15there is a divisionαε of [a, b] such that

|S(P )−S(P ′)|<ε (5.1.8)

holds for all partitionsP = (α, ξ), P ′ = (α′, ξ′) of [a, b] such thatα⊃αε and
α′⊃αε. By Remark5.1.8, we can assume that{c, d}⊂αε and we can thus
decomposeαε in such a way that

αε = β−∪βε ∪β+,

whereβ− is a division of[a, c], βε is a division of[c, d], andβ+ is a division of
[d, b]. Now, let (β,η) and (β ′,η′) be partitions of[c, d] such thatβ⊃βε and
β ′⊃βε. Define

α = β−∪β ∪β+, η = (η−, η,η+) and α′ = β−∪β ′ ∪β+, (η−, η′, η+),

where(β−,η−) is a partition of[a, c] and(β+,η+) is a partition of[d, b]. Obvi-
ously, (α, ξ) and (α′, ξ ′) are partitions of[a, b], α⊃αε, α′⊃αε,

S(α, ξ) = S(β−, η−) + S(β,η) + S(β+,η+)

and

S(α′, ξ ′) = S(β−, η−) + S(β ′,η ′) + S(β+,η+).

Thus, by (5.1.8) we have

|S(β,η)−S(β ′,η ′)|= |S(α, ξ)−S(α′, ξ ′)|<ε

and, by Theorem5.1.15, this yields the existence of the integral
∫ d

c
f dg. 2

The statement of the theorem for the(δ)RS-integral can be proved analo-
gously; we leave it as an exercise to the reader. 2

5.1.18 Exercise.Prove Theorem5.1.17for the (δ)RS-integral.

The following statement holds for both kinds of the RS-integral.

5.1.19 Theorem.If the integral
∫ b

a
f dg exists andc∈ [a, b], then also both the

integrals
∫ c

a
f dg and

∫ b

c
f dg exist and satisfy

∫ b

a

f dg =

∫ c

a

f dg +

∫ b

c

f dg.

Proof. If c = a or c = b, the statement of the theorem is trivial. Thus, letc∈ (a, b)

and let the integral
∫ b

a
f dg exist. Then the existence of the integrals

∫ c

a
f dg and∫ b

c
f dg is guaranteed by Theorem5.1.17.
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Let ε> 0. Choose partitionsP ′ = (α′, ξ ′) of [a, c] andP ′′ = (α′′, ξ′′) of [c, b]
in such a way that

∣∣∣∣S(P ′)−
∫ c

a

f dg

∣∣∣∣ +

∣∣∣∣S(P ′′)−
∫ b

c

f dg

∣∣∣∣ +

∣∣∣∣S(P )−
∫ b

a

f dg

∣∣∣∣< ε,

whereα = α′ ∪α′′, ξ = ξ′ ∪ ξ′′ and P = (α, ξ).





(5.1.9)

Obviously,S(P ) = S(P ′) + S(P ′′). Hence,
∣∣∣∣
∫ b

a

f dg−
∫ c

a

f dg−
∫ b

c

f dg

∣∣∣∣

≤
∣∣∣∣
∫ b

a

f dg−S(P )

∣∣∣∣ + |S(P )−S(P ′)−S(P ′′)|

+

∣∣∣∣S(P ′)−
∫ c

a

f dg

∣∣∣∣ +

∣∣∣∣S(P ′′)−
∫ b

c

f dg

∣∣∣∣< ε.

As ε> 0 was arbitrary, this completes the proof. 2

5.1.20 Exercise.Why does the existence of the integrals
∫ b

a

f dg,

∫ c

a

f dg,

∫ b

c

f dg

imply the existence of partitionsP ′ of [a, c] and P ′′ of [c, b ] such that (5.1.9)
holds?

The converse of Theorem5.1.19is easily shown to be valid for the(σ) RS-
integral.

5.1.21 Theorem.If c∈ [a, b] and if the integrals

I1 = (σ)

∫ c

a

f dg and I2 = (σ)

∫ b

c

f dg

exist, then also the integral(σ)
∫ b

a
f dg exists and equalsI1 + I2.

Proof. Let ε > 0 be given. Choose divisionsα′
ε of [a, c] and α′′

ε of [c, b] such
that

∣∣S(P ′)− I1

∣∣ <ε for all partitionsP ′ = (α′, ξ ′) of [a, c] such thatα′⊃α′
ε,∣∣S(P ′′)− I2

∣∣ <ε for all partitionsP ′′ = (α′′, ξ ′′) of [c, b] such thatα′′⊃α′′
ε .

Now, let αε = α′
ε ∪α′′

ε . Since c∈αε, every partitionP = (α, ξ) of [a, b] sat-
isfying α⊃αε can be decomposed to partitionsP ′ = (α′, ξ ′) of [a, c] and
P ′′ = (α′′, ξ ′′) of [c, b ] in such a way that

α = α′ ∪α′′ and ξ = ξ ′ ∪ ξ′′, where α′⊃α′
ε and α′′⊃α′′

ε .
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Moreover,S(P ) = S(P ′) + S(P ′′), and the definitions ofα′
ε andα′′

ε imply
∣∣S(P )− (I1 + I2)

∣∣≤
∣∣S(P ′)− I1

∣∣ +
∣∣S(P ′′)− I2

∣∣ < 2 ε

for every partitionP = (α, ξ) of [a, b] such thatα⊃αε. This completes the
proof of the theorem. 2

5.1.22 Remark. To get an analogous statement also for the(δ)RS-integral, we
have to assume the pseudo-additivity of the functionsf, g at the pointc; see
Definition5.2.1and Exercise5.2.10.

For the existence of the(δ)RS-integral, we have the following necessary and
sufficient condition.

5.1.23 Theorem.For each pairf, g : [a, b]→R, the integral(δ)
∫ b

a
f dg exists if

and only if

lim
n→∞

S(Pn)∈R for each sequence{Pn}= {(αn, ξn)}
of partitions of[a, b] such that lim

n→∞
|αn|= 0.



 (5.1.10)

Proof. The necessity of the condition (5.1.10) for the existence of the integral
(δ)

∫ b

a
f dg is obvious; it remains to prove its sufficiency.

Thus, assume that (5.1.10) holds and let the sequences{Pn}= {(αn, ξn)} and
{P̃m}= {(α̃n, ξ̃

n
)} of partitions of[a, b] be such that

lim
n→∞

|αn|= lim
n→∞

|α̃n|= 0

and

lim
n→∞

S(αn, ξn) = I ∈R and lim
n→∞

S(α̃n, ξ̃
n
) = Ĩ ∈R.

Now, consider the sequence{Qn} of partitions of[a, b] given by

Q2k−1 = Pk, Q2k = P̃k for k ∈N.

By our assumption, the sequence
{
S(Qn)

}
has a finite limitJ ∈R, and since it

contains both the sequences{S(Pn)} and {S(P̃n)}, we necessarily have
I = Ĩ = J. This means that the value of the limit

I = lim
n→∞

S(Pn)

does not depend on the choice of the sequence{Pn} of partitions of [a, b] for
which limn→∞ |αn|= 0.

Now, assume that(δ)
∫ b

a
f dg 6= I. Then there exists añε> 0 such that for

everyk ∈N there is a partitionPk = (αk, ξk) of [a, b] such that

|αk|< 1/k and |S(Pk)− I|> ε̃.
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In other words, we have a sequence{Pk}= {(αk, ξk)} of partitions of[a, b] such
that

lim
k→∞

|αk|= 0 and lim
k→∞

S(Pk) 6= I,

which is a contradiction. Therefore(δ)
∫ b

a
f dg = I. 2

5.1.24 Remark.Let x0 ∈ (a, b), c, d∈R and

g(x) =





c′ if x∈ [a, x0),

c∈ [c′, c′′] if x = x0,

c′′ if x∈ (x0, d],

and let an arbitraryf ∈G([a, b]) be given.
(i) Consider a sequence of divisions{αn} of [a, b] such that|αn|→ 0, while for
everyn∈N there is akn such thatαn

kn−1<x0 <αn
kn

. Further, let ξn,ηn, ζn be
the sequences of sets of tags corresponding toαn, n∈N, and such that

ξn
kn

= x0, αn
kn−1≤ ηn

kn
<x0 and x0 <ζn

kn
≤αn

k for everyn∈N.

Then

S(αn, ξn) = f(x0) (c′′− c′) = f(x0) ∆g(x0),

S(αn, ηn) = f(ηn
kn

) (c′′− c′) = f(ηn
kn

) ∆g(x0),

and

S(αn, ζn) = f(ζn
kn

) (c′′− c′) = f(ζn
kn

) ∆g(x0)

for everyn∈N. Thus, if there is anI ∈R such that

lim
n→∞

S(αn, ξn) = I

for each sequence(αn, ξn) of partitions of[a, b] fulfilling limn→∞ |αn|= 0, then
either

g(x0−) = c′ = g(x0) = c = g(x0+) = c′′ or f(x0−) = f(x0) = f(x0+)

must hold. In view of Theorem5.1.23, we can expect that if the integral(δ)
∫ b

a
f dg

exists, then the functionsf andg have no common point of discontinuity.

(ii) Now, let α0 be an arbitrary division of[a, b] containingx0. For each its
refinementα, there is an indexk = k(α) such thatx0 = αk. Hence for each
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partition (α, ξ) such thatα⊃α0 we have

S(α, ξ) =





f(ξk−1) ∆−g(x0) + f(ξk) ∆+g(x0) if ξk−1 <x0 <ξk,

f(x0) ∆−g(x0) + f(ξk)) ∆+g(x0) if ξk−1 = x0 <ξk,

f(ξk−1) ∆−g(x0) + f(x0)) ∆+g(x0) if ξk−1 <x0 = ξk,

f(x0) ∆−g(x0) + f(x0) ∆+g(x0) if ξk−1 = x0 = ξk.

and

f(x0−) ∆−g(x0) + f(ξk) ∆+g(x0), f(x0) ∆−g(x0) + f(x0+) ∆+g(x0),

f(x0−) ∆−g(x0) + f(x0)) ∆+g(x0), f(x0) ∆−g(x0) + f(x0) ∆+g(x0)

are the accumulation points of the set

Σ =
{

S(α, ξ) : (α, ξ) is a partition of[a, b] andα⊃α0

}

Of course, the integral(σ)
∫ b

a
f dg can exist only if the setΣ will have exactly

one accumulation point. It is easy to see that this can happen only if

∆+f(x0) ∆+g(x0) = ∆−f(x0) ∆−g(x0) = 0

5.2 Pseudo-additivity

The notion ofpseudo-additivityenables us to better clarify the mutual relationship
between the(δ) and (σ) integrals.

5.2.1 Definition. We say that functionsf, g : [a, b]→R satisfy the condition of
pseudo-additivity at a pointx∈ (a, b), if

for everyε> 0 there is aδε > 0 such that∣∣f(ξ) (g(x + δ′′)− g(x− δ′))− f(ξ′) (g(x)− g(x− δ′))

−f(ξ′′) (g(x + δ′′)− g(x))
∣∣ <ε

holds wheneverδ′, δ′′ ∈ (0, δε) and

ξ ∈ [x− δ′, x + δ′′], ξ′ ∈ [x− δ′, x], ξ′′ ∈ [x, x + δ′′].





(PA)
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5.2.2 Remark. It is sometimes more convenient to reformulate the condition (PA)
as follows:

For everyε> 0 there is aδε > 0 such that∣∣f(ξ) (g(x′′)− g(x′))− f(ξ′) (g(x)− g(x′))

−f(ξ′′) (g(x′′)− g(x))
∣∣<ε

holds wheneverx′ ∈ (x− δε, x), x′′ ∈ (x, x + δε) and

ξ ∈ [x′, x′′], ξ ′ ∈ [x′, x], ξ ′′ ∈ [x, x′′].





(PA’)

5.2.3 Example.Let

f(x) =

{
0 if x≤ 0,

1 if x> 0,
g(x) =

{
1 if x≤ 0,

0 if x> 0.

If x′ < 0 <x′′, ξ ∈ [x′, x′′], ξ′ ∈ [x′, 0], ξ′′ ∈ [0, x′′], then
∣∣f(ξ) (g(x′′)− g(x′))− f(ξ′) (g(0)− g(x′))− f(ξ′′) (g(x′′)− g(0))

∣∣
=

∣∣− f(ξ) + f(ξ′′)
∣∣ = 1

wheneverξ≤ 0 and ξ′′ > 0. Thus, the functionsf, g do not satisfy the condition
(PA) at the point0.

5.2.4 Lemma. If f, g : [a, b]→R satisfy the condition of pseudo-additivity at
x∈ (a, b), then at least one of the functionsf, g is continuous atx.

On the other hand, if one of the functionsf, g is continuous atx∈ (a, b) and
the other one is bounded on a neigborhood ofx, then the functionsf, g satisfy
the condition of pseudo-additivity at the pointx.

Proof. a) Let x∈ (a, b) andf, g satisfy the condition (PA’) of pseudo-additivity
at x. If we substituteξ = ξ′ into (PA’), we get that for eachε> 0 there is aδε > 0
such that

∣∣f(ξ)− f(ξ′′)
∣∣ ∣∣g(x′′)−g(x)

∣∣ =
∣∣f(ξ′)− f(ξ′′)

∣∣ ∣∣g(x′′)−g(x)
∣∣ <ε

holds whenever

x′ ∈ (x− δε, x), x′′ ∈ (x, x + δε) and ξ′ = ξ ∈ [x′, x], ξ′′ ∈ [x, x′′]. (5.2.1)

In particular, it has to be

|∆+f(x)| |∆+g(x)|= |∆f(x)| |∆+g(x)|= 0.

Therefore,f has to be continuous atx wheneverg is not continuous from the
right at x. Similarly, by settingξ = ξ′′ in (PA’), we can deduce that ifg is not
continuous from the left atx, thenf has to be continuous atx.
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b) Let x∈ (a, b), x′ ∈ [a, x), x′′ ∈ (x, b], ξ ∈ [x′, x′′], ξ′ ∈ [x′, x], ξ′′ ∈ [x, x′′].
Then

∣∣f(ξ) (g(x′′)− g(x′))− f(ξ′) (g(x)− g(x′))− f(ξ′′) (g(x′′)− g(x))
∣∣

=
∣∣(f(ξ)− f(ξ′)

) (
g(x)− g(x′)

)− (
f(ξ′′)− f(ξ)

) (
g(x′′)− g(x)

)∣∣
≤

∣∣f(ξ)− f(ξ′)
∣∣ ∣∣g(x)− g(x′)

∣∣ +
∣∣f(ξ′′)− f(ξ)

∣∣ ∣∣g(x′′)− g(x)
∣∣

≤ (|f(ξ)− f(x)|+ |f(x)− f(ξ′)|)
∣∣g(x)− g(x′)

∣∣
+

(|f(ξ′′)− f(x)|+ |f(x)− f(ξ)|)
∣∣g(x′′)− g(x)

∣∣,
wherefrom the second statement of the lemma easily follows. 2

5.2.5 Lemma. If f, g : [a, b]→R are such that the integral(δ)
∫ b

a
f dg exists,

then they satisfy the condition of pseudo-additivity at every pointx∈ (a, b).

Proof. Assume that the integral(δ)
∫ b

a
f dg exists and at the same time, (PA’)

does not hold at some pointx∈ (a, b). Then there exists añε> 0 such that for
everyδ > 0 it is possible to find pointsx′, x′′, η′, η′′, η such that

x′ ∈ (x− δ, x), x′′ ∈ (x, x + δ),

η ∈ [x′, x′′], η ′ ∈ [x′, x] and η ′′ ∈ [x, x′′]

and ∣∣f(η) (g(x′′)− g(x′))− f(η ′) (g(x)− g(x′))

−f(η ′′) (g(x′′)− g(x))
∣∣≥ ε̃.





(5.2.2)

Now, let δ > 0 and x′, x′′, η′, η′′, η be given such that (5.2.2) hold and let
P = (α, ξ) with be a partition of[a, b] such that

|α|<δ, αk−1 = x′ <x <x′′ = αk and ξk = η for somek ∈{1, . . . , ν(α)}.
Put α̃ = α∪{x}, ξ̃ = (ξ1, . . . , ξk−1, η

′, η ′′, ξk+1, . . . , ξν(α)) andP̃ = (α̃, ξ̃). Note
that |α̃|<δ. We have

|S(P )−S(P̃ )|=
∣∣f(ξk) [g(αk)− g(αk−1)]− f(η ′) [g(x)− g(αk−1)]

− f(η ′′) [g(αk)− g(x)]
∣∣

=
∣∣f(η) [g(x′′)− g(x′)]− f(η ′) [g(x)− g(x′)]

− f(η ′′) [g(x′′)− g(x)]
∣∣

≥ ε.

This means that the condition (5.1.3) is not satisfied and hence, in view of Theo-
rem5.1.15, the integral(δ)

∫ b

a
f dg does not exist. 2

The following statement is a corollary of Lemmas5.2.4and5.2.5.



108 RIEMANN -STIELTJES INTEGRAL

5.2.6 Theorem.Let f, g : [a, b]→R be such that the integral(δ)
∫ b

a
f dg exists.

Then for eachx∈ (a, b) at least one of the functionsf, g is continuous atx.

We know that the(δ)RS-integral is a special case of the(σ)RS-integral (see
Theorem5.1.7). The following theorem shows that the concept of pseudo-additi-
vity enables us to clarify the relationship between these integrals in the opposite
direction, too.

5.2.7 Theorem.Let f, g : [a, b]→R. Then the integral(δ)
∫ b

a
f dg exists if and

only if the integral(σ)
∫ b

a
f dg exists and the pairf, g satisfies the condition of

pseudo-additivity at every pointx∈ (a, b).

Proof. First, assume that(δ)
∫ b

a
f dg exists. Then, by Theorem5.1.7, (σ)

∫ b

a
f dg

exists as well and has the same value. Furthermore, by Lemma5.2.5, the functions
f, g satisfy the condition of pseudo-additivity at every pointx∈ (a, b).

Conversely, assume that the integral(σ)
∫ b

a
f dg = I exists and the functions

f, g satisfy the condition of pseudo-additivity at every pointx∈ (a, b). Let ε> 0
be given and let the divisionαε = {s0, s1, . . . , sr} of [a, b] be such thatr≥ 2 and

|S(Q)− I|<ε for all partitionsQ = (β,η) of [a, b] such thatβ⊃αε. (5.2.3)

Set

δ∗ := min
{
si− si−1 : i∈{1, . . . , r}}. (5.2.4)

Since the functionsf, g satisfy the condition of pseudo-additivity on(a, b), there
exists aδε ∈ (0, δ∗) such that for everyi∈{1, . . . , r−1}, the inequality

∣∣f(ξ) (g(s′′i )− g(s′i))

−f(ξ′) (g(si)− g(s′i))− f(ξ′′) (g(s′′i )− g(si))
∣∣ <

ε

r− 1
holds whenever

s′i ∈ (si− δε, si), s′′i ∈ (si, si + δε),

ξ ∈ [s′i, s
′′
i ], ξ′ ∈ [s′i, si], ξ′′ ∈ [si, s

′′
i ].





(5.2.5)

Let P = (α, ξ) be a partition of[a, b] and let|α|<δε.

By (5.2.4), for anyj ∈{1, . . . , m} the set(αj−1, αj)∩αε is either a singleton
or empty. Let

U1 =
{
j ∈{1, . . . , ν(α)} : (αj−1, αj)∩αε = ∅},

U2 = {1, . . . , ν(α)} \U1.

Then, for every j ∈U2 there is a uniquei(j)∈{1, . . . , r−1} such that
si(j) ∈ (αj−1, αj). Thus, the cardinality ofU2 does not exceedr− 1.
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Now, setβ = α∪αε. Then

|β|<δε <δ∗ (5.2.6)

and for everyj ∈U1, there exists a uniquek(j)∈{1, . . . , ν(β)} such that

[βk(j)−1, βk(j)] = [αj−1, αj]. (5.2.7)

If j ∈U2, then there exists exactly onè(j)∈{1, . . . , ν(β)− 1} such that

β`(j)−1 = αj−1, β`(j) = si(j), β`(j)+1 = αj. (5.2.8)

Choose a partitionQ = (β, η) of [a, b] such that

ηk(j) = ξj, if j ∈U1. (5.2.9)

Now, we compare the integral sumsS(P ) andS(Q). We have

S(P ) =
∑
j∈U1

f(ξj) (g(αj)− g(αj−1)) +
∑
j∈U2

f(ξj) (g(αj)− g(αj−1)).

Let V1 = {k(j) : j ∈U1}, V2 = {1, . . . , ν(Q)} \V1. Then by (5.2.7)–(5.2.9),

S(Q) =
∑

k∈V1

f(ηk) (g(βk)− g(βk−1)) +
∑

k∈V2

f(ηk) (g(βk)− g(βk−1))

=
∑
j∈U1

f(ηk(j)) (g(βk(j))− g(βk(j)−1)) +
∑

k∈V2

f(ηk) (g(βk)− g(βk−1))

=
∑
j∈U1

f(ξj) (g(αj)− g(αj−1))

+
∑
j∈U2

(
f(η`(j)) (g(β`(j))−g(β`(j)−1)) + f(η`(j)+1) (g(β`(j)+1)− g(β`(j)))

)

=
∑
j∈U1

f(ξj) (g(αj)− g(αj−1))

+
∑
j∈U2

(
f(η`(j)) (g(si(j))− g(αj−1)) + f(η`(j)+1) (g(αj)− g(si(j)))

)
.

Hence

S(P )−S(Q) =
∑
j∈U2

f(ξj) (g(αj)− g(αj−1))

−
∑
j∈U2

(
f(η`(j)) (g(si(j))−g(αj−1)) + f(η`(j)+1) (g(αj)−g(si(j)))

)
,
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i.e., |S(P )−S(Q)| ≤
∑
j∈U2

∣∣Wj

∣∣, where

Wj = f(ξj) (g(αj)− g(αj−1))

− f(η`(j)) (g(si(j))− g(αj−1))− f(η`(j)+1) (g(αj)− g(si(j))).

Let us recall that by (5.2.6) and (5.2.8) we have

[αj−1, αj]⊂ (si(j)− δε, si(j) + δε), ξj ∈ [αj−1, αj],

η`(j) ∈ [αj−1, si(j)], η`(j)+1 ∈ [si(j), αj] for j ∈U2.

By (5.2.5), |Wj|< ε

r− 1
for every j ∈U2, and therefore (using the fact that the

cardinality ofU2 does not exceedr− 1) we have

∣∣S(P )−S(Q)
∣∣≤

∑
j∈U2

∣∣Wj

∣∣ <ε.

Finally, by (5.2.3) and in view of the definition ofβ, we get

|S(P )− I| ≤ |S(P )−S(Q)|+ |S(Q)− I|< 2 ε.

This means that(δ)
∫ b

a
f dg = I. 2

5.2.8 Corollary. Assume that(σ)
∫ b

a
f dg exists and for eachx∈ (a, b), at least

one of the functionsf, g : [a, b]→R is continuous atx, while the other one is
bounded on a neighborhood ofx. Then(δ)

∫ b

a
f dg exists and equals(σ)

∫ b

a
f dg.

Proof. By Lemma5.2.4, the pairf, g satisfies the condition of pseudo-additivity
at every pointx∈ (a, b). By Theorem5.2.7, the integral(δ)

∫ b

a
f dg exists as well.

The equality(δ)
∫ b

a
f dg = (σ)

∫ b

a
f dg follows from Theorem5.1.7. 2

5.2.9 Remark. In particular, if g(x)≡x and f is bounded on[a, b], then the
definitions of the integrals(δ)

∫ b

a
f(x) dx and (σ)

∫ b

a
f(x) dx coincide.

5.2.10 Exercise.Prove the following statement:

If c∈ [a, b], the integrals(δ)
∫ c

a
f dg and (δ)

∫ b

c
f dg exist, andf, g satisfy the

condition of pseudo-additivity atc, then the integral(δ)
∫ b

a
f dg exists and

(δ)

∫ b

a

f dg = (δ)

∫ c

a

f dg + (δ)

∫ b

c

f dg.

Hint: Make use of Theorems5.1.21and5.2.7.
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5.3 Absolute integrability

We now introduce the following notation.

5.3.1 Definition. Let−∞<c <d <∞ andf, g : [c, d]→R. Then we define

Sf∆ g[c, d ]

=
{|S(f, dg, P )−S(f, dg, P ′)| : P, P ′ are partitions of[c, d]

}
}

(5.3.1)

and

ω(Sf∆ g; [c, d ]) = sup Sf∆ g[c, d]. (5.3.2)

The following modifications of the Bolzano-Cauchy condition will be useful.

5.3.2 Theorem.Let f, g : [a, b]→R. Then the following assertions hold:

(i) The integral(δ)
∫ b

a

f dg exists if and only if

for everyε> 0 there is aδε > 0 such that

ν(α)∑
j=1

ω(Sf∆ g; [αj−1, αj]) <ε

holds for all divisionsα of [a, b] such that |α|<δε.





(5.3.3)

(ii) The integral(σ)

∫ b

a

f dg exists if and only if

for every ε> 0 there is a divisionαε of [a, b] such that

ν(α)∑
j=1

ω(Sf∆ g; [αj−1, αj]) <ε

holds for all divisionsα of [a, b] such thatα⊃αε.





(5.3.4)

Proof. We will show that the condition (5.3.3) is necessary and sufficient for the
existence of the(δ)RS-integral.
a) Assume that (5.1.3) holds. Letε̃ > 0, ε = ε̃/2, and letδε be defined by the con-
dition (5.1.3). Let a divisionα of [a, b] be such that|α|<δε. Denotem = ν(α)

and, for everyj ∈{1, . . . , m}, choose partitionsPj = (αj, ξj), P̃j = (α̃j, ξ̃ j ) of
[αj−1, αj] such that

ω(Sf∆ g, [αj−1, αj ]) <S(Pj)−S(P̃j) +
ε

m
. (5.3.5)
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Further, define

β =
m⋃

j=1

αj, η =
m⋃

j=1

ξj, β̃ =
m⋃

j=1

α̃j, η̃ =
m⋃

j=1

ξ̃j.

ThenQ = (β, η) and Q̃ = (β̃, η̃) are partitions of[a, b], and

|β|<δε and |β̃|<δε.

Hence, using (5.1.3) and (5.3.5) we get

m∑
j=1

ω (Sf∆ g; [αj−1, αj ]) <

m∑
j=1

(
S(Pj)−S(P̃j) +

ε

m

)

= S(Q)−S(Q̃) + ε< 2 ε = ε̃.

Sinceε̃ > 0 was arbitrary, it follows that condition (5.3.3) is satisfied.
b) For the proof of the reverse implication, assume that (5.3.3) holds. We will
prove that condition (5.1.3’) is satisfied.

Choose an arbitraryε> 0. Let δε be defined by (5.3.3) and letP = (α, ξ) and
P̃ = (α̃, ξ̃) be partitions of[a, b] such that|α|<δε and α̃⊃α. Set m = ν(P ).
Then for eachj ∈{1, . . . , m} there is a partitionPj = (αj, ξj) of [αj−1, αj] such
that

α̃ =
m⋃

j=1

αj and ξ̃ =
m⋃

j=1

ξj.

In view of the assumption (5.3.3), we get

|S(P )−S(P̃ )| ≤
m∑

j=1

∣∣f(ξj) (g(αj)− g(αj−1))−S(Pj)
∣∣

≤
m∑

j=1

ω(Sf∆ g; [αj−1, αj]) <ε.

Therefore, (5.1.3’) holds.

The equivalence of the condition (5.3.4) with the Bolzano-Cauchy condition for
the existence of the(σ)RS-integral can be proved analogously; the detailed proof
is left as an exercise for the reader. 2

5.3.3 Exercise.Prove the statement of Theorem5.3.2for (σ)RS-integrals.
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5.3.4 Lemma.Let f, g : [a, b]→R and [c, d]⊂ [a, b]. Then

ω[c,d](f) |g(d)− g(c)| ≤ω(Sf∆ g; [c, d])≤ω[c,d](f) vardc g, (5.3.6)

where

ωI(f) = sup
s,t∈I

|f(t)− f(s)|

denotes the modulus of oscillation off over intervalI.

Proof. a) Let α = β = {c, d}, ξ, η ∈ [c, d] and ξ = {ξ}, η = {η}. Then (α, ξ)
and (β,η) are partitions of[c, d], and thus

|f(ξ)− f(η)| |g(d)− g(c)| ∈S(f, dg, [c, d])

and

ω[c,d](f) |g(d)− g(c)| ≤ sup Sf∆ g[c, d] = ω (Sf∆ g; [c, d]).

b) On the other hand, ifQ = (β, η) and Q̃ = (β̃, η̃) are partitions of[c, d] and
α = β ∪ β̃, thenα is a division of[c, d] and

∣∣S(Q)−S(Q̃)
∣∣ =

∣∣∣
ν(α)∑
j=1

(
f(η ′j)− f(η̃′j)

)
(g(αj)− g(αj−1))

∣∣∣,

where η ′j = ηk if [αj−1, αj]⊂ [βk−1, βk] and η̃′j = η̃k if [αj−1, αj]⊂ [β̃k−1, β̃k].
Consequently,

∣∣S(Q)−S(Q̃)
∣∣≤

ν(α)∑
j=1

∣∣f(η ′j)− f(η̃′j)
∣∣ ∣∣g(αj)− g(αj−1)

∣∣

≤ω[c,d](f) V (g, α)≤ω[c,d](f) vardc g,

and finally

ω(Sf∆ g; [c, d]) = sup Sf∆ g[c, d]≤ω[c,d](f) vardc g.

This proves that the inequalities (5.3.6) hold. 2

5.3.5 Remark. If var d
c g =∞, then the second inequality from (5.3.6) is trivial.

The following result indicates the role of bounded functions in the Riemann-
Stieltjes integration theory. It implies that if

∫ b

a
f dg exists, thenf is bounded on

the complement of a finite collection of intervals whereg is constant.
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5.3.6 Theorem.Let f, g : [a, b]→R be such that
∫ b

a
f dg exists. Then there exists

a division α of [a, b] such that for eachj ∈{1, . . . , ν(α)}, f is bounded on
[αj−1, αj], or g is constant on[αj−1, αj].

Proof. Without loss of generality, assume that the integral(σ)
∫ b

a
f dg exists.

Choose an arbitraryε> 0. By Theorem5.3.2, there is a divisionα of [a, b] such
that

ν(β)∑
j=1

ω(Sf∆ g; [βj−1, βj]) <ε

holds for all divisionsβ of [a, b] satisfyingβ⊃α. In particular, we have

ω(Sf∆ g; [c, d]) <ε for each[c, d]⊂ [αj−1, αj] with j ∈{1, . . . , ν(α)}.

For each[c, d]⊂ [αj−1, αj], we also have (cf. the proof of Lemma5.3.4)

|f(ξ)− f(η)| |g(d)− g(c)| ≤ω(Sf∆ g; [c, d]) <ε wheneverξ, η ∈ [c, d].

Observe that if ω[c,d](f) =∞, then the previous inequality necessarily implies
that |g(d)− g(c)|= 0, i.e., g(c) = g(d).

Let us prove that for eachj ∈{1, . . . , ν(α)}, f is bounded on[αj−1, αj], or
g is constant on[αj−1, αj].

If f is unbounded on[αj−1, αj] for a certainj ∈{1, . . . , ν(α)}, then

ω[αj−1,αj ](f) =∞.

Our previous reasoning leads to the conclusion that

g(αj) = g(αj−1) = γ for a certainγ ∈R.

It remains to show thatg(t) = γ for eacht∈ (αj−1, αj). Note that we necessarily
have

ω[αj−1,t](f) =∞ or ω[t,αj ](f) =∞.

The former possibility implies thatg(t) = g(αj−1) = γ, while the latter one im-
plies
g(t) = g(αj) = γ. This completes the proof. 2

5.3.7 Remark. Assume that
∫ b

a
f dg exists. Since the value of the integral does

not change if we change arbitrarily the values off on the intervals whereg is
constant, we see from Theorem5.3.6that it is always possible to find a bounded
function f̃ : [a, b]→R such that

∫ d

c
f dg =

∫ d

c
f̃ dg whenever[c, d]⊂ [a, b].
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The next statement provides other necessary and sufficient conditions for the
existence of both kinds of RS-integrals.

5.3.8 Theorem.Let f :[a, b]→R, g ∈BV([a, b]) and v(x) = varxa g for x∈ [a, b].
Then:
(i) The integral(σ)

∫ b

a
f dg exists if and only if the integral(σ)

∫ b

a
f dv exists.

(ii) If f is bounded on[a, b], then the integral(δ)
∫ b

a
f dg exists if and only if the

integral (δ)
∫ b

a
f dv exists.

Proof. a) For every interval[c, d]⊂ [a, b] we have vardc v = v(d)− v(c). Hence,
by Lemma5.3.4(with g replaced byv ),

ν(α)∑
j=1

ω[αj−1,αj ](f)
(
v(αj)− v(αj−1)

)
=

ν(α)∑
j=1

ω(Sf ∆ v; [αj−1, αj])

holds for any divisionα of [a, b]. Consequently, using Lemma5.3.4for an arbi-
trary divisionα of [a, b] we deduce

ν(α)∑
j=1

ω(Sf ∆ g; [αj−1, αj])≤
ν(α)∑
j=1

ω[αj−1,αj ](f) varαj
αj−1

g

=

ν(α)∑
j=1

ω[αj−1,αj ](f)
(
v(αj)− v(αj−1)

)
=

ν(α)∑
j=1

ω(Sf ∆ v; [αj−1, αj]).

Using Theorem5.3.2, we can now easily prove that for both kinds of the RS-
integral, the existence of

∫ b

a
f dv implies the existence of

∫ b

a
f dg.

b) Assume that the integral(σ)
∫ b

a
f dg exists. We will prove that then the integral

(σ)
∫ b

a
f dv exists as well.

Let ε> 0 be given. By Theorem5.3.2, there exists a divisionβ of [a, b] such
that

ν(α)∑
j=1

ω (Sf∆ g; [αj−1, αj]) <ε (5.3.7)

holds for each its refinementα⊃β. We can also assume that

0≤ varba g−V (g, α) <ε (5.3.8)

holds for every divisionα of [a, b] such thatα⊃β. Finally, according to The-
orem 5.3.6, we can suppose that for eachα⊃β and j ∈{1, . . . , ν(α)}, f is
bounded on[αj−1, αj], or g is constant on[αj−1, αj]. For each such division, de-
note byJα the set of allj ∈{1, . . . , ν(α)} such thatf is bounded on[αj−1, αj].
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Let α be a division of[a, b] such thatα⊃β. Using Lemma5.3.4we obtain

ν(α)∑
j=1

ω(Sf ∆ v; [αj−1, αj]) =
∑
j∈Jα

ω(Sf ∆ v; [αj−1, αj])

≤
∑
j∈Jα

ω[αj−1,αj ](f) varαj
αj−1

g

≤
∑
j∈Jα

ω[αj−1,αj ](f) |g(αj)− g(αj−1)|

+
∑
j∈Jα

ω[αj−1,αj ](f)
(
varαj

αj−1
g− |g(αj)− g(αj−1)|

)

≤
∑
j∈Jα

ω(Sf ∆ g; [αj−1, αj])

+

(
max
j∈Jα

ω[αj−1,αj ](f)

) ∑
j∈Jα

(
varαj

αj−1
g− |g(αj)− g(αj−1)|

)

<ε +

(
max
j∈Jα

ω[αj−1,αj ](f)

) (
varba g−V (g, α)

)

<ε +

(
max
j∈Jβ

ω[βj−1,βj ](f)

)
ε.

By Theorem5.3.2we conclude that the integral(σ)
∫ b

a
f dv exists.

c) It remains to prove that if the functionf is bounded on[a, b], then the existence
of the integral(δ)

∫ b

a
f dg implies the existence of the integral(δ)

∫ b

a
f dv. In this

situation, Theorems5.1.7and5.2.6imply that the integral(σ)
∫ b

a
f dg exists and

the functionsf, g have no common point of discontinuity in(a, b). Moreover,
by Lemma2.3.3, the functionsf, v have no common point of discontinuity in
(a, b), either. Finally, since the integral(σ)

∫ b

a
f dv exists by part b) of this proof,

the existence of the integral(δ)
∫ b

a
f dv follows from Corollary5.2.8. (As g has

a bounded variation on[a, b], the functionsg and v are bounded on[a, b].) 2

5.3.9 Theorem. Assume thatf : [a, b]→R, g ∈BV([a, b]), and the integral∫ b

a
f dg exists. Then the integral

∫ b

a
|f | dg exists as well.

Proof. By Theorem2.1.21and Lemma5.1.13we can restrict ourselves to the
case wheng is nondecreasing on[a, b]. Then vardc g = g(d)− g(c) for each
[c, d]⊂ [a, b]. Thus, due to Lemma5.3.4, the relations

ν(α)∑
j=1

ω(Sf∆ g; [αj−1, αj]) =

ν(α)∑
j=1

ω[αj−1,αj ](f)
(
g(αj)− g(αj−1)

)

and
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ν(α)∑
j=1

ω(S|f |∆ g; [αj−1, αj]) =

ν(α)∑
j=1

ω[αj−1,αj ](|f |)
(
g(αj)− g(αj−1)

)

hold for all divisionsα of [a, b]. On the other hand,
∣∣|f(x)| − |f(y)|

∣∣≤ |f(x)− f(y)| for all x, y ∈ [a, b].

Thus we haveω[c,d ](|f |)≤ω[c,d ](f) for any [c, d ]⊂ [a, b] and, therefore,

ν(α)∑
j=1

ω(S|f |∆ g; [αj−1, αj]) =

ν(α)∑
j=1

ω[αj−1,αj ](|f |)
(
g(αj)− g(αj−1)

)

≤
ν(α)∑
j=1

ω[αj−1,αj ](f)
(
g(αj)− g(αj−1)

)
=

ν(α)∑
j=1

ω (Sf∆ g; [αj−1, αj]).

The statement of the theorem now follows from Theorem5.3.2. 2

The next assertion is a direct corollary of Lemma5.1.11and Theorems5.3.8
and5.3.9.

5.3.10 Corollary. Let f : [a, b]→R, g ∈BV([a, b]), and v(x) = varxa g for
x∈ [a, b]. Then:

(i) If the integral (σ)
∫ b

a
f dg exists, then the integral(σ)

∫ b

a
|f | dv exists as well

and
∣∣∣(σ)

∫ b

a

f dg
∣∣∣≤ (σ)

∫ b

a

|f | dv≤‖f‖∞ varbag.

(ii) If the integral(δ)
∫ b

a
f dg exists and the functionf is bounded on[a, b], then

the integral(δ)
∫ b

a
|f | dv exists as well and

∣∣∣(δ)
∫ b

a

f dg
∣∣∣≤ (δ)

∫ b

a

|f | dv≤‖f‖∞ varbag.

5.4 Substitution

All statements in this section hold in the same form for both kinds of the RS-
integral. The next result is a fairly straightforward consequence of Definition5.3.1.

5.4.1 Lemma. If the integral
∫ b

a
f dg exists, then the inequality

∣∣∣∣
∫ b

a

f dg−S(P )

∣∣∣∣≤
ν(P )∑
j=1

ω(Sf∆ g; [αj−1, αj]) (5.4.1)

holds for any partitionP = (α, ξ) of [a, b].
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Proof. Let ε> 0 and a partitionP = (α̃, ξ̃) of [a, b] be given. For both kinds of
the RS-integral, we can choose a partitionP̃ = (α, ξ) of [a, b] such thatα̃⊃α
and

∣∣∣
∫ b

a

f dg−S(P̃ )
∣∣∣<ε.

Sinceα̃ is a refinement ofα, we can split it so that

α̃ =
m⋃

j=1

α̃j, where α̃j is a division of[αj−1, αj] for j ∈{1, . . . ,m}.

Similarly, ξ̃ = {ξ̃ 1 , ξ̃ 2 , . . . , ξ̃m}, whereξ̃ j are sets such that

Pj = (α̃j, ξ̃j) are partitions of[αj−1, αj] for j ∈{1, . . . , m}.
We thus have

∣∣∣∣
∫ b

a

f dg−S(P )

∣∣∣∣≤
∣∣∣∣
∫ b

a

f dg−S(P̃ )

∣∣∣∣ +
∣∣∣S(P̃ )−S(P )

∣∣∣

<ε +
m∑

j=1

∣∣∣f(ξj) (g(αj)− g(αj−1))−S(P̃j)
∣∣∣

≤ ε +
m∑

j=1

ω(Sf∆ g; [αj−1, αj]).

Sinceε> 0 is arbitrary, it follows that (5.4.1) holds. 2

5.4.2 Corollary. If the integral
∫ b

a
f dg exists and[c, d]⊂ [a, b], then

∣∣∣∣
∫ d

c

f dg− f(ξ) (g(d)− g(c))

∣∣∣∣≤ω(Sf∆ g; [c, d])

holds for everyξ ∈ [c, d].

The following substitution theorem is another corollary of Lemma5.4.1.

5.4.3 Theorem(SUBSTITUTION THEOREM). Let f, g, h : [a, b]→R be such
that f is bounded and

∫ b

a
g dh exists. Then one of the integrals

∫ b

a

f(x) d

(∫ x

a

g dh

)
and

∫ b

a

fg dh

exists if and only if the other exists. In this case we have
∫ b

a

f(x) d

(∫ x

a

g dh

)
=

∫ b

a

fg dh. (5.4.2)
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Proof. Consider the functionw : [a, b]→R given by

w(x) =

∫ x

a

g dh, x∈ [a, b].

For any partitionP = (α, ξ) of [a, b], we have

|S(fg, dh, P )−S(f, dw,P )|

=

∣∣∣∣∣∣

ν(P )∑
j=1

f(ξj) g(ξj) (h(αj)−h(αj−1))−
ν(P )∑
j=1

f(ξj) (w(αj)−w(αj−1))

∣∣∣∣∣∣

≤
ν(P )∑
j=1

|f(ξj)|
∣∣∣∣∣g(ξj) (h(αj)−h(αj−1))−

∫ αj

αj−1

g dh

∣∣∣∣∣

≤‖f‖∞




ν(P )∑
j=1

∣∣∣∣∣g(ξj) (h(αj)−h(αj−1))−
∫ αj

αj−1

g dh

∣∣∣∣∣


 .

Now, Corollary5.4.2yields

∣∣S(fg, dh, P )−S(f, dw, P )
∣∣≤‖f‖∞

ν(P )∑
j=1

ω(Sg∆ h; [αj−1, αj]),

and the proof of (5.4.2) is completed by using Theorem5.3.2. 2

Settingh(t)≡ t in Theorem5.4.3, we get the following statement.

5.4.4 Corollary. If f : [a, b]→R is bounded,g : [a, b]→R is Riemann integrab-
le, andp(x) =

∫ x

a
g(t) dt, then one of the integrals

∫ b

a

f dp and
∫ b

a

f(x) g(x) dx

exists if and only if the other exists. In this case, we have

∫ b

a

f dp =

∫ b

a

f(x) g(x) dx.

5.4.5 Theorem(SECOND SUBSTITUTION THEOREM).
Assume thatφ : [c, d]→R is continuous, strictly monotone and maps the inter-

val [c, d] onto [a, b]. Then for arbitrary functionsf, g : [a, b]→R, the following
statement holds:

If
∫ b

a

f(x) dg(x) exists, then
∫ d

c

f(φ(x)) dg(φ(x)) exists as well,
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and the relation

±
∫ d

c

f(φ(x)) dg(φ(x)) =

∫ b

a

f(x) dg(x) (5.4.3)

holds with the plus sign ifφ is increasing, and with the minus sign ifφ is decreas-
ing.

Proof. Assume, for example, thatφ is decreasing. Thenb = φ(c) and a = φ(d).
For a given partitionP = (α, ξ) of the interval[c, d], set

β ν(P )−j = φ(αj) and η ν(P )−j = φ(ξj) for j ∈{1, . . . , ν(P )}.

Then Q = (β,η), where β = {β0, β1, . . . , βν(P )}, η = {η1, η2, . . . , ην(P )}, is
a partition of [a, b]. We write β = φ(α), η = φ(ξ), and Q = φ(P ). Obviously,
if α⊃α′, then alsoφ(α)⊃φ(α′). Since φ is uniformly continuous on[c, d],
we have

lim
|α|→0

|φ(α)|= 0.

Moreover,

ν(P )∑
j=1

f(φ(ξj))
(
g(φ(αj))− g(φ(αj−1)

)
=−

ν(Q)∑
i=1

f(ηj)
(
g(βj)− g(βj−1)

)

holds for every partitionP = (α, ξ) of [c, d]. This fact easily implies the state-
ment of the theorem; we leave the details to the reader. The case whenφ is
increasing can be handled in a similar way. 2

The following theorem is yet another variant of the substitution theorem. Its
proof is left as an exercise for the reader.

5.4.6 Theorem.Let φ : [a, b]→ [φ(a), φ(b)] be increasing and continuous, and let
ψ : [φ(a), φ(b)]→ [a, b] be the inverse ofφ. Moreover, let an arbitrary function
f : [a, b]→R be given. Then, if one of the integrals

∫ b

a

f(x) dx,

∫ φ(b)

φ(a)

f(ψ(x)) dψ(x)

exists, the other exists as well, and

∫ b

a

f(x) dx =

∫ φ(b)

φ(a)

f(ψ(x)) dψ(x).

5.4.7 Exercise.Prove Theorem5.4.6for both kinds of the RS-integral.
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5.5 Integration by parts

The following statement is a generalization of the classical integration by parts
formula for the Riemann integral (see Exercise5.5.3).

5.5.1 Theorem(INTEGRATION BY PARTS). If one of the integrals
∫ b

a
f dg and∫ b

a
g df exists, then the other exists as well, and we have

∫ b

a

f dg +

∫ b

a

g df = f(b)g(b)− f(a)g(a). (5.5.1)

Proof. a) Let an arbitrary partitionP = (α, ξ) of [a, b] be given. Setm = ν(P ).
Rearranging the terms in the sumS(f, dg, P ), we get

S(f, dg, P ) = f(ξ1) (g(α1)− g(a)) + f(ξ2) (g(α2)− g(α1))

+ · · ·+ f(ξm) (g(b)− g(αm−1))

=−f(a) g(a)− (f(ξ1)− f(a)) g(a)− (f(ξ2)− f(α1)) g(α1)

− (f(α1)− f(ξ1)) g(α1)− · · ·− (f(ξm)− f(αm−1)) g(αm−1)

− (f(αm−1)− f(ξm−1)) g(αm−1)− (f(b)− f(ξm)) g(b) + f(b)g(b)

= f(b) g(b)− f(a) g(a)−S(g, df,Q),

where the partitionQ = (β,η) of [a, b] is such that

β = {a, ξ1, α1, ξ2, α2, . . . , αm−1, ξm, b},
η = {a, α1, α1, α2, α2, . . . , αm−1, αm−1, b}.

Clearly,β is a refinement ofα. 1

b) Assume that the integral(σ)
∫ b

a
g df exists and letε> 0 be given. Choose

a divisionβε of [a, b] such that
∣∣∣∣S(g, df,Q)− (σ)

∫ b

a

g df

∣∣∣∣<ε

holds for all partitionsQ = (β,η) of [a, b] such thatβ⊃βε.

Let P = (α, ξ) be an arbitrary partition of[a, b] such thatα⊃βε. By the first
part of the proof there is a partitionQ = (β,η) of [a, b] such that

S(f, dg, P )− f(b) g(b) + f(a) g(a) + (σ)

∫ b

a

g df

= (σ)

∫ b

a

g df −S(g, df, Q),

1Of course, if ξj = αj−1 or ξj = αj for some j, we have to leave outξj from β and the
corresponding tag fromη.
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while β⊃α and hence alsoβ⊃ βε. Consequently,
∣∣∣∣S(f, dg, P )− f(b)g(b) + f(a)g(a) + (σ)

∫ b

a

g df

∣∣∣∣

=

∣∣∣∣(σ)

∫ b

a

g df −S(g, df,Q)

∣∣∣∣<ε.

This means that the integral(σ)
∫ b

a
f dg exists and (5.5.1) holds.

By interchanging the roles off andg, we immediately see that if(σ)
∫ b

a
f dg

exists, then(σ)
∫ b

a
g df exists as well and (5.5.1) holds.

c) Also the statement of the theorem for(δ)RS-integrals follows easily from the
relation (5.5.1); the details are left to the reader. 2

5.5.2 Exercise.Prove Theorem5.5.1for the (δ)RS-integral.

5.5.3 Exercise.The classical integration by parts theorem for the Riemann inte-
gral reads as follows:Assume thatf, g : [a, b]→R are Riemann integrable and
let F, G : [a, b]→R be given by

F (x) =

∫ x

a

f, G(x) =

∫ x

a

g for x∈ [a, b].

If one of the integrals
∫ b

a
f G and

∫ b

a
F g exists, then the other exists as well, and

we have
∫ b

a

f G +

∫ b

a

F g = F (b) G(b)−F (a) G(a).

Show that this result is a consequence of Theorem5.5.1.
Hint: Use Corollary5.4.4.

5.6 Uniform convergence and existence of the inte-
gral

All statements in this section except Theorem5.6.4and Exercise5.6.5hold in the
same form for both kinds of the RS-integral.

5.6.1 Theorem. Assume thatg ∈BV([a, b]), f : [a, b]→R is bounded,
fn : [a, b]→R, n∈N, are such that the integral

∫ b

a
fn dg exists for everyn∈N,

and

lim
n→∞

‖fn− f‖∞ = 0. (5.6.1)
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Then the integral
∫ b

a
f dg exists as well and

lim
n→∞

∫ b

a

fn dg =

∫ b

a

f dg. (5.6.2)

Proof. If var b
ag = 0, then, by Lemma2.1.16, g is constant on[a, b] and the state-

ment of the theorem is obvious. Therefore, assume that varb
ag > 0.

Let ε> 0 be given. According to (5.6.1), we can choosenε ∈N such that

‖fn− f‖∞ <
ε

varbag
and ‖fn‖∞ < ‖f‖∞ + 1 for all n≥nε. (5.6.3)

Furthermore, Lemma5.1.11(i) implies that

∣∣∣∣
∫ b

a

fn dg

∣∣∣∣≤‖fn‖∞varbag≤ (‖f‖∞ + 1) varbag for all n≥nε.

Hence, there are an increasing subsequence{nk} of N andI ∈R such that

lim
k→∞

∫ b

a

fnk
dg = I.

In particular, there exists akε ∈N such that

nkε ≥nε and

∣∣∣∣
∫ b

a

fnkε
dg− I

∣∣∣∣ <ε. (5.6.4)

Now, let αε be a division of[a, b] such that

∣∣∣S(fnkε
, dg, P )−

∫ b

a

fnkε
dg

∣∣∣ <ε

wheneverP = (α, ξ) ia a partition of [a, b] such thatα⊃αε.





(5.6.5)

Sincenkε ≥nε, it follows from (5.6.3) that

∣∣S(f, dg, P )−S(fnkε
, dg, P )

∣∣≤‖f − fnkε
‖∞ varbag < ε

for every partitionP = (α, ξ) of [a, b]. Further, using (5.6.4)–(5.6.5), we deduce
that

∣∣S(f, dg, P )− I
∣∣≤

∣∣S(f, dg, P )−S(fnkε
, dg, P ))

∣∣

+

∣∣∣∣S(fnkε
, dg, P )−

∫ b

a

fnkε
dg

∣∣∣∣ +

∣∣∣∣
∫ b

a

fnkε
dg− I

∣∣∣∣< 3 ε
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for each partitionP = (α, ξ) of [a, b] such thatα⊃αε. Thus,

∫ b

a

f dg = I.

Finally, since by Lemmas5.1.11and5.1.13we have
∣∣∣∣
∫ b

a

fn dg−
∫ b

a

f dg

∣∣∣∣≤‖fn− f‖∞ varbag,

equality (5.6.2) follows from our assumption (5.6.1). This proves the statement
for the (σ)RS-integral. The proof for the(δ)RS-integral is analogous and is left
to the reader. 2

5.6.2 Exercise.Prove the statement of Theorem5.6.1for (δ)RS-integrals.

5.6.3 Theorem.Let f ∈C([a, b]) and g ∈BV([a, b]). Then both the integrals∫ b

a
f dg and

∫ b

a
g df exist.

Proof. By Theorems2.1.21, 5.1.7, 5.5.1 and Lemma5.1.13, it is sufficient to
prove the existence of the integral(δ)

∫ b

a
f dg in the case wheng is nondecreasing

on [a, b].

Let ε> 0 be given. If g(b) = g(a), then g is constant on[a, b] and hence
(δ)

∫ b

a
f dg = 0. Thus, we can assume thatg(b)− g(a) > 0. Next, since every

function continuous on a compact interval is also uniformly continuous on this
interval, we can find aδε > 0 such that

|f(x)− f(y)|< ε

g(b)− g(a)
for all x, y ∈ [a, b] such that|x− y|< δε. (5.6.6)

Now, consider two partitionsP = (α, ξ), Q = (β, η) of [a, b] such that|α|< δε

andβ⊃α. We will show that|S(P )−S(Q)|<ε. By Theorem5.1.15and Exer-
cise5.1.16(ii), this will guarantee the existence of the integral(δ)

∫ b

a
f dg.

Denotem = ν(α). Sinceβ⊃α, the elements ofβ can be forj ∈{1, . . . , m}
and i∈{1, . . . nj} denoted byβj

i , where αj−1 = βj
0 < · · ·<βj

nj
= αj. The tag

corresponding to[βj
i−1, β

j
i ] will be denoted byηj

i . Then

S(P ) =
m∑

j=1

f(ξj) (g(αj)− g(αj−1)) =
m∑

j=1

f(ξj)

nj∑
i=1

(g(βj
i )− g(βj

i−1))

and

|S(P )−S(Q)| ≤
m∑

j=1

nj∑
i=1

|f(ξj)− f(ηj
i )| (g(βj

i )− g(βj
i−1)).
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Since |ξj − ηj
i |< |α|<δε for all j ∈{1, . . . , m} and i∈{1, . . . , nj}, it follows

from (5.6.6) that

|S(P )−S(Q)|< ε

g(b)− g(a)

m∑
j=1

nj∑
i=1

(g(βj
i )− g(βj

i−1))

=
ε

g(b)− g(a)
(g(b)− g(a)) = ε.

This completes the proof. 2

5.6.4 Theorem.(i) If f ∈BV([a, b]) is left-continuous on(a, b], then the inte-
grals

(σ)

∫ b

a

f dg and (σ)

∫ b

a

g df

exist for everyg ∈G([a, b]) which is right-continuous on[a, b).

(ii) If f ∈BV([a, b]) is right-continuous on[a, b), then the integrals

(σ)

∫ b

a

f dg and (σ)

∫ b

a

g df.

exist for everyg ∈G([a, b]) which is left-continuous on(a, b].

Proof. In both cases, it suffices (thanks to Theorem5.5.1) to prove the existence
of the integral(σ)

∫ b

a
g df.

Let g ∈G([a, b]) be right-continuous on[a, b), i.e., g ∈GR([a, b]). By Lem-
mas4.2.6and4.2.8we have

GR([a, b]) = cl(GR([a, b])∩ S([a, b])) = cl(Lin
(
{χ[τ,b] : τ ∈ [a, b]

}
)).

Thus, by Lemma5.1.13and Theorem5.6.1, it is sufficient to prove that the inte-
gral (σ)

∫ b

a
g df exists if g = χ[τ,b] for someτ ∈ [a, b].

If g = χ[a,b], i.e., τ = a and g = 1 on [a, b], then (σ)
∫ b

a
g df = f(b)−f(a)

(see Exercise5.1.6(ii)). Therefore, we may assume thatτ ∈ (a, b] and g = χ[τ,b].
We will show that

(σ)

∫ b

a

g df = f(b)− f(τ). (5.6.7)

By Remark5.1.8we can restrict ourselves to partitionsP = (α, ξ) of [a, b] such
that τ ∈α. For every such partitionP, let k(P ) denote the unique index
k ∈{1, . . . , ν(P )} such thatτ = αk. Thenαk(P )−1≤ ξk(P )≤αk(P ) = τ, and

S(P ) =

{
f(b)− f(τ) if ξk(P ) <τ,

f(b)− f(αk(P )−1) if ξk(P ) = τ.
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Consequently,

∣∣S(P )− (
f(b)− f(τ)

)∣∣ =

{
0 if ξk(P ) <τ,

|f(τ)− f(αk(P )−1)| if ξk(P ) = τ.
(5.6.8)

Thanks to the continuity of the functionf at τ from the left, we can choose
a divisionαε of [a, b] containing the pointτ and such that

|f(τ)− f(αk(P )−1)|<ε

holds for anyα⊃αε. By (5.6.8), we have
∣∣S(P )− (

f(b)− f(τ)
)∣∣ <ε

for all partitionsP = (α, ξ) of [a, b] such thatα⊃αε, which implies (5.6.7) and
the proof of the statement (i) is complete.

The second statement can be proved similarly. 2

5.6.5 Exercises.(i) For both kinds of the RS-integral, prove the following as-
sertion: If f∈BV([a, b]) is continuous, then the integral

∫ b

a
f dg exists for every

g ∈G([a, b]).

(ii) Give a detailed proof of the statement (ii) in Theorem5.6.4.

5.6.6 Remark. Let us mention (without proof) another interesting existence re-
sult. It was proved in 1936 by L. C. Young, one of the pioneers of integration
theory (see [156]): Assume thatf : [a, b]→R and g : [a, b]→R satisfy

|f(x)− f(y)| ≤K |x− y|α and |g(x)− g(y)| ≤L |x− y|β for x, y ∈ [a, b],

whereK, L∈ [0,∞), α, β ∈ (0,∞), α + β > 1. Then(δ)
∫ b

a
f dg exists.

5.7 Pointwise convergence

In order to derive a convergence theorem for integrals
∫ b

a
fn dg when the sequence

{fn} is not uniformly convergent, we introduce the following concepts of the
Darboux upper and lower integrals.

5.7.1 Definition. Let g : [a, b]→R be nondecreasing. For a functionf :[a, b]→R
and a divisionα of the interval[a, b], put

S(f, dg, α) =

ν(α)∑
j=1

(
sup

x∈[αj−1,αj ]

f(x)

)
(g(αj)− g(αj−1)),

S(f, dg, α) =

ν(α)∑
j=1

(
inf

x∈[αj−1,αj ]
f(x)

)
(g(αj)− g(αj−1)).
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Furthermore, we define theupper integralof f with respect tog as

∫ b

a

f dg = inf
{

S(f, dg, α) : α is a division of [a, b]
}

,

and thelower integralof f with respect tog as
∫ b

a

f dg = sup
{

S(f, dg, α) : α is a division of [a, b]
}

.

If the functionsf, g are fixed, we write simplyS(α) instead ofS(f, dg, α)
andS(α) instead ofS(f, dg, α).

5.7.2 Lemma.Let f : [a, b]→R and letg : [a, b]→R be nondecreasing. Then

∫ b

a

f dg =

∫ b

a

f dg = I ∈R (5.7.1)

if and only if (σ)
∫ b

a
f dg = I.

Proof. a) Assume that (5.7.1) holds. Sinceg is nondecreasing, it follows directly
from Definition5.7.1that

S(α)≤S(α, ξ)≤S(α) for all partitions (α, ξ) of [a, b],

and

S(α̃)≥S(α) and S(α̃)≤S(α) if α̃⊃α.

Using the first fact, it is not difficult to verify that for eachk ∈N there is a division
αk of [a, b] such that the inequalities

I − 1

k
< S(αk)≤S(αk, ξk)≤S(αk) <I +

1

k

hold for whenever(αk, ξk) is a partition of [a, b]. For a givenε> 0, choose
kε > 1

ε
and setαε = αkε . Then

I − ε <S(αkε)≤S(α)≤S(α, ξ)≤S(α)≤S(αkε) <I + ε

wheneverα⊃αε and(α, ξ) is a partition of[a, b]. It follows that (σ)
∫ b

a
f dg =I.

b) Assume that(σ)
∫ b

a
f dg exists. Letε> 0 be given. By Theorem5.1.15there

exists a divisionα such that the inequality
∣∣S(α, ξ)−S(α,η)

∣∣< ε
2
, or

∣∣∣∣∣∣

ν(α)∑
j=1

(
f(ξj)− f(ηj)

)
(g(αj)− g(αj−1))

∣∣∣∣∣∣
<

ε

2
,
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holds for all sets of tagsξ,η of the division α. Passing to the supremum and
infimum on every interval[αj−1, αj], we get

0≤S(α)−S(α)

=

ν(α)∑
j=1

(
sup

x∈[αj−1,αj ]

f(x)− inf
x∈[αj−1,αj ]

f(x)

)
(g(αj)− g(αj−1))≤ ε

2
<ε.

Consequently,

∫ b

a

f dg≤S(α) < S(α) + ε≤
∫ b

a

f dg + ε

and finally also

0≤
∫ b

a

f dg−
∫ b

a

f dg < ε.

Sinceε> 0 was arbitrary, we conclude that

∫ b

a

f dg =

∫ b

a

f dg.

By the first part of the proof, both the integrals are equal to(σ)
∫ b

a
f dg. 2

5.7.3 Remark. If

∫ b

a

f dg =

∫ b

a

f dg ∈R,

then the common value of both the integrals is called theDarboux-Stieltjes inte-
gral. Lemma5.7.2implies that this integral is in fact equivalent to the(σ)RS-
integral.

Our next goal is to prove two main results of this section, Osgood’s bounded
convergence theorem and Helly’s convergence theorem. To this aim, we need the
following statement known as Arzelà’s lemma. Its proof is pretty long and can be
found e.g. in [55], Lemma II.15.8.

5.7.4 Lemma(ARZELÀ ’ S LEMMA ). For everyk ∈N, let {Jk,j : j ∈Uk} be a fi-
nite collection of intervals in[a, b]. Assume there exists aC > 0 such that for
every k ∈N, the length of the union

⋃
j∈Uk

Jk,j is greater thanC. Then there
exist infinite sequences{k`} and {j`} such thatj` ∈Uk`

for every `∈N and⋂
`∈N Jk`,j`

6= ∅.
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5.7.5 Theorem(OSGOOD’ S CONVERGENCETHEOREM). Assume that the fun-
ction f : [a, b]→R and the sequence{fn} of functions defined on[a, b] satisfy

lim
n→∞

fn(x) = f(x) for x∈ [a, b]

and

|fn(x)| ≤M <∞ for x∈ [a, b] and n∈N.





(5.7.2)

Further, let g ∈BV([a, b]) be such that the integrals
∫ b

a
f dg and

∫ b

a
fn dg exist

for everyn∈N. Then

lim
n→∞

∫ b

a

fn dg =

∫ b

a

f dg. (5.7.3)

Proof. By Corollary 5.3.10, the integral
∫ b

a
|fn(x)− f(x)| d(varxa g) exists for

everyn∈N and the inequality
∣∣∣∣
∫ b

a

fn(x) dg(x)−
∫ b

a

f(x) dg(x)

∣∣∣∣≤
∫ b

a

|fn(x)− f(x)| d(varxa g) (5.7.4)

holds. Therefore, it is sufficient to prove that the theorem holds if the functions
fn are non-negative,f = 0 andg is nondecreasing. Under these assumptions, we
need to prove that

lim
n→∞

∫ b

a

fn dg = 0. (5.7.5)

Without loss of generality, assume thatg is nonconstant (otherwise the statement
is obvious).

Suppose that (5.7.5) does not hold. Then, due to Lemma5.7.2, there is an
ε> 0 and a subsequence{fnk

} such that

∫ b

a

fnk
dg =

∫ b

a

fnk
dg > ε for all k ∈N.

By Definition5.7.1, this means that for everyk ∈N there is a divisionαk of [a, b]
such that

Sk(α
k) >ε, where Sk(α

k) = S(fnk
, dg, αk).

Further, putmk = ν(αk) and

φk,j = inf
x∈[αk

j−1,αk
j ]

fnk
(x) for k ∈N and j ∈{1, . . . , mk}.
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For a givenη > 0, let Uk stand for the set of indicesj such thatφk,j >η, while
Vk = {1, . . . , mk} \Uk. Obviously,

M
∑
j∈Uk

(g(αk
j )− g(αk

j−1)) + η
∑
j∈Vk

(g(αk
j )− g(αk

j−1)) >ε

or

M
∑
j∈Uk

(g(αk
j )− g(αk

j−1)) >ε− η(g(b)− g(a)).

For η =
ε

2(g(b)− g(a))
we get

∑
j∈Uk

(g(αk
j )− g(αk

j−1)) >
ε

2 M
> 0.

Note that the intervalsJk,j = [g(αk
j−1), g(αk

j )], j ∈Uk, are nonoverlapping, and
thus the length of their union is

∑
j∈Uk

∣∣Jk,j

∣∣>
ε

2 M
> 0.

Hence, by Arzel̀a’s lemma, there exist a pointy0 and sequences{k`} and {j`}
such thatj` ∈Uk`

for every `∈N andy0 ∈
⋂

`∈N Jk`,j`
. This gives

y0 ∈ [g(αk`
j`−1), g(αk`

j `
)] for every `∈N.

Sinceg is nondecreasing on[a, b], there exists a pointx0 ∈ [a, b] such that

y0 ∈ [g(x0−), g(x0+)], x0 ∈ [αk`
j`−1, α

k`
j`

] and j` ∈Uk`
for every`∈N.

By the definition of the setsUk it follows that fnk`
(x0) >η for every`∈N. How-

ever, this contradicts our assumption thatlimn→∞ fn(x) = 0. Thus, (5.7.5) is true.
2

The next assertion is complementary to Osgood’s theorem.

5.7.6 Theorem(HELLY ’ S CONVERGENCETHEOREM). Let f :[a, b]→R be con-
tinuous and letg : [a, b]→R, {gn}⊂BV([a, b]) and γ ∈ [0,∞) are such that

varba gn≤ γ <∞ for all n∈N and lim
n→∞

gn(x) = g(x) for all x∈ [a, b].

Thenvarbag≤ γ and

lim
n→∞

∫ b

a

f dgn =

∫ b

a

f dg.



KURZWEIL-STIELTJES INTEGRAL 131

Proof. By Theorem2.7.2we have varba g≤ γ; by Theorem5.6.3, all the integrals∫ b

a
f dgn, n∈N, and

∫ b

a
f dg exist. Let ε> 0 be given. The continuity off

implies that there is a divisionα of [a, b] such that

|f(x)− f(y)|< ε

3 γ

for all x, y ∈ [αj−1, αj] and j ∈{1, . . . , ν(α)}.



 (5.7.6)

Let ξ = (α1, α2, . . . , αm). Then for eachn∈N we have
∫ b

a

f dgn−S(f, dgn, (α, ξ))

=

ν(α)∑
j=1

(∫ αj

αj−1

f(x) dgn(x)− f(αj)

∫ αj

αj−1

dgn(x)

)

=

ν(α)∑
j=1

∫ αj

αj−1

(
f(x)− f(αj)

)
dgn(x).

Using (5.7.6) and Lemma5.1.11, we get
∣∣∣∣
∫ b

a

f(x) dgn(x)−S(f, dgn, (α, ξ))

∣∣∣∣≤
ε

3 γ

ν(α)∑
j=1

varαj
αj−1

gn≤ ε

3 γ
γ =

ε

3
.

Similarly, we can derive the following inequality with the functiongn replaced
by g :

∣∣∣∣
∫ b

a

f(x) dg(x)−S(f, dg, (α, ξ))

∣∣∣∣ <
ε

3
.

Sincegn(x)→ g(x) for everyx∈ [a, b], it is clear that

lim
n→∞

∣∣S(f, dgn, (α, ξ))−S(f, dg, (α, ξ))
∣∣ = 0.

Thus, there exists ann0 ∈N such that
∣∣S(f, dgn, (α, ξ))−S(f, dg, (α, ξ))

∣∣<
ε

3
for n≥n0.

Using the last three inequalities we finally get
∣∣∣∣
∫ b

a

f dgn−
∫ b

a

f dg

∣∣∣∣≤
∣∣∣∣
∫ b

a

f dgn−S(f, dgn, (α, ξ))

∣∣∣∣
+

∣∣S(f, dgn, (α, ξ))−S(f, dg, (α, ξ))
∣∣

+

∣∣∣∣S(f, dg, (α, ξ))−
∫ b

a

f dg

∣∣∣∣< ε

for all n≥n0, which implies the desired equality

lim
n→∞

∫ b

a

f dgn =

∫ b

a

f dg. 2
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5.8 Consequences of RS-integrability

In this section we investigate some consequences of the existence of the integral∫ b

a
f dg. To prove the first result, we need the following two auxiliary lemmas.

5.8.1 Lemma. If an≥ 0 for all n∈N and
∑∞

n=1 an =∞, then there exists a se-
quence{cn} such that

cn > 0 for all n∈N, lim
n→∞

cn = 0 and
∞∑

n=1

cn an =∞. (5.8.1)

Proof. The sequence{sn}=
{ ∑n

k=1 ak

}
is nondecreasing and

lim
n→∞

sn =∞. (5.8.2)

In particular, for sufficiently largen (n≥n0), all sn are positive. Therefore, we
can define

cn =

{
1 if n< n0,
1
sn

if n≥n0.

Obviously, cn > 0 for every n∈N and limn→∞ cn = 0. On the other hand, we
have

m∑

k=n

ck ak =
m∑

k=n

ak

sk

≥ 1

sm

m∑

k=n

ak =
1

sm

(
m∑

k=1

ak−
n−1∑

k=1

ak

)
= 1− sn−1

sm

for all m,n∈N such thatm> n≥n0. In view of (5.8.2), for eachn∈N there is
an mn >n such thatsn−1

smn
< 1

2
. Consequently,

mn∑

k=n

ck ak >
1

2
.

This means that (5.8.1) is true. 2

5.8.2 Lemma.Let g : [a, b]→R be given.

(i) If

x0 ∈ (a, b] and varx0
x g =∞ for every x∈ [a, x0), (5.8.3)

then there exists an increasing sequence{xk} of points in[a, x0) such that

lim
k→∞

xk = x0 and
∞∑

k=1

|g(xk+1)− g(xk)|=∞. (5.8.4)
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(ii) If

x0 ∈ [a, b) and varxx0
g =∞ for every x∈ (x0, b], (5.8.5)

then there exists a decreasing sequence{xk} of points in(x0, b] such that
(5.8.4) is true.

Proof. i) Assume (5.8.3). First, we will prove that

sup{varxyg : x∈ (y, x0)}=∞ for eachy ∈ [a, x0). (5.8.6)

Assume the opposite. In particular, let there beM ∈ [0,∞) and y ∈ [a, x0) such
that

sup{varxyg : x∈ (y, x0)}≤M. (5.8.7)

Set M∗ = M + |g(x0)− g(y)|. Then, due to (5.8.3), we can choose a division
{y0, y1, . . . , ym} of the interval[y, x0] such that

m∑
j=1

|g(yj)− g(yj−1)|> 3 M∗.

Since

|g(ym)− g(ym−1)|= |g(x0)− g(ym−1)|
≤ |g(x0)− g(y)|+ |g(y)− g(ym−1)| ≤M∗,

we have

m−1∑
j=1

|g(yj)− g(yj−1)|> 2 M∗,

and thus varym−1
y g > 2 M∗, which contradicts (5.8.7). Hence, (5.8.6) is true.

Now, let us construct the desired sequence. Setu1 = a and chooseu2 ∈ (a, x0)
such thatu2 >x0− 1 and varu2

u1
g > 1. If u1, u2, . . . , u` ∈ [a, x0) are already de-

fined and satisfy

u` ∈ (u`−1, x0)∩ (x0− 1

`− 1
, x0) and varu`

u`−1
g > 1,

find u`+1 such that

u`+1 ∈ (u`, x0)∩ (x0− 1

`
, x0) and varu`+1

u`
g > 1.
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The sequence{u`} is increasing and

lim
`→∞

u` = x0. (5.8.8)

By the definition of variation, for everỳ∈N there is a division

α` = {α`
0, α

`
1, . . . , α

`
m`
}

of the interval[u`, u`+1] such that
m∑̀
j=1

|g(α`
j)− g(α`

j−1)|> 1

holds. Then
∞∑

`=1

(
m∑̀
j=1

|g(α`
j)− g(α`

j−1)|
)
≥

∞∑

`=1

1 =∞. (5.8.9)

Let us reorder the elements of the setsα`, `∈N, to the sequence{xk} in such
a way that

x1 = a = α1
0,

xk+1 = α`
j+1 if xk = α`

j and j < m`− 1,

and

xk+1 = α`+1
0 if xk = α`

m`−1.

By (5.8.8) and (5.8.9), the sequence{xk} has the required properties. This com-
pletes the proof of the assertion (i).
ii) The proof of the second assertion is quite analogous and we can leave the
details to readers. 2

5.8.3 Theorem. If the integral
∫ b

a
f dg exists for every continuous function

f : [a, b]→R, theng : [a, b]→R has bounded variation.

Proof. By Theorem5.1.7, we can restrict ourselves to the(σ)RS-integral.
Notice that by Heine-Borel Theorem and thanks to the additivity of variation

as a function of intervals (cf. Theorem2.1.14), it follows that a given function
ϕ : [a, b]→R has bounded variation if and only if the following conditions are
satisfied:

• For eachx∈ (a, b], there is aδ1 ∈ (0, x− a) such that

varxx−δ1
ϕ<∞.

• For eachx∈ [a, b), there is aδ2 ∈ (0, b− x) such that

varx+δ2
x ϕ<∞.





(5.8.10)
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Consequently, it can happen that varb
a g =∞ only if there exists anx0 ∈ [a, b]

such that at lest one of the conditions (5.8.10) is not satisfied forx = x0. First,
assume thatx0 ∈ (a, b] is such that varx0

x g =∞ for eachx∈ [a, x0). Then, by the
first part of Lemma5.8.2there is an increasing sequence{xk} of points in(a, x0)
such that

lim
k→∞

xk = x0 and
∞∑

k=1

|g(xk+1)− g(xk)|=∞.

By Lemma5.8.1, there is a sequence{ck} of positive numbers such that

lim
k→∞

ck = 0 and
∞∑

k=1

ck |g(xk+1)− g(xk)|=∞.

Now, let ξk = xk+1+xk

2
for eachk ∈N, define

f(x) =

{
0 if x <x1, or x≥ x0, or x∈{xk},

ck sgn(g(xk+1)−g(xk)) if x = ξk,

and extend the functionf linearly to [a, b]. This implies thatf will be continuous
on [a, b]. We have

∞∑

k=1

f(ξk) (g(xk+1)− g(xk)) =∞.

In particular, for eachM > 0 there is anNM ∈N such that

NM∑

k=1

f(ξk) (g(xk+1)− g(xk)) >M.

For a givenM > 0, set

αM = {a, x1, x2, . . ., xNM
, xNM+1, b}, ξM = (a, ξ1, ξ2, . . ., ξNM

, b).

ThenPM = (αM , ξM) is a partition of[a, b] and

S(PM) =

NM∑

k=1

f(ξk) (g(xk+1)− g(xk)) >M.

(Recall thatf(a) = f(b) = 0.) But this means that the integral(σ)
∫ b

a
f dg cannot

have a finite value.
If the latter condition from (5.8.10) is not satisfied, i.e., there is anx0 ∈ [a, b)

such that varxx0
g =∞ for every x∈ (x0, b], then the proof is similar, just the

second part of Lemma5.8.2should be used instead of the first one. 2
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5.8.4 Exercise.Formulate and prove an analogue of Lemma5.8.2which is nec-
essary to complete the proof of Theorem5.8.3if there is anx0 ∈ [a, b) such that
varxx0

g =∞ for everyx∈ (x0, b].

5.8.5 Theorem.Let f : [a, b]→R be such that the integral
∫ b

a
f dg exists for

every step functiong. Thenf is continuous.

Proof. Clearly, we can restrict ourselves to the(σ)RS-integral. Letx0 ∈ (a, b),
ç, c′c′′ ∈R, (c′− c) (c′′− c) (c′′− c′) 6= 0 and let the functiong : [a, b]→R be de-
fined as in Remark5.1.24, i.e.

g(x) = c′ χ[a,x0)(x) + c χ[x0](x) + c′′ χ(x0,b](x) for x∈ [a, b].

Arguing like in Remark5.1.24, we can see that the integral(σ)
∫ b

a
f dg can exist

only if

f(x0−) = f(x0) = f(x0+).

Right-continuity off at a and left-continuity atb can be proved similarly.2

5.9 Mean value theorems

The results presented in this section apply to both kinds of the RS-integral.

5.9.1 Theorem(MEAN VALUE THEOREM). If f is continuous on[a, b] and g is
nondecreasing on[a, b], then there exists anx0 ∈ [a, b] such that

∫ b

a

f dg = f(x0) (g(b)− g(a)). (5.9.1)

Proof. Theorem5.6.3guarantees the existence of the integral
∫ b

a
f dg. Sinceg is

nondecreasing on[a, b], we have

m (g(b)− g(a))≤S(P )≤M (g(b)− g(a))

for every partitionP = (α, ξ) of [a, b], where

m = min{f(x) : x∈ [a, b]} and M = max{f(x) : x∈ [a, b]}.
It follows that

m(g(b)− g(a))≤
∫ b

a

f dg≤M(g(b)− g(a)).

Sincef is continuous, it takes on all values from the interval[m,M ]. In particu-
lar, there is anx0 ∈ [a, b] such that (5.9.1) holds. 2
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5.9.2 Theorem(SECOND MEAN VALUE THEOREM). If f is continuous on[a, b]
and g is nondecreasing on[a, b], then there is anx0 ∈ [a, b] such that

∫ b

a

f(x) g(x) dx = g(a)

∫ x0

a

f(x) dx + g(b)

∫ b

x0

f(x) dx. (5.9.2)

Proof. The functionf is Riemann integrable on[a, b]. Set

h(x) =

∫ x

a

f(t) dt for x∈ [a, b].

By virtue of Corollary5.4.4(substitution theorem), Theorem5.5.1(integration by
parts) and Theorem5.9.1, there is anx0 ∈ [a, b] such that

∫ b

a

f(x) g(x) dx =

∫ b

a

g dh = h(b) g(b)−
∫ b

a

h dg

=
( ∫ b

a

f dx
)

g(b)−
( ∫ x0

a

f dx
)

(g(b)− g(a))

= g(a)

∫ x0

a

f(x) dx + g(b)

∫ b

x0

f(x) dx.
2

5.10 Other integrals of Stieltjes type

Let functionsf, g : [a, b]→R and a divisionα of [a, b] be given. Set

SM(α) =

ν(α)∑
j=1

f(αj) + f(αj−1)

2
(g(αj)− g(αj−1)),

SCL(α) =

ν(α)∑
j=1

f(αj−1) (g(αj)− g(αj−1)),

SCR(α) =

ν(α)∑
j=1

f(αj) (g(αj)− g(αj−1)).

If S(α, ξ) in Definition 5.1.3is replaced bySM(α), SCL(α), or SCR(α), we
get the definitions of themain integral, left Cauchy integral, and right Cauchy
integral, respectively. Again, we distinguish between their(δ) and (σ) variants
according to the choice of the limiting process. For each of these integrals, the
class of integrable functions includes all RS-integrable functions. However, not all
properties of RS-integrals are maintained. For example, an analogue of Theorem
5.4.3(substitution theorem) does not hold for the central integral. More details
can be found in Section II.19 of T. H. Hildebrandt’s monograph [55].
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5.11 Exercises

(i) In the following examples, investigate the existence and value of the Stieltjes
integral

∫ b

a
f dg of each kind introduced in this chapter:

(a) [a, b] = [0, π], f(x) = x andg(x) = sin x for x∈ [a, b],

(b) [a, b] = [−1, 1], f(x) = x andg(x) = exp(|x|) for x∈ [a, b],

(c) [a, b] = [0, 1], f : [a, b]→R andg(x) =





0 if x∈ [0, 1
2
),

c if x = 1
2
,

d if x∈ (1
2
, 1].

(ii) Let

f(x) =

{
0 if x< 0,

1 if x≥ 0,
g(x) =

{
0 if x≤ 0,

1 if x> 0.

Investigate the existence and the value of the following integrals (consider both
(δ) and (σ)RS-integrals):

∫ 1

−1

g df,

∫ 0

−1

g df,

∫ 1

0

g df,

∫ 1

−1

g dg,

∫ 0

−1

g dg,

∫ 1

0

g dg.

(iii) Determine the value of the integral(δ)
∫ 1

0
x2 dg(x), where

g(x) =





x if x∈ [0, 1
2
],

1
x

if x∈ (1
2
, 1].

(iv) Provide an exact definition of the line integral of the first kind mentioned in
Section1.2, and formulate some of its basic properties that follow from the results
obtained in the present chapter.



Chapter 6

Kurzweil-Stieltjes integral

Riemann-Stieltjes integral is widely used everywhere where it is possible to limit
ourselves to the cases when the integrand and the integrator have no common
points of discontinuity (or, in the case of(σ) RS-integral, there are no points at
which both functions have discontinuity on the same side). For some applications
(e.g. in the theory of hysteresis and related variational inequalities, see [17], [76]
and [77]), the Stieltjes integral which has no requirements on the continuity of the
integrated and integrating functions is needed. It appears that the most suitable
integral from this point of view is the integral which we will call the Kurzweil-
Stieltjes integral. However, its generality is not its only asset. In particular, let
us mention also the simplicity of its definition and a relatively easy way of the
proofs. Unfortunately, monographic literature has not devoted sufficient attention
to this concept. As far as we know, a brief treatise of this integral can be found
in chapter 24 of Schechter’s monograph [117] from 1997 (however, it is called
the Henstock-Stieltjes integral there). Furthermore, McLeod’s monograph [95]
from 1980, where it is calledgauge integral, and several extensive sections (2.6
and 2.7 and partially also 2.8) of the monograph [29] by Dudley and Norvaǐsa deal
with this integral (called there the Henstock-Kurzweil integral) in more detail. Let
us notice that this integral is a special case of the generalized nonlinear integral
which has been introduced in Kurzweil’s seminal work [78] from 1957 as a tool
for explaining some of the convergence effects occurring in the theory of non-
linear differential equations. A year later, in [79], Kurzweil explicitly used this
special Stieltjes form of its integral to consider generalized differential equations
covering e.g. the equations whose right hand sides contain terms with Dirac dis-
tributions. During the 70’s of the last century, the term Kurzweil-Stieltjes integral
(or Perron-Stieltjes integral by Kurzweil’s definition) was already commonly used
in the works dealing with the generalized nonlinear differential equations (see e.g.
[119] or [131] and the papers cited there).

The aim of this chapter is to present the theory of the Kurzweil-Stieltjes inte-
gral as comprehensively as possible.

6.1 Definition and basic properties

Let us recall that the finite ordered subset{α0, α1, . . . , αm} of an interval[a, b]
is called adivisionof the interval[a, b] if

a = α0 <α1 < · · ·<αm = b.
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The set of all divisions of the interval[a, b] is denoted byD [a, b]. The number
of subintervals forming a division is usually denoted byν(α), i.e. αν(α) = b.
Finally, we also set

|α|= max
j∈{1,...,ν(α)}

(αj −αj−1) for α∈D [a, b].

We say thatα′ ∈D [a, b] is arefinement ofα∈D [a, b], if α′⊃α.

The pairP = (α, ξ) of finite ordered sets

α = {α0, α1, . . . , αν(α)} and ξ = {ξ1, . . . , ξν(α)}

is called apartition of the interval[a, b] if α is a division of the interval[a, b] and

αj−1≤ ξj ≤αj for j ∈{1, . . . , ν(α)}.

We say thatξj is thetagof the subinterval[αj−1, αj ] and ξ is theset of the tags.
For partitionsP = (α, ξ) we will also writeν(P ) instead ofν(α). (We can also
say thatν(P ) is the number of tags contained in partitionP.)

6.1.1 Definition. Every positive functionδ : [a, b]→ (0,∞) is called agaugeon
the interval[a, b]. A set of gauges on[a, b] is denoted byG [a, b].

If δ is a gauge on[a, b], we say that the partitionP = (α, ξ) of the interval
[a, b] is δ -fine if

[αj−1, αj ]⊂ (ξj − δ(ξj), ξj + δ(ξj)) for all j = 1, . . . , ν(α). (6.1.1)

Consider functionsf, g : [a, b]→R and a partitionP = (α, ξ) of [a, b]. Anal-
ogously to RS-integrals, we define

S(f, dg, P ; [a, b])
(

= S(f, dg, (α, ξ); [a, b])
)

=

ν(P )∑
j=1

f(ξj)
[
g(αj)− g(αj−1)

]

(
=

ν(α)∑
j=1

f(ξj)
[
g(αj)− g(αj−1)

])
.

According to the concrete situation, we will usually write simply e.g.S(P )
or S(α, ξ) or S(f, dg, P ) or S(f, dg, (α, ξ)) instead ofS(f, dg, P ; [a, b]) or
S(f, dg, (α, ξ); [a, b]).

6.1.2 Definition. Let f, g : [a, b]→R andI ∈R. We say that theKurzweil-Stielt-
jes integral(KS-integral)

∫ b

a

f(x) d[g(x)]
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exists and has the value ofI ∈R if

for every ε> 0 there exists a gaugeδε on [a, b] such that

|I −S(P )|<ε

holds for all δε− fine partitions of [a, b].





(6.1.2)

As for RS-integrals, we will also use the shortened notation
∫ b

a

f dg =

∫ b

a

f(x) d[g(x)].

and define
∫ a

b

f dg =−
∫ b

a

f dg and
∫ a

a

f dg = 0.

If g(x)≡ x, then we speak about KH-integral (Kurzweil-Henstock integral) in-
stead of KS-integral and we denote it

∫ b

a
f(x) dx, or in a shorter way

∫ b

a
f dx.

This definition is correct due to the following two lemmas.

6.1.3 Lemma(COUSIN). The set of allδ -fine partitions of the interval[a, b] is
nonempty for every gaugeδ on [a, b].

Proof. Consider a gaugeδ on [a, b]. For a givenc∈ (a, b], let us denote by
A (δ; [a, c]) the set of allδ -fine partitions of the interval[a, c] and letM be the
set of allc∈ (a, b ] for which A (δ; [a, c]) is nonempty.

Let
c = min{a + δ(a), b}, α = {a, c} and ξ = {a}.

Sinceδ(a) > 0, we havec∈ (a, b ] and (α, ξ)∈A (δ; [a, c]), i.e. c∈M. The set
M is thus nonempty and therefored = sup M >−∞.

Next, we will show thatd does belong to the setM. As δ(d) > 0, and by the
definition ofd, there is ac∈ (d− δ(d), d ]∩M. Hence, there exists also aδ -fine
partition (α′, ξ ′) of [a, c]. Let c< d. (In the opposite case, triviallyd = c∈M.)
Set α = α′ ∪{d} and ξ = ξ ′ ∪{d}. Then (α, ξ) is a partition of the interval
[a, d], and as [c, d ]⊂ (d− δ(d), d + δ(d)), it is δ -fine. Therefored∈M.

If d = b, the proof is finished. Thus, assumed< b and choose an arbitrary
tagged division(α′′, ξ′′) of [a, d] and γ ∈ (d, d + δ(d))∩ (d, b). (Such aγ exists
becauseδ(d) > 0.) Thus, we have

[d, γ]⊂ (d− δ(d), d + δ(d)).

Therefore
(
α′′ ∪{γ}, ξ′′ ∪{d}) is a δ -fine partition of the interval[a, γ], i.e.

γ ∈M. Since γ > d, we get a contradiction with the definitiond = sup M. We
thus haved = sup M = b and the proof is completed. 2
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6.1.4 Lemma.The value of the integral
∫ b

a
f dg is defined uniquely by condi-

tion (6.1.2).

Proof. Assume there existI1, I2 ∈R, I1 6= I2, such that (6.1.2) holds and if we
substitute I = Ii, i = 1, 2. Set ε̃ = 1

2
|I1− I2|. Then there exist gaugesδ1 and

δ2 such that

|S(P )− I1|< ε̃ for everyδ1− fine partitionP of [a, b],

and

|S(P )− I2|< ε̃ for everyδ2− fine partitionP of [a, b],

Define a gaugeδ by

δ(x) = min{δ1(x), δ2(x)} for x∈ [a, b].

Then everyδ -fine partition of [a, b] is simultaneously bothδ1 -fine andδ2 -fine.
Consequently, for everyδ -fine partitionP of [a, b] we have

2 ε̃ = |I1− I2|= |I1−S(P ) + S(P )− I2|
≤ |I1−S(P )|+ |S(P )− I2|< 2 ε̃.

This being impossible, it has to beI1 = I2. 2

If not stated otherwise, in the following text the symbol of the integral will
always stand for the KS-integral.

6.1.5 Remark. If gaugesδ, δ0 are such thatδ0≤ δ on [a, b], then everyδ0 -fine
partition of [a, b] is also δ -fine. Therefore, if some condition is satisfied for all
δ0 -fine partitions of[a, b], a fortiori it is satisfied also for allδ -fine partitions.
Hence, if the gaugeδ0 is given, we can limit ourselves in Definition6.1.2to the
gaugesδε, for which δε≤ δ0 on [a, b].

Moreover, Definition6.1.2will not change if (6.1.1) is replaced by the condi-
tion

[αj−1, αj ]⊂ [ξj − δ(ξj), ξj + δ(ξj)] for j = 1, . . . , ν(α).

The next result provides a Bolzano-Cauchy condition for the existence of the
KS-integral.

6.1.6 Theorem(BOLZANO–CAUCHY CONDITION). Let f, g : [a, b]→R. Then
the integral

∫ b

a
f dg exists if and only if

for eachε> 0 there is a gaugeδε on [a, b] such that∣∣S(P )−S(Q)
∣∣ <ε holds for allδε-fine partitionsP, Q.

}
(6.1.3)
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Proof. a) If the integral
∫ b

a
f dg = I ∈R exists, then by Definition6.1.2 for

everyε> 0 there is a gaugeδε on [a, b] such that

|S(P )− I|< ε

2
for all δε− fine partitionsof [a, b].

Hence, for every pairP,Q of δε -fine partitions we have

|S(P )−S(Q)| ≤ |S(P )− I|+ |S(Q)− I|<ε,

which means that (8.3.6) is true.

b) Now, assume that the Bolzano–Cauchy condition (8.3.6) holds and for a given
ε> 0, let δε stand for the gauge given by (8.3.6). Set

I(ε) = {S(P ) : P is aδε-fine partition of[a, b]}.
By Cousin’s Lemma6.1.3, the I(ε) is nonempty for everyε> 0 and by (8.3.6)
we have

diamI(ε) = sup{|S(P )−S(Q)|:P, Q areδε-fine partitions of[a, b]}<ε. (6.1.4)

Furthermore,

I(ε1)⊂ I(ε2) wheneverε1 <ε2.

Thus, by Cantor’s intersection theorem for complete metric spaces (see e.g. The-
orem 6.52 in [51] or Theorem 5.1.17 in [143]), the intersection

⋂
ε>0 clI(ε) is a

one point set{I} with I ∈R. As a result of (6.1.4), it follows that

|S(f, dg, P )− I| ≤ ε

holds for everyδ -fine partitionP of [a, b]. In other words,
∫ b

a
f dg = I and this

completes the proof. 2

6.1.7 Remark. As in the case of RS-integrals (see Exercise5.1.16), if a division
α of [a, b] is given, we can weaken the condition (8.3.6) in the following way:

for all ε> 0 there is a gaugeδε on [a, b] such that
∣∣∣S(P )−S(Q)

∣∣∣ <ε

for all δε-fine partitionsP = (α, ξ), Q = (β,η) of [a, b]

such thatβ⊃α.





(6.1.5)

The KS-integral has the usual linear properties.
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6.1.8 Theorem.Let f, f1, f2, g, g1, g2 : [a, b]→R and let the integrals
∫ b

a

f1 dg,

∫ b

a

f2 dg,

∫ b

a

f dg1 and
∫ b

a

f dg2

exist. Then for anyc1, c2 ∈R,

∫ b

a

(c1 f1 + c2 f2) dg = c1

∫ b

a

f1 dg + c2

∫ b

a

f2 dg

and ∫ b

a

f d[ c1 g1 + c2 g2] = c1

∫ b

a

f dg1 + c2

∫ b

a

f dg2

hold.

Proof. Let us show for example the proof of the first statement.

Let ε> 0 be given. By our assumption there are gaugesδ1 and δ2 on [a, b]
such that

∣∣∣S(f1, dg, P )−
∫ b

a

f1 dg
∣∣∣ <ε for all δ1-fine partitionsP on [a, b]

and ∣∣∣S(f2, dg, P )−
∫ b

a

f2 dg
∣∣∣ <ε for all δ2-fine partitionsP on [a, b]

Set δε(x) = min{δ1(x), δ2(x)} for x∈ [a, b] and h = c1 f1 + c2 f2. Since for a
given partitionP = (α, ξ) on ab we have

S(h, dg, P ) =

ν(P )∑
j=1

(c1 f1(ξj) + c2 f2(ξj)) [g(αj)− g(αj−1)]

= c1 S(f1, dg, P ) + c2 S(f2, dg, P ),

we get

∣∣∣S(h, dg, P )− c1

∫ b

a

f1 dg− c2

∫ b

a

f2 dg
∣∣∣

≤ |c1|
∣∣∣S(f1, dg, P )−

∫ b

a

f1 dg
∣∣∣ + |c2|

∣∣∣S(f2, dg, P )−
∫ b

a

f2 dg
∣∣∣

< (|c1|+ |c2|) ε,

wherefrom our statement immediately follows.

The second statement of the theorem would be proved similarly and can be
left as an exercise for the reader. 2
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6.1.9 Exercise.Prove the second statement of Theorem6.1.8.

6.1.10 Theorem.If the integral
∫ b

a
f dg exists and if [c, d]⊂ [a, b], then the

integral
∫ d

c
f dg exists, too.

Proof. Assume that the integral
∫ b

a
f dg exists anda< c <d < b. By Theo-

rem6.1.6there exists a gaugeδε on [a, b] such that

|S(P )−S(P ′)|<ε for all δε-fine partitionsP, P ′ of [a, b]. (6.1.6)

Let Q = (β,η) andQ′ = (β′, η′) be arbitraryδε -fine partitions of[c, d]. Further,
let us fix arbitrarily aδε -fine partitionQ− = (β−,η−) of [a, c] and aδε -fine parti-
tion
Q+ = (β+,η+) of [c, d] and setP = (α, ξ) andP ′ = (α′, ξ′), where

α = β− ∪β ∪β+, ξ = η− ∪η ∪η+

and

α′ = β− ∪β ′ ∪β+, ξ′ = η− ∪η′ ∪η+.

ThenP andP ′ areδε -fine partitions of[a, b] and

S(P ) = S(Q−) + S(Q) + S(Q+) and S(P ′) = S(Q−) + S(Q′) + S(Q+).

Thus, in view of (6.1.6) we have

|S(Q)−S(Q′)|= |S(P )−S(P ′)|<ε,

wherefrom by Theorem6.1.6the existence of the integral
∫ d

c
f dg follows. 2

6.1.11 Theorem.Let f, g : [a, b]→R and c∈ [a, b]. Then the integral
∫ b

a
f dg

exists if and only if both the integrals
∫ c

a
f dg and

∫ b

c
f dg exist. In such case,

the equality

∫ b

a

f dg =

∫ c

a

f dg +

∫ b

c

f dg

holds.

Proof. If c = a or c = b, the statement of the theorem is trivial. Thus, let
c∈ (a, b).

a) If the integral
∫ b

a
f dg exists, then by Theorem6.1.10both the integrals∫ c

a
f dg and

∫ b

c
f dg exist, too.
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b) Let

∫ c

a

f dg = I1 and
∫ b

c

f dg = I2.

Let ε> 0 be given. Choose gaugesδ ′ε on [a, c] andδ ′′ε on [c, b ] such that

|S(P ′)− I1|< ε

2
for all δ′ε-fine partitionsP ′ on [a,c]

and

|S(P ′′)− I2|< ε

2
for all δ′′ε -fine partitionsP ′′ on [c,b].





(6.1.7)

Now, we define the gaugeδε on [a, b] by

δε(x) =





min
{
δ ′ε(x), 1

4
(c−x)

}
if x∈ [a, c),

min {δ ′ε(c), δ′′ε (c)} if x = c,

min
{
δ′′ε (x), 1

4
(x− c)

}
if x∈ (c, b ].

Then

x + δε(x)≤ x +
1

4
(c− x) < c if x< c,

and

x− δε(x)≥ x− 1

4
(x− c) >c if x> c.

Therefore c∈ [x− δε(x), x + δε(x)] for no x 6= c. Hence, for everyδε -fine par-
tition P = (α, ξ) of [a, b], there exists ak ∈{1, . . . , ν(α)} such that ξk = c.
Thus, we can assume that

αk−1 < αk = ξk = c = ξk+1 < αk+1.

If

αk−1 < c = ξk <αk,

we would adjust the corresponding term in the sumS(P ) as follows:

f(c) [g(αk)− g(αk−1)] = f(c) [g(αk)− g(c)] + f(c) [g(c)− g(αk−1)].

Thus, there areδε -fine partitionsP ′ = (α′, ξ ′) of [a, c] and P ′ = (α′′, ξ′′) of
[c, b ] such that

α = α′ ∪α ′′, ξ = ξ ′ ∪ ξ ′′ and S(P ) = S(P ′) + S(P ′′).
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If we take into consideration the relation (6.1.7), we can see that

|S(P )− (I1 + I2)|= |S(P ′) + S(P ′′)− (I1 + I2)|
≤ |S(P ′)− I1|+ |S(P ′′)− I2|< ε

holds for everyδε -fine partitionP of [a, b], i.e.
∫ b

a
f dg = I1 + I2. 2

The next lemma provides a crucial characterization of the KS-integration. Its
proof is based on a slight modification of the choice of a suitable gauge used in
the proof of the previous statement.

6.1.12 Lemma.For any finite setD of points of the interval[a, b], there exists a
gaugeδ on [a, b] such thatD⊂ ξ for everyδ -fine partition(α, ξ) of the interval
[a, b].

Proof. Let D = {s1, . . . , sk} and a≤ s1 < . . . < sk≤ b. Set

δ(x) =

{
1
4

min{|x− sj| : j ∈{1, . . . , k}} if x /∈D,

1, if x∈D.

For givenj ∈{1, . . . , k} we have

ξ + δ(ξ) <ξ +
1

4
(sj − ξ) <sj if ξ ∈ (sj−1, sj)

and

ξ− δ(ξ) >ξ− 1

4
(sj − ξ) >sj if ξ ∈ (sj, sj+1).

That is,

sj ∈ [ξ− δ(ξ), ξ + δ(ξ)] if and only if ξ = sj.

Hence,sj ∈ ξ for eachj ∈{1, . . . , k} and eachδ -fine partition(α, ξ) of [a, b].
In other words,D⊂ ξ for eachδε -fine partition(α, ξ) of [a, b]. 2

6.2 Relationship to Riemann-Stieltjes and Perron-
Stieltjes integrals

If the integral (δ)
∫ b

a
f dg exists, then the KS-integral

∫ b

a
f dg exists, too, and

has the same value. Indeed, if

(δ)

∫ b

a

f dg = I ∈R,
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then for everyε > 0 there is ∆ε > 0 such that

|S(α, ξ)− I|<ε for all partitions(α, ξ) of [a, b] such that|α|< ∆ε.

Thenδε(x)≡∆ε/2 is a gauge with the properties guaranteeing the relation
∫ b

a

f dg = I = (δ)

∫ b

a

f dg.

On the other hand, if
∫ b

a
f dg = I ∈R and if for everyε> 0 we can find a

gaugeδε on [a, b] such that

inf{δε(x) : x∈ [a, b]}> 0 and |S(α, ξ)− I|<ε for eachδ-fine partition(α, ξ),

then

(δ)

∫ b

a

f dg = I

will be true, as well. Indeed, setting∆ε = inf{δε(x) : x∈ [a, b]}, we get that

|S(α, ξ)− I|<ε for every partition(α, ξ) of [a, b] such that|α|< ∆ε

holds.

The relationship between the(σ) RS-integral and the KS-integral is not that
evident.

6.2.1 Theorem.If the integral (σ)

∫ b

a

f dg exists, then theKS-integral
∫ b

a
f dg

exists as well and
∫ b

a

f dg = (σ)

∫ b

a

f dg.

Proof. Assume that(σ)

∫ b

a

f dg = I ∈R. Let ε> 0 be given and letαε be a

division of the interval[a, b] such that
∣∣S(α, ξ)− I|<ε for every partition(α, ξ) of [a, b] such thatα⊃αε.

By Lemma6.1.12there exists a gaugeδε such that

αε⊂ ξ for each δε− fine partition(α, ξ) of [a, b]. (6.2.1)

Now, let (α, ξ) be an arbitraryδε -fine partition of[a, b]. Then

S(α, ξ) =

ν(α)∑
j=1

[
f(ξj) [g(αj)− g(ξj)] + f(ξj) [g(ξj)− g(αj−1)]

]

= S(α̃, ξ̃),





(6.2.2)
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where

α̃ = {α0, ξ1, α1, ξ2, . . . , ξν(α), αν(α)} and ξ̃ = {ξ1, ξ1, ξ2, ξ2, . . . , ξν(α), ξν(α)}.

(Of course, ifαk−1 = ξk or ξk = αk for somek, then we would remove the inter-
vals [αk−1, ξk] and [ξk, αk] and the corresponding tags from(α̃, ξ̃).) By (6.2.1)
we have αε⊂ ξ⊂ α̃. Finally, in view of (6.2.2) and due to the definition ofαε,
we get

|S(α, ξ)− I|= |S(α̃, ξ̃)− I|< ε,

which means that
∫ b

a
f dg = I. This completes the proof. 2

Notice that the proof of the previous theorem also contains the proof of the
following statement.

6.2.2 Lemma.Let f, g : [a, b]→R. Then for every partitionP = (α, ξ) of [a, b],

there exists a partitioñP = (α̃, ξ̃) of [a, b] such that

ξ⊂ α̃∩ ξ̃ and S(P̃ ) = S(P ).

6.2.3 Examples.Let us consider for a while the special case when the integrator
is the identity function, i.e. when the KS-integral reduces to the KH-integral.

(i) The KH-integral is obviously a generalization of the classical Riemann inte-
gral.

(ii) Let f(x) = 0 for x∈ [a, b]\D whereD is a subset of[a, b] of zero measure.
Let an arbitraryε> 0 be given and letM be the set of thoset∈ [a, b] for which
f(x) 6= 0. By assumption,µ(M) = 0 holds for the Lebesgue measureµ(M) of
M. Set

Mn = {x∈ [a, b] : n− 1≤ f(x) <n} for n∈N.

Obviously,

M =
⋃

n∈N
and µ(Mn) = 0 for every n∈N.

In particular, for eachn∈N there is an open subsetGn of [a, b] such that

Mn⊂Gn and µ(Gn) <
ε

n 2n
.

Now, define a gaugeδε in such a way that

δε(x) = 1 if x /∈D and (x− δε(x), x + δε(x))⊂Gn if x∈Mn for somen∈N.
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Let P = (α, ξ) be aδε -fine partition of[a, b] and letm = ν(P ). Then

|S(P )|=
∣∣∣∣∣

m∑
j=1

f(ξj) [αj −αj−1]

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣

∞∑
n=1

m∑
j=1

ξj∈Mn

f(ξj) [αj −αj−1]

∣∣∣∣∣∣∣∣

≤
∞∑

n=1

∣∣∣∣∣∣∣∣

m∑
j=1

ξj∈Mn

f(ξj) [αj −αj−1]

∣∣∣∣∣∣∣∣
≤

∞∑
n=1

n




m∑
j=1

ξj∈Mn

(αj −αj−1)




<ε

( ∞∑
n=1

1

2n

)
= ε.

According to Definition6.1.2it follows that
∫ b

a
f(x) dx = 0.

(iii) Let the Newton integral (N)
∫ b

a
f(x) dx = F (b)−F (a) exist where the func-

tion F is continuous on[a, b] and

F ′(x) = f(x) for eachx∈ (a, b), F ′(a+) = f(a), F ′(b−) = f(b). (6.2.3)

We will show that then the KH-integral
∫ b

a
f(x) dx also exists and its value

equalsF (b)−F (a).

Let ε> 0 be given. Due to (6.2.3), for eachξ ∈ [a, b] there exists aδε(ξ) > 0
such that

|F (x)−F (ξ)− f(ξ) (x− ξ)|< ε

b− a
|x− ξ|

is true for all x∈ [a, b]∩ (ξ− δε(ξ), ξ + δε(ξ)). Now, let P = (α, ξ) be an arbi-
trary
δε -fine partition of[a, b] and putm = ν(P ). Then

∣∣F (αj)−F (αj−1)− f(ξj) [αj −αj−1]
∣∣

≤
∣∣F (αj)−F (ξj)− f(ξj) [αj − ξj]

∣∣

+
∣∣F (ξj)−F (αj−1)− f(ξj) [ξj −αj−1]

∣∣

<
ε

b− a

(|αj − ξj|+ |ξj −αj−1|
)
=

ε

b− a
[αj −αj−1]

for every j ∈{1, . . . , m} and hence

∣∣[F (b)−F (a)]−S(P )
∣∣ =

∣∣∣
m∑

j=1

(
F (αj)−F (αj−1)− f(ξj) [αj −αj−1]

)∣∣∣
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≤
m∑

j=1

∣∣F (αj)−F (αj−1)− f(ξj) [αj −αj−1]
∣∣

<
ε

b− a

m∑
j=1

[αj −αj−1] = ε,

i.e.
∫ b

a
f(x) dx = F (b)−F (a).

6.2.4 Remark. Consider the Dirichlet function

fD(x) =

{
1 if x is rational,

0 if x is irrational

(cf. Exercise4.1.4 (iii)) and an arbitrary bounded interval[a, b]. By Example
6.2.3(ii), we have

∫ b

a

fD(x) dx = 0.

On the other hand, the Riemann integral (R)
∫ b

a
fD dx does not exist when-

ever the interval[a, b] is nondegenerate. Indeed, letα = {α0, α1, . . . , αm} be
an arbitrary division of[a, b]. Choosing all the tagsξj ∈ [αj−1, αj] rational, we
get S(α, ξ) = b− a 6= 0, while, if all the tags are irrational, we haveS(α, ξ) = 0,
wherefrom the assertion immediately follows.

The Kurzweil-Stieltjes integral is closely connected with the integral known as
the Perron-Stieltjes integral even though its definition actually belongs
to A. J. Ward [151]. Ward’s definition is also described in Section VI.8 of the
monograph by S. Saks [116] and is based on the termsmajorantandminorant.

6.2.5 Definition. Let f, g : [a, b]→R. We say thatM : [a, b]→R is amajorant
for f with respect tog if there exists a gaugeδ on [a, b] such that

(t− τ)
[
M(t)−M(τ)

]≥ (t− τ) f(τ)
[
g(t)− g(τ)

]

holds for every τ ∈ [a, b] and everyt∈ [a, b]∩ (τ − δ(τ), τ + δ(τ)).

Similarly, m : [a, b]→R is theminorantfor f with respect tog if there exist
a gaugeδ on [a, b] such that

(t− τ)
[
m(t)−m(τ)

]≤ (t− τ) f(τ)
[
g(t)− g(τ)

]

holds for every τ ∈ [a, b] and everyt∈ [a, b]∩ (τ − δ(τ), τ + δ(τ)).

The set of all majorants forf with respect tog is denoted byM(f∆ g)
whereasm(f∆ g) stands for the set of all minorants forf with respect tog.
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6.2.6 Definition. Let f, g : [a, b]→R and

M(f∆ g) 6= ∅ 6= m(f∆ g). (6.2.4)

Then we define

(PS)

∫ b

a

f dg = inf
{
M(b)−M(a) : M ∈M[a, b]

}

and

(PS)

∫ b

a

f dg = sup
{
m(b)−m(a) : m∈m[a, b]

}
.

The quantity (PS)
∫ b

a
f dg is called theupper Perron-Stieltjes integralof the

functionf with respect tog (from a to b) while (PS)
∫ b

a
f dg is thelower Perron-

Stieltjes integralof the functionf with respect tog (from a to b).

In the cases when (6.2.4) does not hold, we set

(PS)

∫ b

a

f dg =∞ if M(f∆ g) = ∅,
and

(PS)

∫ b

a

f dg =−∞ if m(f∆ g) = ∅.

It is not surprising that the following statement holds.

6.2.7 Lemma.For any functionsf, g : [a, b]→R the inequality

(PS)

∫ b

a

f dg≤ (PS)

∫ b

a

f dg (6.2.5)

holds.

Proof. If at least one of the setsM(f∆ g) or m(f∆ g) is empty, then the in-
equality (6.2.5) is trivially satisfied. Therefore, assume that (6.2.4) holds.

Choose arbitrary majorantM ∈M(f∆ g) and minorantm∈m(f∆ g). By
the definition there are gaugesδ1 andδ2 on [a, b] such that

(t− τ)
[
M(t)−M(τ)

]≥ (t− τ) f(τ)
[
g(t)− g(τ)

]

for τ ∈ [a, b] and t∈ [a, b]∩ (τ − δ1(τ), τ + δ1(τ)),

and
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(t− τ)
[
m(t)−m(τ)

]≤ (t− τ) f(τ)
[
g(t)− g(τ)

]

for τ ∈ [a, b] and t∈ [a, b]∩ (τ − δ2(τ), τ + δ2(τ))

hold. Set δ(x) = min{δ1(x), δ2(x)} for x∈ [a, b]. Then

m(t)−m(τ)≤ f(τ)
[
g(t)− g(τ)

]≤M(t)−M(τ)

for τ ∈ [a, b] and t∈ [a, b]∩ [τ, τ + δ(τ)),

and

m(τ)−m(t)≤ f(τ)
[
g(τ)− g(t)

]≤M(τ)−M(t)

for τ ∈ [a, b] and t∈ [a, b]∩ [τ − δ(τ), τ ].

Thus, for any δ -fine partitionP = (α, ξ) of [a, b] and everyj ∈{1, . . . , ν(P )}
we have

m(αj)−m(ξj)≤ f(ξj)
[
g(αj)− g(ξj)

]≤M(αj)−M(ξj)

and

m(ξj)−m(αj−1)≤ f(ξj)
[
g(ξj)− g(αj−1)

]≤M(ξj)−M(αj−1).

Summing these inequalities forj = 1, . . . , ν(P ), we get

m(b)−m(a)≤S(P )≤M(b)−M(a). (6.2.6)

This implies that the inequality

m(b)−m(a)≤M(b)−M(a)

holds for everyM ∈M(f∆ g) and everym∈m(f∆ g). Hence,

(PS)

∫ b

a

f dg = sup
{
m(b)−m(a) : m∈m[a, b]

}

≤ inf
{
M(b)−M(a) : M ∈m[a, b]

}
= (PS)

∫ b

a

f dg.

This completes the proof of (6.2.5). 2

6.2.8 Remark. Notice that the proof of the previous lemma contains also the
proof of the following assertion:
For given functionsf, g : [a, b]→R, M ∈M(f∆ g) andm∈m(f∆ g), there is a
gaugeδ on [a, b] such that the inequalities (6.2.6) hold for eachδ -fine partition
P of [a, b].
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6.2.9 Definition. If

(PS)

∫ b

a

f dg = (PS)

∫ b

a

f dg ∈R,

we say that thePerron-Stieltjes integral(in short, PS-integral)

(PS)

∫ b

a

f dg

of the functionf with respect tog from a to b exists. Its value is determined by
the common value of the upper and lower integral, i.e.

(PS)

∫ b

a

f dg = (PS)

∫ b

a

f dg = (PS)

∫ b

a

f dg.

The relationship between the PS-integral and the KS-integral is described by
the following theorem.

6.2.10 Theorem.The integral(PS)

∫ b

a

f dg exists if and only if theKS-integral
∫ b

a
f dg exists and in that case, both integrals have the same value

∫ b

a

f dg = (PS)

∫ b

a

f dg. (6.2.7)

Proof. a) Assume that(PS)

∫ b

a

f dg = I ∈R and let an arbitraryε> 0 be given.

By definition, there are a majorantM ∈M(f∆ g) and a minorantm∈m(f∆ g)
such that

M(b)−M(a)− ε

2
<I < m(b)−m(a) +

ε

2
,

or equivalently

I − ε

2
≤m(b)−m(a)≤M(b)−M(a) <I +

ε

2
. (6.2.8)

According to Remark6.2.8there is a gaugeδ on [a, b] such that (6.2.6) holds for
eachδ -fine partitionP of [a, b]. Combining the inequalities (6.2.6) and (6.2.8),
we show that the inequalities

I − ε

2
≤m(b)−m(a)≤S(P )≤M(B)−M(a) <I +

ε

2
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hold for everyδ -fine partitionP of the interval[a, b]. This means that the KS–
integral

∫ b

a
f dg exists and relation (6.2.7) is true.

b) Assume that
∫ b

a
f dg = I ∈R and an arbitraryε> 0 is given. By Defini-

tion 6.1.2there is a gaugeδε such that

I − ε

2
<S(P ) <I +

ε

2
for all δε-fine partitionsP of [a, b]. (6.2.9)

DefineM(a) = m(a) = 0,

M(x) = sup
{
S(Q) : Qis aδε-fine partition of [a, x]} for x∈ (a, b ]

and

m(x) = inf
{
S(Q) : Qis aδε-fine partition of [a, x]} for x∈ (a, b ].

By (6.2.9) we have

I − ε < I − ε

2
≤m(b)−m(a)≤M(b)−M(a)≤ I +

ε

2
<I + ε. (6.2.10)

Let x∈ [a, b) and t∈ [x, x + δε)∩ [a, b]. Further, letQ = (β,η) be an arbitrary
δε -fine partition of [a, x] and Q̃ = (β̃, η̃), whereβ̃ = β ∪ {t} and η̃ = η ∪ {x}.
Then Q̃ is a δε fine partition of[a, t] and

S(Q) + f(x) [g(t)− g(x)] = S(Q̃). (6.2.11)

Passing to the supremum on both sides of equality (6.2.11) we obtain the inequal-
ity

M(t)≥M(x) + f(x) [g(t)− g(x)] for x∈ [a, b) andt∈ [x, x + δε)∩ [a, b].

Analogously,

M(x)≥M(t) + f(x) [g(x)− g(t)] for x∈ (a, b] andt∈ (x− δε, x]∩ [a, b].

Similarly, we can also prove the following inequalities

m(t)≤m(x) + f(x) [g(t)− g(x)] for x∈ [a, b] and t∈ [x, x + δε)∩ [a, b]

and

m(x)≤m(t) + f(x) [g(x)− g(t)] for x∈ [a, b] and t∈ (x− δε, x]∩ [a, b].

It follows that M andm are, respectively, the majorant and minorant forf with
respect tog. Consequently, having in mind Definition6.2.6, Lemma6.2.7and
(6.2.10), we can see that the inequalities

I − ε< m(b)−m(a)≤ (PS)

∫ b

a

f dg≤ (PS)

∫ b

a

f dg≤M(b)−M(a) <I + ε
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are true. Asε> 0 was arbitrary, this yields

(PS)

∫ b

a

f dg = (PS)

∫ b

a

f dg = (PS)

∫ b

a

f dg = I,

which completes the proof. 2

6.2.11 Remark. Notice that if M ∈M(f∆ g) and the integral
∫ b

a
f dg exists,

then by Theorem6.2.10and Definitions6.2.6and6.2.9the estimate

∫ b

a

f dg≤M(b)−M(a)

is true. Analogously, iff : [a, b]→R and g : [a, b]→R are such that the integral∫ b

a
f dg exists, and if there are a gaugeδ on [a, b] and a functionu : [a, b]→R

nondecreasing on[a, b] such that

|t− τ | |f(τ)| |g(t)− g(τ)| ≤ (t− τ)
(
u(t)−u(τ)

)

holds wheneverτ ∈ [a, b] and t∈ (τ − δ(τ), τ + δ(τ))∩ [a, b],

}
(6.2.12)

then

∣∣S(P )
∣∣≤

ν(P )∑
j=1

|f(ξj)|
(|g(αj)− g(ξj)|+ |g(ξj)− g(αj−1)|

)

≤
ν(P )∑
j=1

(
u(αj)−u(αj−1)

)
= u(b)−u(a)

for everyδ -fine partitionP = (α, ξ) of [a, b], wherefrom the estimate

∣∣∣
∫ b

a

f dg
∣∣∣≤u(b)−u(a) (6.2.13)

instantaneously follows.

6.3 Existence of integral

In Examples6.2.3, we determined the values of some simple KH-integrals directly
from the definition. Now, we want to show that in some simple examples it is also
possible to determine directly the values of KS-integrals.
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6.3.1 Examples.(i) If f = f(a) on [a, b], then clearly
∫ b

a

f dg = f(a) [g(b)− g(a)] and
∫ b

a

g df = 0

for every functiong : [a, b]→R.

(ii) For any functionf : [a, b]→R, the following relations are true:
∫ b

a

f dχ(τ,b ] = f(τ) if τ ∈ [a, b), (6.3.1)

∫ b

a

f dχ[τ,b ] = f(τ) if τ ∈ (a, b], (6.3.2)

∫ b

a

f dχ[a,τ ] =−f(τ) if τ ∈ [a, b), (6.3.3)

∫ b

a

f dχ[a,τ) =−f(τ) if τ ∈ (a, b] (6.3.4)

and

∫ b

a

f dχ[τ ] =





−f(a) if τ = a,

0 if τ ∈ (a, b),

f(b) if τ = b.

(6.3.5)

Let us show the proofs of (6.3.1) and (6.3.2). The other ones then follow by
Theorem6.1.11.

a) Let τ ∈ [a, b) and g(x) = χ(τ,b ](x) on [a, b]. Then g≡ 0 on [a, τ ] and by the
example (i) we have

∫ τ

a

f dg = 0.

By Lemma6.1.12, there is a gaugeδ on [τ, b ] such thatτ = α0 = ξ1 holds for
eachδ -fine partitionP = (α, ξ) of [τ, b ]. Moreover, we have

g(αj)− g(αj−1) = 0 for j ∈{2, 3, . . . , ν(P )}.
Thus,

S(P ) = f(τ) [g(α1)− g(τ)] = f(τ) for eachδ-fine partitionP = (α, ξ) of [τ, b ],

which implies that
∫ b

τ

f dg = f(τ).
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Relation (6.3.1) now follows by Theorem6.1.11.

b) Relationship (6.3.2) will be proved analogously. We have

τ ∈ (a, b ], g(x) = χ[τ,b ](x) and
∫ b

τ

f dg = 0.

By Lemma6.1.12, there is a gaugeδ on [a, τ ] such thatαν(P ) = ξν(P ) = τ for
eachδ -fine partitionP = (α, ξ) of [a, τ ]. Thus

S(P ) = f(τ) [g(τ)− g(αν(P )−1)] = f(τ)

for everyδ -fine partitionP = (α, ξ) of [a, τ ]. Therefore,
∫ τ

a

f dg = f(τ).

Relation (6.3.2) follows again by using Theorem6.1.11.

(iii) For any functiong regulated on[a, b], the following relations are true:

∫ b

a

χ(τ,b ] dg = g(b)− g(τ+) if τ ∈ [a, b), (6.3.6)

∫ b

a

χ[τ,b ] dg = g(b)− g(τ−) if τ ∈ (a, b], (6.3.7)

∫ b

a

χ[a,τ ] dg = g(τ+)− g(a) if τ ∈ [a, b), (6.3.8)

∫ b

a

χ[a,τ) dg = g(τ−)− g(a) if τ ∈ (a, b] (6.3.9)

and

∫ b

a

χ[τ ] dg =





∆+g(a) if τ = a,

∆ g(τ) if τ ∈ (a, b),

∆−g(b) if τ = b.

(6.3.10)

Again, we limit ourselves to the proof of the first two relations.

a) First, letτ ∈ [a, b) andf(x) = χ(τ,b ](x). We have

∫ τ

a

f dg = 0.
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Let ε> 0 be given and letηε > 0 be such that

|g(τ+)− g(x)|< ε for x∈ (τ, τ + ηε).

By Lemma6.1.12we can choose a gaugeδ on [τ, b ] such thatτ = α0 = ξ1 for
eachδ -fine partitionP = (α, ξ) of [τ, b ]. Set

δε(x) =





min{ηε, δ(τ)} if x = τ,

δ(x), if x∈ (τ, b ].

Let an arbitraryδε -fine partitionP = (α, ξ) of [τ, b ] be given. Then

τ = α0 = ξ1 and α1 ∈ (τ, τ + ηε)

and consequently
∣∣∣S(P )− [g(b)− g(τ+)]

∣∣∣

=
∣∣∣[g(b)− g(αν(P )−1)] + [g(αν(P )−1)− g(αν(P )−2]

+ · · ·+ [g(α2)− g(α1)]− [g(b)− g(τ+)]
∣∣∣

= |g(τ+)− g(α1)|<ε.

Thus,
∫ b

τ

f dg = g(b)− g(τ+),

and, due to Theorem6.1.11,∫ b

a

f dg =

∫ τ

a

f dg +

∫ b

τ

f dg = g(b)− g(τ+),

i.e. (6.3.6) is true.

b) Let τ ∈ (a, b ] and f(x) = χ[τ,b ](x) for x∈ [a, b]. Then

∫ b

τ

f dg = g(b)− g(τ).

Let an arbitraryε> 0 be given. Chooseηε > 0 such that |g(τ−)− g(x)|<ε for
everyx∈ (τ − ηε, τ). Further, using Lemma6.1.12we can choose a gaugeδ on
[a, τ ] such that

τ = αν(P ) = ξν(P ) for eachδ-fine partitionP = (α, ξ) of [a, τ ].
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Now, set

δε(x) =

{
δ(x), if x∈ [a, τ),

min{ηε, δ(τ)} if x = τ.

Let an arbitraryδ -fine partitionP = (α, ξ) of [a, τ ] be given. Then

τ = αν(P ) = ξν(P ), αν(P )−1 ∈ (τ − ηε, τ) and S(P ) = g(τ)− g(αν(P )−1)

and consequently
∣∣∣S(P )− [g(τ)− g(τ−)]

∣∣∣ =
∣∣∣[g(τ)− g(αν(P )−1)]− [g(τ)− g(τ−)]

∣∣∣

=
∣∣∣g(τ−)− g(αν(P )−1)

∣∣∣<ε,

wherefrom
∫ τ

a

f dg = g(τ)− g(τ−).

Finally, using Theorem6.1.11, we get
∫ b

a

f dg =

∫ τ

a

f dg +

∫ b

τ

f dg = g(b)− g(τ−).

As far as the existence of the integral is concerned, since every finite step
function is a finite linear combination of functions of the formχ(τ,b ], χ[τ,b ], χ[b]

whereτ can be an arbitrary point from[a, b) (see (2.5.1)), we can summarize the
above examples into the following statement.

6.3.2 Corollary. If g ∈G([a, b]) and f ∈ S[a, b], then both integrals
∫ b

a

f dg and
∫ b

a

g df

exist.

6.3.3 Exercise.Prove the following statement:
Let h : [a, b]→R, c∈R, D = {d1, . . . , dn}⊂[a, b] and h(x) = c for x∈ [a, b] \D.
Then

∫ b

a

f dh = f(b) h(b)− f(a) h(a)− (
f(b)− f(a)

)
c

holds for everyf : [a, b]→R.

Hint: Write the functionh in the form h(x) = c +
∑n

k=1

[
h(dk)− c] χ[dk](x) and

use the results of Examples6.3.1.
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The next three theorems give us the basic estimates for KS-integrals under the
assumption that these integrals exist. The first two require no other assumptions
about the functionsf andg. Nevertheless, it is obvious that these theorems have
a practical meaning only under the assumption thatf is bounded on[a, b] and g
has a bounded variation on[a, b].

6.3.4 Theorem.Let f, g : [a, b]→R. Then

|S(P )| ≤ ‖f‖ varbag holds for each partitionP of [a, b]. (6.3.11)

If the integral
∫ b

a
f dg exists, then

∣∣∣
∫ b

a

f dg
∣∣∣≤‖f‖ varbag. (6.3.12)

If, in addition, the integral
∫ b

a
|f(x)| d[varxag] exists, then we have also

∣∣∣
∫ b

a

f dg
∣∣∣≤

∫ b

a

|f(x)| d[varxag]≤‖f‖ varbag. (6.3.13)

Proof. For every partitionP = (α, ξ) of [a, b] we have

|S(P )| ≤
ν(P )∑
j=1

|f(ξj)| |g(αj)− g(αj−1)|

≤
ν(P )∑
j=1

|f(ξj)|
(
varαj

αj−1
g
)≤‖f‖ varbag,

wherefrom the assertion of the theorem immediately follows. 2

6.3.5 Theorem.Let f, g : [a, b]→R. Then

|S(P )| ≤ (|f(a)|+ |f(b)|+ varbaf) ‖g‖
for each partitionP = (α, ξ) of [a, b].

}
(6.3.14)

Furthermore,

∣∣∣
∫ b

a

f dg
∣∣∣≤

(|f(a)|+ |f(b)|+ varbaf
) ‖g‖ (6.3.15)

holds whenever the integral
∫ b

a
f dg exists.



162

Proof. For an arbitrary partitionP = (α, ξ) of [a, b] we have

S(P ) = f(ξ1) [g(α1)− g(a)] + f(ξ2) [g(α2)− g(α1)]

+ · · ·+ f(ξm) [g(b)− g(αm−1)]

= f(b) g(b)− f(a) g(a)

− [f(ξ1)− f(a)] g(a)− [f(ξ2)− f(ξ1)] g(α1)

− · · ·− [f(b)− f(ξm)] g(b)

= f(b) g(b)− f(a) g(a)−
ν(P )∑
j=0

[f(ξj+1)− f(ξj)] g(αj),

where ξ0 = a and ξm+1 = b. Inequalities (6.3.14) and (6.3.15) now immediately
follow. 2

6.3.6 Remark. Usually, instead of (6.3.14) or (6.3.15), slightly less sharp esti-
mates

|S(P )| ≤ 2 ‖f‖BV ‖g‖ for every partitionP = (α, ξ) of [a, b] (6.3.16)

and ∣∣∣
∫ b

a

f dg
∣∣∣≤ 2 ‖f‖BV ‖g‖ (6.3.17)

will be sufficient for our aims.

Theorem6.3.4enables us to prove the simplest convergence theorem.

6.3.7 Theorem.Let f : [a, b]→R, g ∈BV([a, b]) and let the sequence{fn} of
functions defined on the interval[a, b] be such that

lim
n→∞

‖fn− f‖= 0, (6.3.18)

and all the integrals
∫ b

a
fn dg, n∈N, exist. Then the integral

∫ b

a
f dg exists, too,

and

lim
n→∞

∫ b

a

fn dg =

∫ b

a

f dg. (6.3.19)

Proof. By assumption (6.3.18), for a givenε> 0 there isn1 ∈N such that

‖fn− fm‖<
ε

1 + varba g
for all m,n≥n1.
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Thus, by Theorems6.1.8and6.3.4, we have

∣∣∣
∫ b

a

fn dg−
∫ b

a

fm dg
∣∣∣≤‖fn− fm‖ varba g < ε for all n≥n1.

Hence, the sequence
{ ∫ b

a
fn dg

}
⊂R is a Cauchy one and consequently there

exists a numberI ∈R such that

lim
n→∞

∫ b

a

fn dg = I. (6.3.20)

To show that
∫ b

a
f dg = I, let ε> 0 be given. Then we can choosen0 ∈N

such that
∣∣∣
∫ b

a

fn0 dg− I
∣∣∣ <ε and ‖fn0 − f‖<ε. (6.3.21)

Moreover, letδ0 be a gauge on[a, b] such that

∣∣∣Sn0(P )−
∫ b

a

fn0 dg
∣∣∣ <ε (6.3.22)

holds for all δ0 -fine partitionsP of [a, b], whereSn0(P ) = S(fn0 , dg, P ). Now,
let a δ0 -fine partitionP = (α, ξ) of [a, b] be given. Then by (6.3.21) we have

∣∣S(P )−Sn0(P )
∣∣ =

∣∣∣
ν(P )∑
j=1

(
f(ξj)− fn0(ξj)

) [
g(αj)− g(αj−1)

]∣∣∣

≤‖fn0 − f‖ varba g < ε varba g,

and, furthermore, using (6.3.21) and (6.3.22) we get

|S(P )− I| ≤ |S(P )−Sn0(P )|+
∣∣∣Sn0(P )−

∫ b

a

fn0 dg
∣∣∣

+
∣∣∣
∫ b

a

fn0 dg− I
∣∣∣

<ε (varbag + 2).

Therefore
∫ b

a

f dg = I = lim
n→∞

∫ b

a

fn dg. 2

Now, we can formulate the first existence result.
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6.3.8 Theorem.Let f ∈G([a, b]) and g ∈BV([a, b]). Then both the integrals

∫ b

a

f dg and
∫ b

a

|f(x)| d[
varxa g

]

exist and estimates(6.3.12) and (6.3.13) hold.

Proof. By Theorem4.1.5, there exists a sequence{fn} of finite step functions
which converges uniformly on[a, b] to the functionf. Further, by Corollary6.3.2
all the integrals

∫ b

a

fn dg, n∈N,

exist. By Theorem6.3.7, this means that the integral
∫ b

a
f dg exists as well and

(6.3.19) holds.

Obviously, |f | ∈G([a, b]) and by the previous part of the proof, also the inte-
gral

∫ b

a

|f(x)| d[
varxa g

]

exists. Thus, according to Theorem6.3.4, both the relations (6.3.12) and (6.3.13)
are true. 2

The following convergent result is kind of symmetric to Theorem6.3.7.

6.3.9 Theorem.Let f : [a, b]→R be bounded on[a, b], g ∈BV([a, b]) and let
the sequence{gn} of functions defined on the interval[a, b] be such that

lim
n→∞

varba(gn− g) = 0,

and all the integrals
∫ b

a
f dgn, n∈N, exist. Then the integral

∫ b

a
f dg exists as

well and

lim
n→∞

∫ b

a

f dgn =

∫ b

a

f dg (6.3.23)

holds.

Proof. The proof is onward formally similar to the proof of Theorem6.3.7. For a
given ε> 0 there isn1 ∈N such that

varba (g− gn) = var(gn− g) <
ε

2
for all n∈N,



KURZWEIL-STIELTJES INTEGRAL 165

and consequently

varba (gn− gm) < varba (gn− g) + var(g− gm) <ε for all m,n∈N.

By Theorems6.1.8 and 6.3.5(see also Remark6.3.6)

∣∣∣
∫ b

a

f dgn−
∫ b

a

f dgm

∣∣∣≤‖f‖ varba(gn− gm) for all m,n∈N.

Hence, the sequence
{ ∫ b

a

f dgn

}
is a Cauchy one and there existsI ∈R such

that

lim
n→∞

∫ b

a

fn dg = I.

Given ε> 0, choosen0 ∈N and a gaugeδ0 on [a, b] such that

∣∣∣
∫ b

a

f dgn0 − I
∣∣∣ <ε, varba(gn0 − g) <ε

and ∣∣∣Sn0(P )−
∫ b

a

f dgn0|<ε for all δ0-fine partitionsP of [a, b],

where Sn0(P ) = S(f, dgn0 , P ). Then for everyδ0 -fine partition P = (α, ξ) of
[a, b] we have

∣∣S(P )−Sn0(P )
∣∣ =

∣∣∣
ν(P )∑
j=1

f(ξj)
[
g(αj)− g(αj−1)− gn0(αj) + gn0(αj−1)

]∣∣∣

≤‖f‖ V (gn0 − g, α)≤‖f‖ varba (gn0 − g)≤ ε ‖f‖,

and therefore

|S(P )− I| ≤
∣∣S(P )−Sn0(P )

∣∣ +
∣∣∣Sn0(P )−

∫ b

a

f dgn0

∣∣∣ +
∣∣∣
∫ b

a

f dgn0 − I
∣∣∣

<ε (‖f‖+ 2).

This gives the equality

∫ b

a

f dg = I = lim
n→∞

∫ b

a

f dgn,

which concludes the proof. 2
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We know that if the functionf is regulated on[a, b] andg has a bounded vari-
ation on [a, b], then by Theorem6.3.8the integral

∫ b

a
f dg exists. However, in

applications, we often need to work with the KS-integral also in the reverse situa-
tion when f ∈BV([a, b]) andg ∈G([a, b]). The following convergence theorem
will serve us well when proving the existence of an integral in such a situation.

6.3.10 Theorem.Let f ∈BV([a, b]), g : [a, b]→R, and let the sequence{gn} of
functions defined on the interval[a, b] be such that

lim
n→∞

‖gn− g‖= 0, (6.3.24)

and the integrals
∫ b

a
f dgn exist for n∈N.

Then the integral
∫ b

a
f dg exists and

lim
n→∞

∫ b

a

f dgn =

∫ b

a

f dg. (6.3.25)

Proof. a) By assumption (6.3.24), for a givenε> 0 there is ann1 ∈N such that

‖gn− gm‖<
ε

2 ‖f‖BV

for all m, n≥n1. (6.3.26)

Our assumptions ensure that all the integrals

In :=

∫ b

a

f dgn, n∈N,

are defined. Further, by (6.3.26) and Theorem6.3.5(see also Remark6.3.6) the
relations

∣∣∣
∫ b

a

f d[gn− gm]
∣∣∣≤ 2 ‖f‖BV ‖gn− gm‖<ε for all m, n≥n1

hold. The sequence
{ ∫ b

a
f dgn

}
⊂R is a Cauchy one and thus has a finite limit,

i.e. there exists a numberI ∈R such that

lim
n→∞

In = lim
n→∞

∫ b

a

f dgn = I. (6.3.27)

b) We will prove that
∫ b

a
f dg = I. To this aim, letε> 0 be arbitrary and choose

an n0 ∈N such that simultaneously

|In0 − I|<ε and ‖gn0 − g‖<
ε

2 ‖f‖BV

. (6.3.28)
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Further, for an arbitrary partitionP of [a, b] put

Sn0(P ) := S(f, dgn0 , P ) =

ν(P )∑
j=1

f(ξj) [gn0(αj)− gn0(αj−1)]

and choose a gaugeδ0 on [a, b] such that

|Sn0(P )− In0|<ε for eachδ0-fine partitionP of [a, b]. (6.3.29)

By Remark6.3.6and due to inequalities (6.3.28), (6.3.29) we deduce that

|S(P )− I| ≤ |S(P )−Sn0(P )|+ |Sn0(P )− In0|+ |In0 − I|
= |S(f, d[g− gn0 ], P )|+ |Sn0(P )− In0|+ |In0 − I|
≤ 2 ‖f‖BV ‖g− gn0‖+ |Sn0(P )− In0|+ |In0 − I|< 3 ε

is true for eachδ0 -fine partitionP of [a, b], that is

|S(P )− I|< 3 ε for all δ0-fine partitionsP of [a, b].

But this means that
∫ b

a
f dg = I. The proof has been completed. 2

Finally, we are able to prove the following important existence result which is
somehow reverse to Theorem6.3.8.

6.3.11 Theorem.If f ∈BV([a, b]) and g ∈G([a, b]), then the integral
∫ b

a
f dg

exists and the estimate(6.3.15) holds.

Proof. Choose a sequence{gn} of finite step functions which converges uni-
formly on [a, b] to g (see Theorem4.1.5). By Corollary 6.3.2 the integrals∫ b

a
f dgn exist for all n∈N.. This means that, by Theorem6.3.5, the integral∫ b

a
f dg exists as well and the estimate (6.3.15) is true. 2

We know that the uniform limit of regulated functions is a regulated function
(see Theorem4.1.3). The following convergent statement is thus a direct corollary
of Theorems6.3.10and 6.3.11.

6.3.12 Corollary. If g, gn ∈G([a, b]) for n∈N and (6.3.24) holds, then

lim
n→∞

∫ b

a

f dgn =

∫ b

a

f dg (6.3.30)

for everyf ∈BV([a, b]).
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Another variation of the convergent statement not covered by the aforemen-
tioned theorems will follow. However, its proof is based on the same principle as
the proof of Theorem6.3.10.

6.3.13 Theorem.Let the functiong be bounded on[a, b] and let the sequence
{fn}⊂BV([a, b]) be such that

∫ b

a

fn dg exists for everyn∈N and lim
n→∞

‖fn− f‖BV = 0.

Thenf ∈BV([a, b]), the integral
∫ b

a
f dg exists and

lim
n→∞

∫ b

a

fn dg =

∫ b

a

f dg.

Proof. By Theorems6.1.8 and 6.3.5(see also Remark6.3.6)

∣∣∣
∫ b

a

fn dg−
∫ b

a

fm dg
∣∣∣≤ 2 ‖g‖ ‖fn− fm‖BV for all m, n∈N.

Hence, the sequence
{ ∫ b

a

fn dg
}

is a Cauchy one and consequently there is

I ∈R such that

lim
n→∞

∫ b

a

fn dg = I.

We will show that
∫ b

a
f dg = I. To this aim, letε> 0 be given and letn0 ∈N be

such that

∣∣∣
∫ b

a

fn0 dg− I
∣∣∣ <ε and ‖fn0 − f‖BV <ε.

Furthermore, choose a gaugeδε on [a, b] in such a way that

∣∣∣Sn0(P )−
∫ b

a

fn0 dg
∣∣∣ <ε

holds for allδε -fine partitionsP, whereSn0(P ) = S(fn0 , dg, P ). By (6.3.14), for
any partitionP of [a, b] we have

∣∣S(P )−Sn0(P )
∣∣≤

(
|f(a)− fn0(a)|+ |f(b)− fn0(b)|+ varba (f − fn0)

)
‖g‖

≤ 2 ‖f − fn0‖BV ‖g‖.
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Altogether, for everyδε -fine partition of[a, b] we obtain

|S(P )− I| ≤
∣∣S(P )−Sn0(P )

∣∣ +
∣∣∣Sn0(P )−

∫ b

a

fn0 dg
∣∣∣

+
∣∣∣
∫ b

a

fn0 dg− I
∣∣∣

< 2 ‖f − fn0‖BV ‖g‖+ 2 ε< ε 2 (‖g‖+ 1)

and thus
∫ b

a

f dg = I = lim
n→∞

∫ b

a

fn dg. 2

To complete this section, we will show how to determine the value of the
integral

∫ b

a
f dg when the value of

∫ b

a
f C dg is known for the continuous part

f C of f. The sum symbol
∑

d∈D

[
∆−f(d) (g(b)− g(d−)) + ∆+f(d) (g(b)− g(d+))

]
(6.3.31)

will appear in next corollary whereD is the set of the points of discontinuity
of the functionf ∈BV([a, b]) in the open interval(a, b). The setD has at most
countably many elements. If it is finite, then the meaning of the symbol (6.3.31) is
evident. If D is infinite, then there exists a one-to-one mappingk ∈N→ dk ∈D
such thatD = {dk}. In general, this mapping is not uniquely determined. How-
ever, as the series

∞∑

k=1

[
∆−f(dk) (g(b)− g(dk−)) + ∆+f(dk) (g(b)− g(dk+))

]

is absolutely convergent, the concrete ordering of the setD does not matter.
Therefore, we can use the notation (6.3.31) or

∑

a<x<b

[
∆−f(x) (g(b)− g(x−)) + ∆+f(x) (g(b)− g(x+))

]
(6.3.32)

as in Remark2.3.7.

6.3.14 Corollary. If f ∈BV([a, b]), g ∈G([a, b]), D is the set of the points of
discontinuity of the functionf in (a, b) and f C is the continuous part off,
f C(a) = f(a), then
∫ b

a

f dg =

∫ b

a

f C dg + ∆+f(a) (g(b)− g(a+)) + ∆−f(b) ∆−g(b)

+
∑

d∈D

[
∆−f(d) (g(b)− g(d−)) + ∆+f(d) (g(b)− g(d+))

]
.





(6.3.33)
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Proof. If the setD is finite, the validity of the relationship (6.3.33) is obvious.
AssumeD is infinite, i.e. D = {dk}. By Theorem2.3.6

∞∑

k=1

∣∣∆−f(dk) χ[dk,b ](x) + ∆+f(dk) χ(dk,b ](x)
∣∣

≤
∞∑

k=1

[|∆−f(dk)|+ |∆+f(dk)|
]
<∞





(6.3.34)

holds for everyx∈ [a, b]. The series on the left hand side of the inequality (6.3.34)
is thus absolutely convergent for everyx∈ [a, b] and hence we may define

f B(x) = ∆+f(a) χ(a,b](x) + ∆−f(b) χ[b](x)

+
∞∑

k=1

[
∆−f(dk) χ[dk,b ](x) + ∆+f(dk) χ(dk,b ](x)

]
for x∈ [a, b]

and

f B
n (x) = ∆+f(a) χ(a,b](x) + ∆−f(b) χ[b](x)

+
n∑

k=1

[
∆−f(dk) χ[dk,b ](x) + ∆+f(dk) χ(dk,b ](x)

]

for x∈ [a, b] and n∈N. By Theorem2.6.1, f B is the jump part of the function
f, while f C = f − f B is its continuous part. Moreover,f B(a) = 0, f C(a) = f(a)
and

f B(x)− f B
n (x) =

∞∑

k=n+1

[
∆−f(dk) χ[dk,b ](x) + ∆+f(dk) χ(dk,b ](x)

]

for x∈ [a, b] and n∈N. By Definition 2.5.2, f B− f B
n is a step function and by

Theorem2.5.3

varba(f
B− f B

n )≤
∞∑

k=n+1

[|∆−f(dk)|+ |∆+f(dk)|
]
. (6.3.35)

As the right hand side of (6.3.35) is the remainder of an absolutely convergent
series, we have

lim
n→∞

varba(f
B− f B

n )≤ lim
n→∞

∞∑

k=n+1

[|∆−f(dk)|+ |∆+f(dk)|
]
= 0. (6.3.36)

By Theorem6.3.13, this implies that
∫ b

a

f B dg = lim
n→∞

∫ b

a

f B
n dg ∈R. (6.3.37)
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On the other hand, by (6.3.6), (6.3.7) and Theorem6.1.8we have

∫ b

a

f B
n dg = ∆+f(a) (g(b)− g(a+)) + ∆−f(b) ∆−g(b)

+
n∑

k=1

(
∆−f(dk) [g(b)− g(dk−)] + ∆+f(dk) [g(b)− g(dk+)]

)





(6.3.38)

for all n∈N. Thus, due to (6.3.37) and (6.3.38), we get

∫ b

a

f B dg = ∆+f(a) (g(b)− g(a+)) + ∆−f(b) ∆−g(b)

+
∞∑

k=1

(
∆−f(dk) (g(b)− g(dk−)) + ∆+f(dk) (g(b)− g(dk+))

)
.





(6.3.39)

Finally, since

∞∑

k=1

∣∣∆−f(dk) (g(b)− g(dk−)) + ∆+f(dk) (g(b)− g(dk+))
∣∣

≤ 2 ‖g‖
∞∑

k=1

(
|∆−f(dk)|+ |∆+f(dk)|

)
≤ 2 ‖g‖ (varbaf) <∞

due to Corollary2.3.8, we can see that the series on the right hand side of (6.3.39)
converges absolutely. Thus, we can rewrite it in the form

∞∑

k=1

(
∆−f(dk) (g(b)− g(dk−)) + ∆+f(dk) (g(b)− g(dk+))

)

=
∑

d∈D

(
∆−f(d) (g(b)− g(d)) + ∆+f(d) (g(b)− g(d))

)

or, equivalently,

∞∑

k=1

(
∆−f(dk) (g(b)− g(dk−)) + ∆+f(dk) (g(b)− g(dk+))

)

=
∑

a<x<b

(
∆−f(x) (g(b)− g(x)) + ∆+f(x) (g(b)− g(x))

)
.

If f = f̃ C + f̃ B is another decomposition of the functionf into continuous
and jump part, then by Theorem2.6.1there is a constantc∈R such that

f̃(x)− f C(x) = f B(x)− f̃ B(x) = c for all x∈ [a, b].
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Then naturally

∫ b

a

f̃ C dg +

∫ b

a

f̃ B dg

=

∫ b

a

f C dg + c [g(b)− g(a)] +

∫ b

a

f B dg− c [g(b)− g(a)]

=

∫ b

a

f C dg +

∫ b

a

f B dg.

Hence (6.3.33) holds, while the value of the integral does not depend on the choice
of the decomposition of the functionf into its continuous and jump parts. 2

In the situation symmetrical to Corollary6.3.14, we have

6.3.15 Lemma.Let f : [a, b]→R be bounded, letg ∈BV([a, b]) be a step func-
tion and letD be the set of the points of discontinuity ofg in (a, b). Then

∫ b

a

f dg = f(a) ∆+g(a) +
∑

d∈D

f(d) ∆g(d) + f(b) ∆−g(b). (6.3.40)

Proof. Let D = {sk}, where{sk} is an infinite non-repeating sequence of points
of (a, b). Then as in the proof of Lemma2.6.5, we can write

g(x) = g(a) + ∆+g(a) χ(a,b](x) + ∆−g(b) χ[b](x)

+
∞∑

k=1

(
∆+g(sk) χ(sk,b ](x) + ∆−g(sk) χ[sk,b ](x)

)
for x∈ [a, b],

where the series on the right hand side is absolutely and uniformly convergent on
[a, b]. For x∈ [a, b] andn∈N define

gn(x) = g(a) + ∆+g(a) χ(a,b](x) + ∆−g(b) χ[b](x)

+
n∑

k=1

(
∆+g(sk) χ(sk,b ](x) + ∆−g(sk) χ[sk,b ](x)

)
.

By Lemma2.6.5, we have

lim
n→∞

‖gn− g‖BV = 0.

By Theorem6.3.9, this implies that the integral
∫ b

a
f dg exists and

lim
n→∞

∫ b

a

f dgn =

∫ b

a

f dg. (6.3.41)
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On the other hand, using (6.3.1), (6.3.2) and Theorem6.1.8, we can determine the
integrals on the left-hand side of (6.3.41). In particular, for eachn∈N we have

∫ b

a

f dgn = f(a) ∆+g(a) +
n∑

k=1

f(sk) ∆g(sk) + f(b) ∆−g(b). (6.3.42)

Furthermore, asf is bounded, it is easy to see that the series

∞∑

k=1

f(sk) ∆g(sk)

is absolutely convergent. Consequently,

lim
n→∞

(
f(a) ∆+g(a) +

n∑

k=1

f(sk) ∆g(sk) + f(b) ∆−g(b)
)

=
(
f(a) ∆+g(a) +

∞∑

k=1

f(sk) ∆g(sk) + f(b) ∆−g(b)
)
.

Summarizing, we conclude
∫ b

a

f dg = lim
n→∞

∫ b

a

f dgn

=
(
f(a) ∆+g(a) +

∞∑

k=1

f(sk) ∆g(sk) + f(b) ∆−g(b)
)

=
(
f(a) ∆+g(a) +

∑

d∈D

f(d) ∆g(d) + f(b) ∆−g(b)
)
.

This completes the proof. 2

6.3.16 Corollary. If f ∈G([a, b]), g ∈BV([a, b]), D is the set of the disconti-
nuity points ofg in (a, b) and g C is the continuous part ofg, then
∫ b

a

f dg =

∫ b

a

f dg C + f(a) ∆+g(a) +
∑

d∈D

f(d) ∆g(d) + f(b) ∆−g(b). (6.3.43)

P r o o f follows immediately from the Jordan decomposition ofg (cf. Theo-
rem2.6.1) and Lemma6.3.15. 2

6.3.17 Lemma.Let h∈G([a, b]), c∈R and

h(x) = c for x∈ [a, b] \D, (6.3.44)

where the setD⊂ (a, b) is at most countable. Then

h(x−) = h(x+) = h(a+) = h(b−) = c for all x∈(a, b). (6.3.45)
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Proof. The equalitiesh(t−) = c and h(s+) = c evidently hold for all t∈ (a, b]
ands∈ [a, b) which are not points of density ofD. On the other hand, ifx∈ (a, b]
is density point ofD, we can choose an increasing sequence{xk}⊂ [a, x) \D
which tends tox. Clearly, lim

k→∞
h(xk) = c. Since h∈G([a, b]), this, due to the

uniqueness of limits, means thath(x−) = c, as well. Similarly, the equality
h(x+) = c can be proved also for every density pointx∈ [a, b) of D. 2

We remark that a functionh defined by the equality in (6.3.44) need not be
regulated. A simple example of this fact is given by the function

h(t) =

{
1, if t = a + 1

k
, k ∈N,

0, otherwise.

More generally, it suffices to haveD = {dk} with

lim
k→∞

dk = p 6∈D and lim
k→∞

f(dk) 6= c.

6.3.18 Lemma.Let h∈BV([a, b]), c∈R and letD⊂ (a, b) be an at most count-
able set such that(6.3.44) holds. Then

∫ b

a

h dg = c [g(b)− g(a) ] + (h(a)− c) ∆+g(a)

+
∑

d∈D

(h(d)− c) ∆g(d) + (h(b)− c ) ∆−g(b)





(6.3.46)

holds for each functiong ∈G([a, b]).

Proof. Sinceh∈G([a, b]), by Lemma6.3.17we have (6.3.45). Hence, the func-
tion hC(x)≡h(a) is the continuous part ofh, hB = h−hC,

∆+h(a) = c−h(a), ∆−h(b) = h(b)− c

and

∆−h(x) = h(x)− c =−∆+h(x) for all x∈ (a, b).

Now, for an arbitraryg ∈G([a, b]), using Corollary6.3.14where we replacef by
h, we get

∫ b

a

h dg = h(a) [g(b)− g(a) ] + (c−h(a)) [g(b)− g(a+) ]

+
∑

d∈D

(h(d)− c) [g(b)− g(d−)− g(b) + g(d+) ]

+ (h(b)− c ) ∆−g(b)
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= h(a) [g(b)− g(a) ] + (h(a)− c) [g(b)− g(a) ]

− (h(a)− c) [g(a+)− g(a) ]

+
∑

d∈D

(h(d)− c) ∆g(d) + (h(b)− c ) ∆−g(b)

= c [g(b)− g(a) ] + (h(a)− c) ∆+g(a)

+
∑

d∈D

(h(d)− c) ∆g(d) + (h(b)− c ) ∆−g(b),

i.e. (6.3.46) holds. 2

6.3.19 Lemma.Let h∈G([a, b]), c∈R and an at most countable setD⊂ (a, b)
be such that(6.3.44) holds. Then(6.3.46) and

∫ b

a

g dh = g(b) h(b)− g(a) h(a)− c
(
g(b)− g(a)

)
(6.3.47)

hold for eachg ∈BV([a, b]).

Proof. Assume the setD is infinite, i.e. D = {dk}.
a) By Lemma6.3.17we have

h(x−) = h(x+) = h(a+) = h(b−) = c for eachx∈ (a, b)

and

∆−h(x) = h(x)− c =−∆+h(x) for eachx∈ (a, b).

The functionh : [a, b]→R satisfies (6.3.44) if and only if

h(x) = c +





h(x)− c if x∈D′,

0, if x /∈D′,

whereD′ = D∪{a}∪ {b}. For n∈N, setD′
n = {dk}n

k=1 ∪{a}∪ {b} and

hn(x) = c +





h(x)− c if x∈D′
n,

0, if x /∈D′
n.

Then for everyn∈N we gethn(a) = h(a), hn(b) = h(b),

hn(x) = c + (h(a)− c) χ[a](x) +
n∑

k=1

(h(dk)− c) χ[dk](x)

+(h(b)− c) χ[b](x) for x∈ [a, b]





(6.3.48)

and
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|h(x)−hn(x)|=



|h(x)− c|, if x∈D \D′

n,

0, if x /∈D \D′
n.

Let ε> 0 be given. Then by Corollary4.1.7the set of thosek ∈N for which

|∆−h(x)|= |∆+h(x)|= |h(dk)− c| ≥ ε

can have only an at most finite number of elements. Hence, there is annε∈N such
that D̃ε⊂D′

n for n≥nε. Hence,

|h(x)−hn(x)|= 0 for x∈ D̃ε.

Obviously, we have also

|h(x)−hn(x)|<ε if x∈ [a, b] \ D̃ε.

Thus, ‖h−hn‖<ε whenevern≥nε. In other words,

lim
n→∞

‖h−hn‖= 0. (6.3.49)

b) Now, by (6.3.48), (6.3.5) and Theorem6.1.8(see also Exercise6.3.3) we check
that the equalities

∫ b

a

g dhn =
n∑

k=1

(h(dk)− c)
( ∫ b

a

g dχ[dk]

)

= g(b) [h(b)− c ]− g(a) [h(a)− c ]

= g(b) h(b)− g(a) h(a)− c [g(b)− g(a) ]

hold for everyn∈N. Thus, by (6.3.49) and by Corollary6.3.12we have
∫ b

a

g dh = lim
n→∞

∫ b

a

g dhn = g(b) h(b)− g(a) h(a)− c [g(b)− g(a) ],

i.e. (6.3.47) holds.

c) Similarly, by (6.3.48), (6.3.7)–(6.3.9) and Theorem6.1.8we get
∫ b

a

hn dg = c (g(b)− g(a)) + (h(a)− c)

∫ b

a

χ[a] dg

+
n∑

k=1

(h(dk)− c)

∫ b

a

χ[dk] dg + (h(b)− c)

∫ b

a

χ[b] dg

= c (g(b)− g(a)) + (h(a)− c) ∆+g(a)

+
n∑

k=1

(h(dk)− c) ∆ g(dk) + (h(b)− c) ∆−g(b)
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for everyn∈N. However, by Corollary4.1.7, by (6.3.49) and Theorem6.3.7, we
have also

∫ b

a

h dg = lim
n→∞

∫ b

a

hn dg

= c (g(b)− g(a)) + (h(a)− c) ∆+g(a)

+ lim
n→∞

n∑

k=1

(h(dk)− c) ∆ g(dk) + (h(b)− c) ∆−g(b)

= c (g(b)− g(a)) + (h(a)− c) ∆+g(a)

+
∞∑

k=1

(h(dk)− c) ∆ g(dk) + (h(b)− c) ∆−g(b),

i.e. (6.3.46) holds.

The proof in the case whenD is finite is obvious. 2

6.3.20 Exercise.Show that the following assertion is true.
Let h∈BV([a, b]), c∈R and an at most countable setD⊂ (a, b) be such that
(6.3.44) holds. Then(6.3.47) holds for everyg ∈G([a, b]).

Hint: Use Lemma6.3.19and Theorem6.3.7.

6.4 Integration by parts

The aim of this section is to prove the integration by parts theorem for KS-
integrals. Before that, let us recall the convention (x) from Conventions and No-
tation according to which we assume

f(a−) = f(a) and f(b+) = f(b),

i.e.

∆−f(a) = ∆+f(b) = 0, ∆f(a) = ∆+f(a), ∆f(b) = ∆−f(b) (6.4.1)

for any f ∈G([a, b]).

First step of the proof will be the following lemma dealing with the case when
one of the considered functions is a finite step function.

6.4.1 Lemma. Let f : [a, b]→R be a finite step function and letg ∈G([a, b]).
Then both the integrals

∫ b

a

f dg and
∫ b

a

g df
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exist and
∫ b

a

f dg +

∫ b

a

g df = f(b) g(b)− f(a) g(a)

+
∑

a≤x≤b

(
∆−f(x) ∆−g(x)−∆+f(x) ∆+g(x)

)





(6.4.2)

Proof. Sinceg is a finite step function, there are a divisionα = {α0, α1, . . . , αm}
of [a, b] and real numbersc1, . . . , cm ∈R such thatg(t) = cj for t∈ (αj−1, αj).
Using the results of Examples6.3.1we obtain

∫ b

a

f dg =f(a) ∆+g(a) + f(b) ∆−g(b)

+
m∑

j=1

cj [g(αj−)− g(αj−1+)] +
m−1∑
j=1

f(αj) [g(αj+)− g(αj−)],

and also
∫ b

a

g df =
m∑

j=1

[
cj (g(αj−1)− g(αj)) + f(αj) g(αj)− f(αj−1) g(αj−1)

]
.

Therefore
∫ b

a

f dg +

∫ b

a

g df =f(b) g(b)− f(a) g(a)−
m∑

j=1

cj [∆+g(αj−1) + ∆−g(αj)]

+
m∑

j=1

[f(αj−1) ∆+g(αj−1) + f(αj) ∆−g(αj)].

Noting that

∆+f(αj−1) = cj − f(αj−1) and ∆−f(αj) = f(αj)− cj for j ∈{1, . . . , m},

the equality (6.4.2) follows. 2

6.4.2 Theorem(INTEGRATION BY PARTS). Let f ∈G([a, b]) andg ∈BV([a, b]).
Then both the integrals

∫ b

a

f dg and
∫ b

a

g df

exist and(6.4.2) holds.
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Proof. Let {fn} be a sequence of finite step functions which tends uniformly to
f on [a, b]. Then by Lemma6.4.1we have

∫ b

a

fn dg +

∫ b

a

g dfn− fn(b) g(b) + fn(a) g(a)

=
∑

a≤x≤b

(
∆−fn(x) ∆−g(x)−∆+fn(x) ∆+g(x)

)





(6.4.3)

for any n∈N. By Theorems6.3.7and6.3.10, the relation

lim
n→∞

(∫ b

a

fn dg +

∫ b

a

g dfn− fn(b) g(b) + fn(a) g(a)

)

=

∫ b

a

f dg +

∫ b

a

g df − f(b) g(b) + f(a) g(a)

holds. Furthermore, taking into account that

|∆+f(t)| ≤ 2 ‖f‖, |∆−f(t)| ≤ 2 ‖f‖
and

|∆+(fn− f)(t)| ≤ 2 ‖fn− f‖ and |∆−(fn− f)(t)| ≤ 2 ‖fn− f‖
for t∈ [a, b], we obtain the following estimates

∑

a≤t≤b

∣∣∆+f(t) ∆+g(t)−∆−f(t) ∆−g(t)
∣∣

≤ 2 ‖f‖
∑

a≤t≤b

(
|∆+g(t)|+ |∆−g(t)|

)
≤ 2 ‖f‖ varbag

and ∑

a≤t≤b

∣∣∆+(fn− f)(t) ∆+g(t)−∆−(fn− f)(t) ∆−g(t)
∣∣

≤ 2 ‖fn− f‖
∑

a≤t≤b

(
|∆+g(t)|+ |∆−g(t)|

)
≤ 2 ‖fn− f‖ varbag.

Consequently, the sum∑

a≤t≤b

(
∆+f(t) ∆+g(t)−∆−f(t) ∆−g(t)

)

is absolutely convergent and

lim
n→∞

∑

a≤x≤b

(
∆−fn(x) ∆−g(x)−∆+fn(x) ∆+g(x)

)

=
∑

a≤x≤b

(
∆−f(x) ∆−g(x)−∆+f(x) ∆+g(x)

)
.

Summarizing, lettingn→∞ in (6.4.3) we obtain (6.4.2). 2
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6.4.3 Remark. We could see that the integration by parts theorem does not hold
for the KS-integral in the form we know for RS-integrals. The reason is that the
domain of functions which are KS-integrable is significantly wider than that of
RS-integrable functions.

6.5 The indefinite integral

The Saks-Henstock lemma is an indispensable tool in the study of deeper proper-
ties of the Kurzweil-Stieltjes integral.

6.5.1 Lemma(SAKS-HENSTOCK). Let f, g : [a, b]→R be such that the integral∫ b

a
f dg exists. Letε> 0 be given and letδ be a gauge on[a, b] such that

∣∣∣∣S(P )−
∫ b

a

f dg

∣∣∣∣<ε for all δ-fine partitionsP of [a, b].

If {([sj, tj], θj) : j = 1, 2, . . ., n} is an arbitrary system satisfying

a≤ s1≤ θ1≤ t1≤ s2≤ · · ·≤ sn≤ θn≤ tn≤ b,

[sj, tj]⊂ (θj − δ(θj), θj + δ(θj)) for j = 1, . . . , n,

}
(6.5.1)

then
∣∣∣∣∣

n∑
j=1

(
f(θj) (g(tj)− g(sj))−

∫ tj

sj

f dg

)∣∣∣∣∣≤ ε. (6.5.2)

Proof. Assume that the system
{

([sj, tj], θj) : j ∈{1, 2, . . ., n}
}

satisfies condi-

tions (6.5.1). Sett0 = a andsn+1 = b.

Now, let η > 0 and j ∈{0, 1, . . . , n} be given. Assume thattj <sj+1. Then
by Remark6.1.5, there are a gaugeδj on [tj, sj+1] and aδj -fine partitionPj =
(αj, ξj) of [tj, sj+1] such thatδj(x)≤ δ(x) for x∈ [tj, sj+1] and

∣∣∣∣∣S(Pj)−
∫ sj+1

tj

f dg

∣∣∣∣∣<
η

n + 1
. (6.5.3)

Now, form aδ -fine partitionQ = (β,η) of the interval[a, b] such that

S(Q) =
n∑

j=1

f(θj) (g(tj)− g(sj)) +
n∑

j=0

S(Pj).
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(If tj = sj+1, we setS(Pj) = 0.) Hence,
∣∣∣∣∣

n∑
j=1

(
f(θj) (g(tj)− g(sj))−

∫ tj

sj

f dg

)
+

n∑
j=0

(
S(Pj)−

∫ sj+1

tj

f dg
)∣∣∣∣∣

=

∣∣∣∣S(Q)−
∫ b

a

f dg

∣∣∣∣ <ε.

This together with (6.5.3) yields
∣∣∣∣∣

n∑
j=1

f(θj) (g(tj)− g(sj))−
∫ tj

sj

f dg

∣∣∣∣∣

≤
∣∣∣∣S(Q)−

∫ b

a

f dg

∣∣∣∣ +

∣∣∣∣∣
n∑

j=0

(
S(Pj)−

∫ sj+1

tj

f dg

)∣∣∣∣∣ <ε + η.

Sinceη > 0 was arbitrary, (6.5.2) follows. 2

Sometimes it is useful to have an estimate similar to (6.5.2), but with the ab-
solute value inside the sum. Such estimate is easily obtained directly from the
Saks-Henstock lemma.

6.5.2 Corollary. Let f, g : [a, b]→R be such that the integral
∫ b

a
f dg exists. Let

ε> 0 be given and letδ be a gauge on[a, b] such that
∣∣∣∣S(P )−

∫ b

a

f dg

∣∣∣∣<ε for all δ-fine partitions of [a, b].

If {([sj, tj], θj) : j = 1, 2, . . ., n} is an arbitrary system satisfying

a≤ s1≤ θ1≤ t1≤ s2≤ · · ·≤ sn≤ θn≤ tn≤ b,

[sj, tj]⊂ (θj − δ(θj), θj + δ(θj)) for j ∈{1, . . . , n},
then

n∑
j=1

∣∣∣∣∣f(θj) (g(tj)− g(sj))−
∫ tj

sj

f dg

∣∣∣∣∣≤ 2 ε. (6.5.4)

Proof. Consider the sets

J+ = {j ∈{1, . . . , n} : f(θj) (g(tj)− g(sj))−
∫ tj

sj

f dg > 0},

J− = {j ∈{1, . . . , n} : f(θj) (g(tj)− g(sj))−
∫ tj

sj

f dg < 0}.
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According to Lemma6.5.1, we have

0≤
∑

j∈J+

(
f(θj) (g(tj)− g(sj))−

∫ tj

sj

f dg

)
≤ ε,

0≤
∑

j∈J−

(∫ tj

sj

f dg− f(θj) (g(tj)− g(sj))

)
≤ ε.

Adding these inequalities gives (6.5.4). 2

6.5.3 Theorem.Let
∫ b

a
f dg exist and letc∈ [a, b]. Then

lim
x→c

x∈[a,b]

(∫ x

a

f dg + f(c) (g(c)− g(x))

)
=

∫ c

a

f dg. (6.5.5)

Proof. Let ε > 0 be given and letδε be a gauge on[a, b] such that
∣∣∣∣S(P )−

∫ b

a

f dg

∣∣∣∣<ε for all δε− fine partitionsof [a, b].

For eachx∈ (c, c + δε(c))∩ [a, b], the system

{([s1, t1], θ1)}, where t1 = x and s1 = θ1 = c,

satisfies conditions (6.5.1). Therefore, by Lemma6.5.1, we get
∣∣∣∣f(c) (g(x)− g(c))−

∫ x

c

f dg

∣∣∣∣≤ ε. (6.5.6)

Similarly, if x∈ (c− δε(c), c)∩ [a, b], then, applying Lemma6.5.1to the system
{[x, c], c}, we get

∣∣∣∣f(c) (g(c)− g(x))−
∫ c

x

f dg

∣∣∣∣≤ ε.

So, inequality (6.5.6) holds for eachx∈ (c− δε(c), c + δε(c))∩ [a, b]. Hence
∣∣∣
∫ c

a

f dg−
∫ x

a

f dg− f(c) [g(c)− g(x)]
∣∣∣ =

∣∣∣
∫ x

c

f dg− f(c) [g(x)− g(c)]
∣∣∣≤ ε,

i.e., (6.5.5) holds. 2

6.5.4 Corollary. Suppose that
∫ b

a
f dg exists,g is regulated on[a, b], and let

h(x) =

∫ x

a

f dg for x∈ [a, b].

Then the following statements hold:
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(i) h is regulated and satisfies

h(t+) = h(t) + f(t) ∆+g(t) for t∈ [a, b),

h(t−) = h(t)− f(t) ∆−g(t) for t∈ (a, b].

(ii) If f is bounded andg has bounded variation, thenh has bounded varia-
tion, too.

Proof. The first assertion follows immediately from Theorem6.5.3. To prove the
second assertion, let us consider an arbitrary divisionα = {α0, α1, . . . , αm} of
the interval[a, b]. By Theorems6.3.4and2.1.14we have

V (h, α) =
m∑

j=1

|h(αj)−h(αj−1)|=
m∑

j=1

∣∣∣∣∣
∫ αj

αj−1

f dg

∣∣∣∣∣

≤ ‖f‖
m∑

j=1

varαj
αj−1

g = ‖f‖ varbag <∞,

and therefore varba h<∞. 2

6.5.5 Theorem(HAKE). (i) Assume that
∫ x

a
f dg exist for eachx∈ [a, b) and

lim
x→b−

( ∫ x

a

f dg + f(b) [g(b)− g(x)]
)

= I ∈R.

Then
∫ b

a
f dg = I.

(ii) Assume that
∫ b

x
f dg exist for eachx∈ (a, b ] and

lim
x→a+

( ∫ b

x

f dg + f(a) [g(x)− g(a)]
)

= I ∈R.

Then
∫ b

a
f dg = I.

Proof. (i) a) Let ε > 0 be given. Choose a∆ > 0 in such a way that
∣∣∣
∫ x

a

f dg + f(b) [g(b)− g(x)]− I
∣∣∣<ε for eachx∈ [b−∆, b). (6.5.7)

Setxk = b− b− a

k + 1
for k ∈N∪{0}. Then the sequence{xk} is increasing,

limk→∞ xk = b and

for a givenk ∈N, there is a gaugeδk on [a, xk] such that

∣∣∣S(P )−
∫ xk

a

f dg
∣∣∣<

ε

2k

for all δk-fine partitionsP of [a, xk].





(6.5.8)
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b) Let δ0 be a gauge on[a, b) such that

δ0(s)≤ δk(s) and [s− δ0(s), s + δ0(s)]⊂ [a, xk]

for every k ∈N and s∈ [xk−1, xk). Furthermore, for a givens∈ [a, b), let κ(s)
stand for the uniquely determined natural numberk such thats∈ [xk−1, xk).

c) We will prove that

∣∣∣S(T )−
∫ x

a

f dg
∣∣∣ <ε

for all x∈ [a, b) and allδ0-fine partitionsT of [a, x].



 (6.5.9)

To this aim, assume thatx∈ [a, b) is given andp = κ(x) (i.e. x∈ [xp−1, xp)).
Moreover, letT = (τ ,θ) be an arbitraryδ0 -fine partition of[a, x]. Setν(T ) = r.
For everyk ∈N∩ [1, p ] and everyj ∈N∩ [1, r] such thatκ(θj) = k, we have

θj − δk(θj)≤ θj − δ0(θj)≤ τj−1 <τj ≤ θj + δ0(θj)≤ θj + δk(θj).

Thanks to (6.5.8), we see that for everyk ∈{1, . . . , p}, the assumptions (6.5.1) of
Lemma6.5.1are satisfied if the system{([sj, tj], θj) : j = 1, . . . , n} is replaced by
{([τj−1, τj], θj) : j = 1, . . . , r, κ(θj) = k} . Therefore,

∣∣∣
∑

κ(θj)=k

f(θj) [g(τj)− g(τj−1)]−
∫ τj

τj−1

f dg
∣∣∣≤ ε

2k
for eachk ∈{1, . . . , p}.

Finally,

∣∣∣S(T )−
∫ x

a

f dg
∣∣∣

=
∣∣∣

p∑

k=1

∑

κ(θj)=k

(
f(θj) [g(τj)− g(τj−1)]−

∫ τj

τj−1

f dg
)∣∣∣

≤
p∑

k=1

∣∣∣
∑

κ(θj)=k

(
f(θj) [g(τj)− g(τj−1)]−

∫ τj

τj−1

f dg
)∣∣∣<

∞∑

k=1

ε

2k
= ε,

i.e. (6.5.9) is true.

d) Setδ∗(x) = min{b− x, δ0(x)
}

for x∈ [a, b), δ∗(x) = ∆ for x = b and letP =
(α, ξ) be an arbitraryδ∗ -fine partition of[a, b]. Put m = ν(P ). Thenξm = αm =
b,



KURZWEIL-STIELTJES INTEGRAL 185

αm−1 ∈ (b−∆, b) and

∣∣∣S(P )− I
∣∣∣ =

∣∣∣
m−1∑
j=1

f(ξj) [g(αj)− g(αj−1)] + f(b) [g(b)− g(αm−1)]− I
∣∣∣

≤
∣∣∣

m−1∑
j=1

f(ξj) [g(αj)− g(αj−1)]−
∫ αm−1

a

f dg
∣∣∣

+
∣∣∣
∫ αm−1

a

f dg + f(b) [g(b)− g(αm−1)]− I
∣∣∣.

Finally, using (6.5.9) and (6.5.7) (where we setx = αm−1 ), we obtain
∣∣∣S(P )− I

∣∣∣ < 2 ε, i.e.
∫ b

a

f dg = I.

The proof of the second statement can be done analogously and is left as an exer-
cise for the reader. 2

6.5.6 Exercise.Prove the statement (ii) of Theorem6.5.5and its variant:
Assume the integral

∫ b

a
f dg exists. Letx∈ [a, b) be given and let

lim
t→x+

( ∫ t

a

f dg− f(x) [g(t)− g(x)]
)

= I ∈R.

Then
∫ x

a
f dg = I.

6.5.7 Examples.Using Hake’s theorem, we can easily and in an universal way
derive the formulas obtained in Examples6.3.1 directly from the definition by
using suitable choices of the gauge. E.g. the formula

∫ b

a

f dχ[τ,b ] = f(τ),

whereτ ∈ (a, b] andf is arbitrary, can be derived in the following way:
∫ b

a

f dχ[τ,b ] =

∫ τ

a

f dχ[τ,b ]

= lim
t→τ−

( ∫ t

a

f dχ[τ,b ] + f(τ) [χ[τ,b ](τ)−χ[τ,b ](t)]
)

= f(τ).

Similarly, for τ ∈ [a, b) andg ∈G([a, b]), using Hake’s theorem we get
∫ b

a

χ[a,τ ] dg =

∫ τ

a

1 dg +

∫ b

τ

χ[a,τ ] dg

= g(τ)− g(a) + lim
t→τ+

( ∫ b

t

χ[a,τ ] dg + 1 [g(t)− g(τ)]
)

= g(τ+)− g(a),
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i.e. (6.3.8) holds.

6.5.8 Exercise.Using Hake’s theorem, prove all the other formulas from Exam-
ples6.3.1.

6.6 Substitution

The next theorem on substitution in KS-integrals will be substantially helpful in
the next chapter.

6.6.1 Theorem(SUBSTITUTION THEOREM). Let the functiong : [a, b]→R be
given and assume that the functionh : [a, b]→R is bounded and such that the
integral

∫ b

a
f dg exists. Then whenever one of the integrals

∫ b

a

h(x) d
[ ∫ x

a

f dg
]
,

∫ b

a

h(x) f(x) d[ g(x)],

exists, the other one exists as well, in which case the equality

∫ b

a

h(x) d
[ ∫ x

a

f dg
]
=

∫ b

a

h(x) f(x) d[ g(x)]

holds.

Proof. First, notice that by Theorem6.1.10the function w(x) =
∫ x

a
f dg is de-

fined for everyx∈ [a, b].

a) Assume the integral
∫ b

a
hf dg exists. Letε> 0 be given and letδε be a gauge

on [a, b] such that the inequalities

ν(P )∑
j=1

∣∣∣h(ξj) f(ξj) [g(αj)− g(αj−1)]−
∫ αj

αj−1

hf dg
∣∣∣<ε

and
ν(P )∑
j=1

∣∣∣f(ξj) [g(αj)− g(αj−1)]−
∫ αj

αj−1

f dg
∣∣∣<ε

hold for all δε -fine partitionsP = (α, ξ) of [a, b]. (Such a gauge exists by Corol-
lary 6.5.2.)
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Let a δε -fine partitionP = (α, ξ) be given andm = ν(P ). Then

∣∣∣
m∑

j=1

h(ξj) [w(αj)−w(αj−1)]−
∫ b

a

hf dg
∣∣∣

≤
m∑

j=1

∣∣∣h(ξj)

∫ αj

αj−1

f dg−h(ξj) f(ξj) [g(αj)− g(αj−1)]
∣∣∣

+
m∑

j=1

∣∣∣h(ξj) f(ξj) [g(αj)− g(αj−1)]−
∫ αj

αj−1

hf dg
∣∣∣

≤‖h‖
m∑

j=1

∣∣∣
∫ αj

αj−1

f dg− f(ξj) [g(αj)− g(αj−1)]
∣∣∣

+
m∑

j=1

∣∣∣h(ξj) f(ξj) [g(αj)− g(αj−1)]−
∫ αj

αj−1

hf dg
∣∣∣

≤ (‖h‖+ 1) ε,

i.e. the integral
∫ b

a
h dw exists and

∫ b

a
h dw =

∫ b

a
hf dg holds.

b) The converse implication would be proved similarly, again with a substantial
use of Corollary6.5.2. 2

Of course, statements analogous to substitution theorems presented for the
RS-integrals in Section5.4, hold for the KS-integral, as well. We will mention at
least one of them.

6.6.2 Theorem.Assume that the functionφ : [c, d]→R is increasing and maps
the interval[c, d] onto the interval[a, b]. Furthermore, letf : [a, b]→R. Then, if
any one of the integrals

∫ b

a

f(x) d[ g(x)],

∫ d

c

f(φ(x)) d[ g(φ(x))]

exists, the other one exists as well and the equality

∫ d

c

f(φ(x)) d[ g(φ(x))] =

∫ b

a

f(x) d[ g(x)] (6.6.1)

holds.

Proof. Notice that asφ is increasing and maps the interval[c, d] onto the interval
[a, b], both φ and its inversionφ−1 have to be continuous.
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For a given partitionQ = (β,η) of [c, d] and j ∈{1, . . . , ν(Q)}, set

αj = φ(βj), ξj = φ(ηj)

and

α =
{
α0, α1, . . . , αν(Q)

}
, ξ =

{
ξ1, . . . , ξν(Q)

}
.

ThenP := (α, ξ) is partition of [a, b] andν(P ) = ν(Q). We write

P = φ(Q) and Q = φ−1(P ).

Obviously,φ−1(P ) is a partition of[c, d] for every partitionP of [a, b].

Further, for a given gaugẽδ on [c, d], defineδ : [a, b]→ (0,∞) in such a way
that

φ−1(τ + δ(τ)) <φ−1(τ) + δ̃(φ−1(τ)) if τ ∈ [a, b)

and

φ−1(τ − δ(τ)) >φ−1(τ)− δ̃(φ−1(τ)) if τ ∈ (a, b ].





(6.6.2)

Now, for anyδ -fine partitionP = (α, ξ) of [a, b] we get by (6.6.2)

βj = φ−1(αj)≤φ−1(ξj + δ(ξj)) <φ−1(ξj) + δ̃(φ−1(ξj)) = ηj + δ̃(ηj)

and

βj−1 = φ−1(αj−1)≥φ−1(ξj − δ(ξj)) >φ−1(ξj)− δ̃(φ−1(ξj)) = ηj − δ̃(ηj)

for all j ∈{1, . . . , ν(P )}. In other words,φ−1(P ) is δ̃ -fine wheneverP is δ -
fine. Similarly, for every gaugeδ on [a, b] we can find a gaugẽδ on [c, d] such
that φ(Q) is δ -fine as soon asQ is δ̃ -fine.

Now, since the equality

ν(P )∑
j=1

f(ξj)
[
g(αj)− g(αj−1)

]
=

ν(Q)∑
j=1

f(φ(ηj))
[
g(φ(βj))− g(φ(βj−1))

]

holds for every partitionP of ab and Q = φ−1(P ), the proof of the theorem
follows. 2

6.6.3 Exercises. (i) Formulate and prove an analogue of Theorem6.6.2for the
case whenφ is decreasing.
(ii) Formulate and prove an analogue of Theorem5.4.6for the KS-integral.

6.6.4 Remark. Theorem6.6.2can be generalized in several ways. For example,
the following version of substitution theorem found its use in the application of
the theory of hysteresis in economics (see [74]):
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Assume that the functionf : [a, b]→R is bounded on[a, b] and regulated on
[α, b] for everyα∈ (a, b). Moreover, let the functionφ : [a, b]→R be nondecreas-
ing on [a, b] and letφ(a) = c, φ(b) = d. Finally, let the functiong ∈BV([c, d]) be
continuous from the right on[c, d). Set

ψ(s) = inf{t∈ [a, b] : s≤φ(t)} fors∈ [c, d ].

Then the relation

∫ b

α

f(t) d[ g(φ(t))] =

∫ φ(b)

φ(α)

f(ψ(s)) d[ g(s)]

holds for everyα∈ [a, b].

6.7 Absolute integrability

The Kurzweil-Stieltjes integral is a nonabsolutely convergent integral – the ex-
istence of

∫ b

a
f dg does not necessarily imply the existence of

∫ b

a
|f | dg. In this

section, we collect some sufficient and necessary conditions for the existence of
the latter integral.

We restrict our attention to the case wheng is nondecreasing. In this situation,
if both

∫ b

a
f dg and

∫ b

a
|f | dg exist, we have the inequality

∣∣∣∣
∫ b

a

f dg

∣∣∣∣≤
∫ b

a

|f | dg.

This fact follows immediately from the definition of the integral, since

|S(f, dg, P )| ≤S(|f |, dg, P ) for each partitionP of [a, b].

6.7.1 Theorem.Assume thatg : [a, b]→R is nondecreasing and
∫ b

a
f dg exists.

Let

F (x) =

∫ x

a

f dg for x∈ [a, b].

Then
∫ b

a
|f | dg exists if and only ifF has bounded variation on[a, b]. In this

case, we have

∫ b

a

|f | dg = varbaF.
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Proof. Suppose that
∫ b

a
|f | dg exists. If α is an arbitrary division of[a, b], then

V (F, α) =

ν(α)∑
j=1

|F (αj)−F (αj−1)|=
ν(α)∑
j=1

∣∣∣∣∣
∫ αj

αj−1

f dg

∣∣∣∣∣

≤
ν(α)∑
j=1

∫ αj

αj−1

|f | dg =

∫ b

a

|f | dg,

and therefore varbaF is finite.
Conversely, suppose thatF has bounded variation on[a, b]. Consider an ar-

bitrary ε> 0 and letα be a division of[a, b] satisfying

varbaF − ε≤V (F, α)≤ varbaF.

Observe that ifβ is a refinement ofα, then

varbaF − ε≤V (F, α)≤V (F, β)≤ varbaF. (6.7.1)

Let δ be a gauge on[a, b] with the following properties:

• If P is a δ -fine partition of[a, b], then
∣∣∣
∫ b

a
f dg−S(f, dg, P )

∣∣∣ <ε.

• If i∈{1, . . . , ν(α)} and t∈ (αi−1, αi), then

(t− δ(t), t + δ(t))⊂ (αi−1, αi).

• If i∈{0, . . . , ν(α)}, then

(αi− δ(αi), αi + δ(αi))⊂ (αi−1, αi+1)

with the convention thatα−1 =−∞ andαν(α)+1 =∞.

Let P = (β, ξ) be an arbitraryδ -fine partition of [a, b]. The last two properties
of δ ensure that each interval[βi−1, βi] is either contained in a single interval
[αj−1, αj], or [βi−1, βi]⊂ [αj−1, αj+1] andξi = αj. By splitting all intervals of the
second type in two subintervals[βi−1, ξi] and [ξi, βi] that share the same tagξi,
we can obtain a new partitionP ′ such thatS(|f |, dg, P ) = S(|f |, dg, P ′). Thus,
without loss of generality, we can assume thatβ is a refinement ofα.

We now use the fact thatg is nondecreasing, the reverse triangle inequality
||x| − |y|| ≤ |x− y|, and finally Corollary6.5.2to obtain

∣∣∣S(|f |, dg, P )−V (F, β)
∣∣∣ =

∣∣∣
ν(β)∑
i=1

(|f(ξi) (g(βi)− g(βi−1))| −
∣∣
∫ βi

βi−1

f dg
∣∣)

∣∣∣

≤
ν(β)∑
i=1

∣∣∣f(ξi) (g(βi)− g(βi−1))−
∫ βi

βi−1

f dg
∣∣∣≤ 2ε.
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By combining this estimate with (6.7.1), we conclude that
∣∣S(|f |, dg, P )− varbaF

∣∣≤ |S(|f |, dg, P )−V (F, β)|+
∣∣V (F, β)− varbaF

∣∣≤ 3ε,

which means that
∫ b

a
|f | dg exists and equals varb

aF. 2

6.7.2 Example.Let {tn} be an increasing sequence of points from the open
interval (0, 1) tending toτ ∈ (0, 1]. Consider the functiong : [0, 1]→R given by

g(t) =
∞∑

n=1

χ[tn,1](t)
1

n2
. (6.7.2)

It is not hard to see thatg is nondecreasing and right-continuous on[0, 1). Let
f : [0, 1]→R be defined as

f(t) =





(−1)n+1 n if t = tn for some n∈N,

0 otherwise.

Claim 1. The integral
∫ 1

0
f dg exists.

Note that, for eacht∈ [0, τ), the integral
∫ t

0
f dg exists (due to Corollary6.3.2

and using the fact that the restriction ofg to the interval[0, t] defines a finite step
function). Moreover, by Example6.3.1, we have

∫ t1

0

f dg = f(t1) g(t1) = 1,

and
∫ tn+1

tn

f dg =

∫ tn+1

tn

f d
[
g(tn)χ[tn,tn+1) + g(tn+1)χ[tn+1]]

= f(tn+1) [g(tn+1)− g(tn)] =
(−1)n+2

n + 1
,

for eachn∈N. Since

lim
t→τ−

∫ t

0

f dg + f(τ)∆+g(τ) = lim
n→∞

∫ tn

0

f dg =
∞∑

n=1

(−1)n+1

n
= ln 2,

applying Hake’s Theorem (Theorem6.5.5), we conclude that the integral
∫ τ

0
f dg

exists and equalsln 2. If τ = 1, the claim is proved. Ifτ < 1, then
∫ 1

τ
f dg = 0

(becauseg is constant on[τ, 1]), wherefrom the proof of the claim follows.

Claim 2. |f | is not integrable with respect tog on [0, 1].
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Let F (t) =
∫ t

0
f dg for t∈ [0, 1]. We will show that var10F =∞. For every

n∈N consider the divisionDn = {0, t1, t2, . . . , tn, 1} of [0, 1]. We have

V (F, Dn) =
n−1∑

k=1

∣∣∣
∫ tk+1

tk

f dg
∣∣∣ +

∣∣∣
∫ t1

0

f dg
∣∣∣ +

∣∣∣
∫ 1

tn

f dg
∣∣∣

=
n∑

k=1

1

k
+

∣∣∣
∫ 1

tn

f dg
∣∣∣.

SinceV (F,Dn)≤ var10F for everyn∈N, var10F cannot be finite. Thus the claim
is a consequence of Theorem6.7.1.

6.7.3 Exercises.Let {tn} be an increasing sequence of points from the open in-
terval (a, b) tending toτ ∈ (a, b]. Let {cn} be a sequence of nonnegative numbers
such that the series

∑
cn converges. Define a functiong : [a, b]→R by

g(t) =
∑

n:tn≤t

cn.

For a givenf : [a, b]→R prove that:

(i) The integral
∫ b

a
f dg exists if and only if the series

∑
cn f(tn) converges

and in such a case it is given by

∫ b

a

f dg =
∞∑

n=1

cn f(tn).

(ii) The integral
∫ b

a
|f | dg exists if and only if the series

∑
cn f(tn) is ab-

solutely convergent.

6.7.4 Theorem.Assume thatg : [a, b]→R is nondecreasing,f, h : [a, b]→R are
such that

∫ b

a
f dg and

∫ b

a
h dg exist and|f(t)| ≤h(t) for each t∈ [a, b]. Then∫ b

a
|f | dg exists.

Proof. If [c, d]⊂ [a, b] andP is a partition of[c, d], then

|S(f, dg, P )| ≤S(h, dg, P ).

Thus, it follows from the definition of the integral that

∣∣∣∣
∫ d

c

f dg

∣∣∣∣≤
∫ d

c

h dg for each[c, d]⊂ [a, b].
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Let

F (x) =

∫ x

a

f dg for x∈ [a, b].

If α is an arbitrary division of[a, b], we obtain the estimate

V (F, α) =

ν(α)∑
i=1

|F (αi)−F (αi−1)|=
ν(α)∑
i=1

∣∣∣∣
∫ αi

αi−1

f dg

∣∣∣∣≤
ν(α)∑
i=1

∫ αi

αi−1

h dg =

∫ b

a

h dg,

which shows thatF has bounded variation on[a, b]. Thus, the existence of the
integral

∫ b

a
|f | dg follows from Theorem6.7.1. 2

6.7.5 Theorem.If g : [a, b]→R is nondecreasing andf1, f2 : [a, b]→R are such
that the integrals

∫ b

a
f1 dg,

∫ b

a
f2 dg,

∫ b

a
|f1| dg and

∫ b

a
|f2| dg exist, then∫ b

a
max(f1, f2) dg and

∫ b

a
min(f1, f2) dg exist as well.

Proof. By Theorem6.7.4, the integral
∫ b

a
|f1− f2| dg exists, because

|f1− f2|≤|f1|+ |f2|

and the integrals
∫ b

a
(f1− f2) dg,

∫ b

a
|f1| dg and

∫ b

a
|f2| dg exist. Since

max(f1, f2) =
f1 + f2 + |f1− f2|

2
and min(f1, f2) =

f1 + f2− |f1− f2|
2

,

the existence of
∫ b

a
max(f1, f2) dg and

∫ b

a
min(f1, f2) dg follows from the linear-

ity of the integral (i.e., from Theorem6.1.8). 2

6.8 Convergence theorems

In this section, we present several convergence theorems for the Kurzweil-Stieltjes
integral that do not require uniform convergence.

We start by introducing the concept of uniform integrability (also known as
equiintegrability).

6.8.1 Definition. Consider a sequence of functionsfn : [a, b]→R, n∈N, and a
function g : [a, b]→R. Then {fn} is called uniformly integrable with respect to
g, if the following two conditions are satisfied:

• The integral
∫ b

a

fn dg exists for eachn∈N.
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• For everyε> 0, there exists a gaugeδ on [a, b] such that the inequality
∣∣∣∣
∫ b

a

fn dg−S(fn, dg, P )

∣∣∣∣<ε

holds for eachδ -fine partitionP of [a, b] and for everyn∈N.

The next result is a basic convergence theorem for the Kurzweil-Stieltjes inte-
gral. Although the assumption of uniform integrability might be difficult to verify,
the result will play a key role in deriving the other convergence theorems given
later in this section.

6.8.2 Theorem.If {fn} is uniformly integrable with respect tog and

lim
n→∞

fn(t) = f(t) for all t∈ [a, b],

then both the integral
∫ b

a
f dg and the limitlimn→∞

∫ b

a
fn dg exist, and the equal-

ity
∫ b

a

f dg = lim
n→∞

∫ b

a

fn dg

is true.

Moreover,

lim
n→∞

(
sup

t∈[a,b]

∣∣∣∣
∫ t

a

fn dg−
∫ t

a

f dg

∣∣∣∣
)

= 0 (6.8.1)

holds wheneverg is bounded on[a, b].

Proof. a) Consider an arbitraryε> 0 and letδ be the corresponding gauge from
Definition6.8.1. Choose an arbitraryδ -fine partitionP of [a, b]. Since

lim
n→∞

S(fn, dg, P ) = S(f, dg, P ),

there exists ann0 ∈N such that

|S(fm, dg, P )−S(fn, dg, P )|<ε

holds for all m,n≥n0. Using this fact together with the definition of uniform
integrability, we get

∣∣∣∣
∫ b

a

fm dg−
∫ b

a

fn dg

∣∣∣∣

≤
∣∣∣∣
∫ b

a

fm dg−S(fm, dg, P )

∣∣∣∣ + |S(fm, dg, P )−S(fn, dg, P )|

+

∣∣∣∣S(fn, dg, P )−
∫ b

a

fn dg

∣∣∣∣< 3 ε
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for all m,n≥n0. In particular,{∫ b

a
fn dg} is a Cauchy sequence and thus it has

a finite limit:

lim
n→∞

∫ b

a

fn dg = L∈R.

Now, let P be an arbitraryδ -fine partition of[a, b]. Choose ann1 ∈N such that

|S(fn1 , dg, P )−S(f, dg, P )|<ε and

∣∣∣∣
∫ b

a

fn1 dg−L

∣∣∣∣ <ε.

Then

|S(f, dg, P )−L| ≤ |S(f, dg, P )−S(fn1 , dg, P )|

+

∣∣∣∣S(fn1 , dg, P )−
∫ b

a

fn1 dg

∣∣∣∣ +

∣∣∣∣
∫ b

a

fn1 dg−L

∣∣∣∣ < 3ε.

It follows that
∫ b

a
f dg exists and equalsL.

b) To prove (6.8.1), let hn(t) = fn(t)− f(t) for n∈N and t∈ [a, b], and assume
that g is bounded on[a, b]. Note that the sequence{hn} tends pointwise on[a, b]
to 0 and it is uniformly integrable with respect tog. Choose an arbitraryε> 0
and find a gaugeδ on [a, b] such that

∣∣∣∣
∫ b

a

hn dg−S(hn, dg, P )

∣∣∣∣<ε (6.8.2)

for eachδ -fine partitionP of [a, b]. Let P = (α, ξ) be such a partition. Since
hn(t)→ 0 for t∈ [a, b] andg is bounded, there exists ann0 ∈N such that

|hn(ξi)| ‖g‖<
ε

2 ν(α)
for all n≥n0 andi∈{1, . . . , ν(α)}. (6.8.3)

Let arbitraryt∈ [a, b] andn∈N∩ [n0,∞) be given and letj ∈{1, . . . , ν(α)} be
such thatt∈ [αj−1, αj]. Then,

∣∣∣∣
∫ t

a

hn dg

∣∣∣∣ =

∣∣∣∣∣
j−1∑
i=1

∫ αi

αi−1

hn dg +

∫ t

αj−1

hn dg

∣∣∣∣∣

≤
∣∣∣

j−1∑
i=1

(∫ αi

αi−1

hn dg−hn(ξi) (g(αi)− g(αi−1))

)

+

∫ t

αj−1

hn dg−hn(ξj) (g(t)− g(αj−1))
∣∣∣

+

j−1∑
i=1

|hn(ξi)| |g(αi)− g(αi−1)|+ |hn(ξj)| |g(t)− g(αj−1)|.
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Due to (6.8.3) we have

j−1∑
i=1

|hn(ξi)| |g(αi)− g(αi−1)|+ |hn(ξj)| |g(t)− g(αj−1)|

≤
j∑

i=1

2 |hn(ξi)| ‖g‖<ε.

Furthermore, ift≥ ξj, then, having in mind (6.8.2), we may apply the Saks-
Henstock lemma to the system

{([αi−1, αi], ξi) : i = 1, . . . , j− 1}∪ {([αj−1, t], ξj)}

and deduce that
∣∣∣∣∣

j−1∑
i=1

(∫ αi

αi−1

hn dg−hn(ξi) (g(αi)− g(αi−1))

)

+

∫ t

αj−1

hn dg−hn(ξj) (g(t)− g(αj−1))

∣∣∣∣∣≤ ε.

On the other hand, ift< ξj, then applying the Saks-Henstock lemma to the sys-
tems

{
([αi−1, αi], ξi) : i = 1, . . . , j}} and

{
([t, αj], ξj)

}
,

we get

∣∣∣∣∣
j−1∑
i=1

(∫ αi

αi−1

hn dg−hn(ξi) (g(αi)− g(αi−1))

)

+

∫ t

αj−1

hn dg−hn(ξj) (g(t)− g(αj−1))

∣∣∣∣∣

=

∣∣∣∣∣
j∑

i=1

(∫ αi

αi−1

hn dg−hn(ξi) (g(αi)− g(αi−1))

)

−
(∫ αj

t

hn dg−hn(ξj) (g(αj)− g(t))

) ∣∣∣∣∣≤ 2 ε.

To summarize, we have shown that
∣∣∣∣
∫ t

a

hn dg

∣∣∣∣≤ 3 ε for all n≥n0 and t∈ [a, b],
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which completes the proof of (6.8.1). 2

The next example shows that the boundedness of the integratorg is essential
to ensure the uniform convergence of the indefinite integrals in (6.8.1).

6.8.3 Example.Let fn(t) = 1/n for t∈ [a, b] and letg : [a, b]→R be arbitrary
with g(a) = 0. Then {fn} tends pointwise on[a, b] to the zero function. Fur-
thermore, asS(fn, dg, P ) = (1/n) g(b) for eachn∈N and each partitionP of
[a, b], we see that

∫ b

a
fn dg = (1/n) g(b) for eachn∈N and the sequence{fn}

is uniformly integrable with respect tog. However, we claim that the indefinite
integralsFn(t) =

∫ t

a
fn dg tend uniformly to the zero function if and only ifg

is bounded. Indeed, we haveFn(t) = (1/n) g(t) for t∈ [a, b]. Clearly, if g is
bounded on[a, b], then {Fn} tends uniformly on[a, b] to the zero function. On
the other hand, ifg is unbounded and an arbitraryε> 0 is given, then for each
n∈N, there is at∈ [a, b] such that

|Fn(t)|= |(1/n) g(t)|>ε,

i.e., Fn does not converge uniformly to the zero function.

The remaining convergence theorems in this section provide more transparent
conditions that imply uniform integrability. To proceed, we need the following
auxiliary lemma.

6.8.4 Lemma.For each`∈N, let S` be the set of all couples(σ, s), whereσ is
a division of[a, b] and s = {s1, . . . , sν(σ)} is a finite sequence of integers greater
than or equal tò .

Let g : [a, b]→R and let fn : [a, b]→R, n∈N, be a sequence of functions
such that the integral

∫ b

a
fn dg exists for eachn∈N. Moreover, assume that there

are B, C ∈R such that ifσ is a division of[a, b] and s1, . . . , sν(σ) ∈N, then

B≤
ν(σ)∑
j=1

∫ σj

σj−1

fsj
dg≤C. (6.8.4)

Then for eachε> 0 and `∈N there exist(π`, p`), (ρ`, r`)∈S` such that the
following statements are true:

(i) The inequalities

ν(π`)∑
j=1

∫ π`
j

π`
j−1

fp`
j

dg− ε

2`
<

ν(σ)∑
j=1

∫ σj

σj−1

fsj
dg <

ν(ρ`)∑
j=1

∫ ρ`
j

ρ`
j−1

fr`
j

dg +
ε

2`
(6.8.5)

hold for each(σ, s)∈S`.
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(ii) Assume thatI =
⋃

i∈I [ci, di] is a finite union of nonoverlapping intervals
in [a, b] such that for eachi∈ I there is aj(i)∈{1, . . . , ν(π`)} satisfying
[ci, di]⊂ [π`

j(i)−1, π
`
j(i)]. Then the inequality

∑
i∈I

∫ di

ci

fp`
j(i)

dg− ε

2`
<

∑
i∈I

∫ di

ci

fn dg (6.8.6)

holds for eachn≥ `.

(iii) Assume thatI =
⋃

i∈I [ci, di] is a finite union of nonoverlapping intervals
in [a, b] such that for eachi∈ I there exists aj(i)∈{1, . . . , ν(ρ`)} satis-
fying [ci, di]⊂ [ρ`

j(i)−1, ρ
`
j(i)]. Then the inequality

∑
i∈I

∫ di

ci

fn dg <
∑
i∈I

∫ di

ci

fr`
j(i)

dg +
ε

2`
(6.8.7)

holds for eachn≥ `.

Proof. According to (6.8.4), the values of all sums

ν(σ)∑
j=1

∫ σj

σj−1

fsj
dg, where (σ, s)∈S`,

are contained in a bounded subset ofR. Thus, the existence of the couples(π`,p`)
and (ρ`, r`)∈S` having the properties from statement (i) follows from the defin-
itions of infimum and supremum.

To prove statement (ii), consider the divisionσ = π` ∪{ci, di : i∈ I} of [a, b].
For each j ∈{1, . . . , ν(σ)}, there exists ak(j)∈{1, . . . , ν(π`)} such that
[σj−1, σj]⊂ [π`

k(j)−1, π
`
k(j)]. Defines as follows: If j ∈{1, . . . , ν(σ)} is such that

[σj−1, σj]⊂I, let sj = n. Otherwise, letsj = p`
k(j). Then (σ, s)∈S`, and rela-

tion (6.8.5) holds. Obviously,

ν(σ)∑
j=1

∫ σj

σj−1

fsj
dg =

∑

j∈{1,...,ν(σ)}
[σj−1,σj ]⊂I

∫ σj

σj−1

fn dg +
∑

j∈{1,...,ν(σ)}
[σj−1,σj ]6⊂I

∫ σj

σj−1

fp`
k(j)

dg

=
∑
i∈I

∫ di

ci

fn dg +
∑

j∈{1,...,ν(σ)}
[σj−1,σj ]6⊂I

∫ σj

σj−1

fp`
k(j)

dg

Furthermore, for eachm∈{1, . . . , ν(π`)}, we have

[π`
m−1, π

`
m] =

⋃

j∈{1,...,ν(σ)}
k(j)=m

[σj−1, σj],
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and therefore

ν(π`)∑
j=1

∫ π`
j

π`
j−1

fp`
j

dg =

ν(π`)∑
m=1

∑

j∈{1,...,ν(σ)}
k(j)=m

∫ σj

σj−1

fp`
m

dg =

ν(σ)∑
j=1

∫ σj

σj−1

fp`
k(j)

dg

=
∑

j∈{1,...,ν(σ)}
[σj−1,σj ]⊂I

∫ σj

σj−1

fp`
k(j)

dg +
∑

j∈{1,...,ν(σ)}
[σj−1,σj ]6⊂I

∫ σj

σj−1

fp`
k(j)

dg

=
∑
i∈I

∫ di

ci

fp`
j(i)

dg +
∑

j∈{1,...,ν(σ)}
[σj−1,σj ]6⊂I

∫ σj

σj−1

fp`
k(j)

dg.

Now, by subtracting

∑

j∈{1,...,ν(σ)}
[σj−1,σj ]6⊂I

∫ σj

σj−1

fp`
k(j)

dg

from the first inequality in (6.8.5), we get (6.8.6).

Statement (iii) can be proved in a similar way. 2

The following convergence theorem is due to D. Preiss andŠ. Schwabik. It is
a special case of Theorem 5.5 from J. Kurzweil’s book [81], which is concerned
with a more general type of integral; see also Theorem 1.28 and Remark 1.30 in
[122].

6.8.5 Theorem.Let g ∈BV([a, b]) and let {fn} be a sequence of real valued
functions defined on[a, b] and satisfying the following conditions:

(i) The integral
∫ b

a
fn dg exists for eachn∈N.

(ii) lim
n→∞

fn(t) = f(t) for t∈ [a, b].

(iii) There areB, C ∈R such that the inequalities

B≤
ν(σ)∑
j=1

∫ σj

σj−1

fsj
dg≤C

hold for all divisionsσ of [a, b] and all s1, . . . , sν(σ) ∈N.

Then{fn} is uniformly integrable with respect tog, the integral
∫ b

a
f dg exists,

and
∫ b

a

f dg = lim
n→∞

∫ b

a

fn dg.
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Moreover, we have

lim
n→∞

(
sup

t∈[a,b]

∣∣∣∣
∫ t

a

fn dg−
∫ t

a

f dg

∣∣∣∣
)

= 0.

Proof. According to Theorem6.8.2, it suffices to prove that{fn} is uniformly in-
tegrable with respect tog. Choose an arbitraryε> 0. For each̀ ∈N, let (π`,p`)
and (ρ`, r`) be as in Lemma6.8.4. Also, for each`∈N, there is a gaugeδ` on
[a, b] such that for eachδ` -fine partitionP of [a, b], we have

∣∣∣∣S(f`, dg, P )−
∫ b

a

f` dg

∣∣∣∣ <ε, (6.8.8)
∣∣∣∣S(fp`

i
, dg, P )−

∫ b

a

fp`
i

dg

∣∣∣∣ <
ε

2`ν(π`)
for i∈{1, . . . , ν(π`)}, (6.8.9)

∣∣∣∣S(fr`
i
, dg, P )−

∫ b

a

fr`
i

dg

∣∣∣∣ <
ε

2`ν(ρ`)
for i∈{1, . . . , ν(ρ`)}. (6.8.10)

Moreover, assume thatδ`(t) < dist(t, (π` ∪ρ`) \ {t}) holds for eacht∈ [a, b].

Due to assumption (ii), for eacht∈ [a, b] we can choose anN(t)∈N such
that

|f(t)− fn(t)|<ε for all n≥N(t).

Let us put

δ(t) = min{δ1(t), . . . , δN(t)(t)} for t∈ [a, b].

Let P = (α, ξ) be an arbitraryδ -fine partition of[a, b] andn∈N. Our goal is to
obtain estimates for the terms appearing inS(fn, dg, P ). If i∈{1, . . . , ν(α)} is
such thatN(ξi)≥n, then δ(ξi)≤ δn(ξi). Thus, assumption (6.8.8) together with
the Saks-Henstock lemma imply

∑

i∈{1,...,ν(α)}
N(ξi)≥n

fn(ξi) (g(αi)− g(αi−1))≤
∑

i∈{1,...,ν(α)}
N(ξi)≥n

∫ αi

αi−1

fn dg + ε. (6.8.11)

It remains to estimate those terms inS(fn, dg, P ) for which N(ξi) <n. To this
aim, consider a fixed̀∈{1, . . . , n− 1} together with all indicesi∈{1, . . . , ν(α)}
fulfilling N(ξi) = `. Due to the construction of the gaugeδ`, each corresponding
interval [αi−1, αi] contains at most one of the division points ofπ` and, in that
case, the tagξi must coincide with this division point. If we split the interval
[αi−1, αi] into a pair of intervals[αi−1, ξi] and [ξi, αi] that share the same tag
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ξi, the value ofS(fn, dg, P ) remains unchanged. Thus, without loss of general-
ity, we can assume that for everyi∈{1, . . . , ν(α)} satisfyingN(ξi) = `, there is
a j(i)∈{1, . . . , ν(π`)} such that[αi−1, αi]⊂ [π`

j(i)−1, π
`
j(i)]. Then

∑

i∈{1,...,ν(α)}
N(ξi)=`

fn(ξi) (g(αi)− g(αi−1))

=
∑

i∈{1,...,ν(α)}
N(ξi)=`

(fn(ξi)− fp`
j(i)

(ξi)) (g(αi)− g(αi−1))

+
∑

i∈{1,...,ν(α)}
N(ξi)=`

(
fp`

j(i)
(ξi) (g(αi)− g(αi−1))−

∫ αi

αi−1

fp`
j(i)

dg

)

+
∑

i∈{1,...,ν(α)}
N(ξi)=`

∫ αi

αi−1

fp`
j(i)

dg.

Since (π`,p`)∈S`, we also havep`
j(i)≥ `. Hence, if N(ξi) = `< n, the defini-

tion of N(ξi) gives

|fn(ξi)− fp`
j(i)

(ξi)| ≤ |fn(ξi)− f(ξi)|+ |f(ξi)− fp`
j(i)

(ξi)|< 2 ε,

and consequently
∣∣∣(fn(ξi)− fp`

j(i)
(ξi)) (g(αi)− g(αi−1))

∣∣∣< 2 ε varαi
αi−1

g.

Next, we notice that
∣∣∣∣∣∣∣∣

∑

i∈{1,...,ν(α)}
N(ξi)=`

(
fp`

j(i)
(ξi) (g(αi)− g(αi−1))−

∫ αi

αi−1

fp`
j(i)

dg

)
∣∣∣∣∣∣∣∣

≤
ν(π`)∑

k=1

∣∣∣∣∣∣∣∣

∑

i∈{1,...,ν(α)}
N(ξi)=`, j(i)=k

(
fp`

k
(ξi) (g(αi)− g(αi−1))−

∫ αi

αi−1

fp`
k

dg

)
∣∣∣∣∣∣∣∣

≤
ν(π`)∑

k=1

ε

2`ν(π`)
=

ε

2`
,

where the last inequality is a consequence of the assumption (6.8.9) and the Saks-
Henstock lemma.
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To summarize, for each̀∈{1, . . . , n− 1} the previous estimates imply
∑

i∈{1,...,ν(α)}
N(ξi)=`

fn(ξi) (g(αi)− g(αi−1))

<
∑

i∈{1,...,ν(α)}
N(ξi)=`

(∫ αi

αi−1

fp`
j(i)

dg + 2 ε varαi
αi−1

g

)
+

ε

2`

<
∑

i∈{1,...,ν(α)}
N(ξi)=`

(∫ αi

αi−1

fn dg + 2 ε varαi
αi−1

g

)
+ 2

ε

2`
,

where the last inequality follows from (6.8.6). Summation over̀ ∈{1, . . . , n− 1}
yields

∑

i∈{1,...,ν(α)}
N(ξi)<n

fn(ξi) (g(αi)− g(αi−1)) <
∑

i∈{1,...,ν(α)}
N(ξi)<n

∫ αi

αi−1

fn dg + 2 ε varbag + 2 ε.

Adding the last inequality and (6.8.11), we conclude that the estimate

S(fn, dg, P ) =

ν(α)∑
i=1

fn(ξi) (g(αi)− g(αi−1)) <

∫ b

a

fn dg + 2 ε varbag + 3 ε

holds for all n∈N. Proceeding in a similar way (using (6.8.7) and (6.8.10)), we
can show that also

S(fn, dg, P ) >

∫ b

a

fn dg− 2 ε varbag− 3 ε

holds for alln∈N. As a consequence,
∣∣∣∣S(fn, dg, P )−

∫ b

a

fn dg

∣∣∣∣< 2 ε varbag + 3 ε

for eachδ -fine partitionP of [a, b] and eachn∈N, i.e., {fn} is uniformly inte-
grable with respect tog. 2

A straightforward consequence of Theorem6.8.5 is the dominated conver-
gence theorem.

6.8.6 Theorem(DOMINATED CONVERGENCE THEOREM).
Let g : [a, b]→R be nondecreasing and let{fn} be a sequence of real valued
functions defined on[a, b] and satisfying the following conditions:
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• The integral
∫ b

a
fn dg exists for eachn∈N.

• lim
n→∞

fn(t) = f(t) for t∈ [a, b].

• There exist functionsh1, h2 : [a, b]→R such that the integrals
∫ b

a
h1 dg,∫ b

a
h2 dg exist andh1≤ fn≤h2 on [a, b] for eachn∈N.

Then{fn} is uniformly integrable with respect tog, the integral
∫ b

a
f dg exists

and

∫ b

a

f dg = lim
n→∞

∫ b

a

fn dg.

Moreover, we have

lim
n→∞

(
sup

t∈[a,b]

∣∣∣∣
∫ t

a

fn dg−
∫ t

a

f dg

∣∣∣∣
)

= 0.

Proof. The statement is a consequence of Theorem6.8.5. To see this, let

B =

∫ b

a

h1 dg, C =

∫ b

a

h2 dg.

If σ is a division of[a, b] ands1, . . . , sν(σ) ∈N, then

B =

ν(σ)∑
j=1

∫ σj

σj−1

h1 dg≤
ν(σ)∑
j=1

∫ σj

σj−1

fsj
dg≤

ν(σ)∑
j=1

∫ σj

σj−1

h2 dg = C.

This shows that the assumptions of Theorem6.8.5are satisfied, and the proof is
complete. 2

6.8.7 Remark. In the previous theorem, the conditionh1≤ fn≤h2 on [a, b] can
be weakened. It is enough to assume that for each interval[c, d]⊂ [a, b] and each
n∈N, we have

∫ d

c

h1 dg≤
∫ d

c

fn dg≤
∫ d

c

h2 dg.

In a similar way, we can derive the bounded convergence theorem. In com-
parison with the dominated convergence theorem, the dominating hypothesis on
{fn} is stronger. On the other hand,g is no longer assumed to be nondecreasing,
but merely of bounded variation.
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6.8.8 Theorem(BOUNDED CONVERGENCE THEOREM).
Let g ∈BV([a, b]) and let{fn} be a sequence of real valued functions defined on
[a, b] and satisfying the following conditions:

• The integral
∫ b

a
fn dg exists for eachn∈N.

• lim
n→∞

fn = f on [a, b].

• There exists a constantM ≥ 0 such that |fn(t)| ≤M for all n∈N and
t∈ [a, b].

Then{fn} is uniformly integrable with respect tog, the integral
∫ b

a
f dg exists

and

lim
n→∞

(
sup

t∈[a,b]

∣∣∣∣
∫ t

a

fn dg−
∫ t

a

f dg

∣∣∣∣
)

= 0.

Proof. If σ is a division of[a, b] ands1, . . . , sν(σ) ∈N, then

∣∣∣∣∣∣

ν(σ)∑
j=1

∫ σj

σj−1

fsj
dg

∣∣∣∣∣∣
≤

ν(σ)∑
j=1

∣∣∣∣∣
∫ σj

σj−1

fsj
dg

∣∣∣∣∣≤
ν(σ)∑
j=1

M varσj
σj−1

g = M varbag.

Hence, the assumptions of Theorem6.8.5are satisfied with

B =−M varbag, C = M varbag,

and the proof is complete. 2

Another important consequence of Theorem6.8.5 is the monotone conver-
gence theorem.

6.8.9 Theorem(MONOTONE CONVERGENCE THEOREM).
Let g : [a, b]→R be nondecreasing and{fn} be a sequence of functions such that
the integral

∫ b

a
fn dg exists for eachn∈N, and lim

n→∞
fn = f on [a, b]. Suppose,

in addition, that one of the following conditions holds:

• {fn} is a nondecreasing sequence andlim
n→∞

∫ b

a

fn dg <∞.

• {fn} is a nonincreasing sequence andlim
n→∞

∫ b

a

fn dg >−∞.
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Then{fn} is uniformly integrable with respect tog, the integral
∫ b

a
f dg exists

and
∫ b

a

f dg = lim
n→∞

∫ b

a

fn dg. (6.8.12)

Moreover, we have

lim
n→∞

(
sup

t∈[a,b]

∣∣∣∣
∫ t

a

fn dg−
∫ t

a

f dg

∣∣∣∣
)

= 0. (6.8.13)

Proof. Suppose that the first condition holds. Let

B =

∫ b

a

f1 dg, C = lim
n→∞

∫ b

a

fn dg.

If σ is a division of[a, b] ands1, . . . , sν(σ) ∈N, then

B =

ν(σ)∑
j=1

∫ σj

σj−1

f1 dg≤
ν(σ)∑
j=1

∫ σj

σj−1

fsj
dg≤

ν(σ)∑
j=1

∫ σj

σj−1

(fmax(s1,...,sν(σ))) dg≤C.

Thus, the assumptions of Theorem6.8.5are satisfied, and (6.8.12), (6.8.13) hold.
If the second condition holds, it is enough to consider the sequence{−fn}, which
obviously satisfies the first condition. 2

The monotone convergence theorem has a number of useful corollaries, which
will be needed later. The first result is an analogue of Levi’s theorem for term-by-
term integration of infinite series.

6.8.10 Theorem.Suppose thatg : [a, b]→R is nondecreasing,fk : [a, b]→R is
a nonnegative function for eachk ∈N, and f =

∑∞
k=1 fk on [a, b]. If the integral∫ b

a
fk dg exists for eachk ∈N and if the sum

∑∞
k=1

∫ b

a
fk dg is finite, then the se-

quence{sn} given bysn =
∑n

k=1 fk on [a, b] is uniformly integrable with respect
to g and

∫ b

a

f dg =
∞∑

k=1

∫ b

a

fk dg.

Moreover, we have

lim
n→∞

(
sup

t∈[a,b]

∣∣∣∣
∫ t

a

sn dg−
∫ t

a

f dg

∣∣∣∣
)

= 0.
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Proof. The sequence{sn} is nondecreasing, the integral
∫ b

a
sn dg exists for each

n∈N, and lim
n→∞

sn = f on [a, b]. Moreover, we have

lim
n→∞

∫ b

a

sn dg = lim
n→∞

∫ b

a

(
n∑

k=1

fk

)
dg

= lim
n→∞

n∑

k=1

∫ b

a

fk dg =
∞∑

k=1

∫ b

a

fk dg <∞.

Thus, the statement of the present theorem follows from the monotone conver-
gence theorem. 2

6.8.11 Remark. Suppose thatg : [a, b]→R is nondecreasing andf =
∑∞

k=1 fk

on [a, b], where eachfk : [a, b]→R is a nonnegative function such that
∫ b

a
fk dg

exists. If we know that
∫ b

a
f dg exists, then

n∑

k=1

∫ b

a

fk dg =

∫ b

a

(
n∑

k=1

fk

)
dg≤

∫ b

a

f dg for eachn∈N.

Hence,
∑∞

k=1

∫ b

a
fk dg is finite and equals

∫ b

a
f dg by Theorem6.8.10. In other

words, we have established the following result:∫ b

a

∑∞
k=1 fk dg exists if and only if

∑∞
k=1

∫ b

a
fk dg is finite; in this case, both

expressions have the same value.

The monotone convergence theorem also leads to the following result.

6.8.12 Lemma. If g : [a, b]→R is nondecreasing and{fk} is a sequence of
nonnegative functions such that the integral

∫ b

a
fk dg exists for eachk ∈N, then∫ b

a
(inf
k∈N

fk) dg exists as well.

Proof. For eachn∈N, let hn = min{f1, . . . , fn}, and note that Theorem6.7.5
guarantees the existence of the integral

∫ b

a
hn dg≥ 0. The sequence{hn} is non-

increasing and pointwise convergent toinfk∈N fk. Hence, the monotone conver-
gence theorem implies the existence of the integral

∫ b

a
(inf
k∈N

fk) dg. 2

Another useful corollary of the monotone convergence theorem is Fatou’s
lemma.

6.8.13 Lemma(FATOU’ S LEMMA). Let g : [a, b]→R be nondecreasing and let
{fn} be a sequence of functions such that the integral

∫ b

a
fn dg exists for each

n∈N. Then the following statements hold:
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(i) Assume there is a functionϕ : [a, b]→R such that
∫ b

a
ϕ dg exists and

fn≥ϕ on [a, b] for eachn∈N. If lim inf
n→∞

fn(x) <∞ for eachx∈ [a, b]

and lim inf
n→∞

∫ b

a
fn dg <∞, then

∫ b

a
(lim inf

n→∞
fn) dg exists, and we have

∫ b

a

(lim inf
n→∞

fn) dg≤ lim inf
n→∞

∫ b

a

fn dg.

(ii) Assume there is a functionψ : [a, b]→R such that
∫ b

a
ψ dg exists and

fn≤ψ for each n∈N. If lim sup
n→∞

fn(x) >−∞ for each x∈ [a, b] and

lim sup
n→∞

∫ b

a
fn dg >−∞, then

∫ b

a
(lim sup

n→∞
fn) dg exists, and we have

∫ b

a

(lim sup
n→∞

fn) dg≥ lim sup
n→∞

∫ b

a

fn dg.

Proof. Let us prove the first statement. Without loss of generality, we can assume
that ϕ = 0 (otherwise, it is enough to consider the sequence{fn−ϕ}). For each
n∈N, let hn = inf

k≥n
fk. The sequence{hn} consists of nonnegative functions, it

is nondecreasing, and pointwise convergent tolim inf
n→∞

fn. By Lemma6.8.12, the

integral
∫ b

a
hn dg exists for eachn∈N. Obviously, we have

∫ b

a

hn dg≤
∫ b

a

fn dg,

and therefore

lim
n→∞

∫ b

a

hn dg = lim inf
n→∞

∫ b

a

hn dg≤ lim inf
n→∞

∫ b

a

fn dg <∞.

The monotone convergence theorem implies the existence of the integral∫ b

a
( lim
n→∞

hn) dg, and we get

∫ b

a

(lim inf
n→∞

fn) dg =

∫ b

a

( lim
n→∞

hn) dg = lim
n→∞

∫ b

a

hn dg≤ lim inf
n→∞

∫ b

a

fn dg.

To prove that the second statement holds, it is enough to consider the sequence
{−fn} and apply the first statement. 2

6.9 Integration over elementary sets

Up to now we have been discussing the integration over a fixed given interval,
more precisely, integration from some lower bound to some upper bound. In the
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theory of the Lebesgue integral one can meet also the possibility of integration
over more general sets. The generality of the Kurzweil-Stieltjes integral (in the
sense of a large domain of integrable functions) seems to be the source of troubles
with defining the Kurzweil-Stieltjes integral over general sets, in particular in the
cases when we do not want to restrict ourselves to continuous integrators. A
reasonable compromise seems to be to restrict the considerations to elementary
sets (cf. Definition2.8.10). In this case the following definition turned out to be
useful for our purposes.

6.9.1 Definition. Let f : [a, b]→R, g : [a, b]→R and an elementary subsetE of
[a, b] be given. The Kurzweil-Stieltjes integral off with respect tog over E is
given by

∫

E

f dg =

∫ b

a

(f χE) dg

provided the integral on the right-hand side exists.

According to Definition6.9.1, the existence of the integral
∫

E
f dg means

that there is anI ∈R such that for everyε> 0 there is a gaugeδ on [a, b] such
that

∣∣S(fχE, dg, P )− I
∣∣<ε for all δ-fine partitionsP on [a, b].

As we will see later, the value of the integral
∫

E
f dg can depend on the choice

of the interval[a, b] which containsE . Hence, throughout this section the interval
[a, b] is assumed to be fixed. Further, we use extensively the following convention
mentioned in the point (x) of Conventions and notation: Functionsg defined on
the interval[a, b] are supposed to be extended to some open interval containing
[a, b] in such a way that

g(a−) = g(a), g(b+) = g(b), i.e. ∆−g(a) = ∆+g(b) = 0.

The basic properties of the Kurzweil-Stieltjes integral over elementary sets
given below are immediate consequences of the corresponding properties of the
Kurzweil-Stieltjes integral presented in the previous sections.

6.9.2 Theorem.Let E be an elementary subset of[a, b]. Assume that the func-
tions f, f1, f2, g, g1, g2 : [a, b]→R are such that the integrals

∫

E

f1 dg,

∫

E

f2 dg,

∫

E

f dg1 and
∫

E

f dg2

exist. Then for anyc1, c2 ∈R,
∫

E

(c1f1 + c2f2) dg = c1

∫

E

f1 dg + c2

∫

E

f2 dg

and
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∫

E

f d[c1 g1 + c2 g2] = c1

∫

E

f d[g1] + c2

∫

E

f d[g2]

hold.

Using Theorem6.9.2the following additivity result of the integral with respect
to elementary sets can be justified.

6.9.3 Theorem.Let E1 and E2 be disjoint elementary subsets of[a, b] . Assume
that f, g : [a, b]→R are such that both the integrals

∫

E1

f dg and
∫

E2

f dg

exist. Then the integral
∫

E1∪E2
f dg exists as well and

∫

E1∪E2

f dg =

∫

E1

f dg +

∫

E2

f dg.

6.9.4 Remark. Note that if E is an elementary subset of[a, b] and h = 0 on
E, then obviously

∫
E

h dg = 0 for eachg : [a, b]→R. Therefore, if the integral∫
E

f1 dg exists, then the equality
∫

E

f1 dg =

∫

E

f2 dg

holds for each functionf2 such thatf2 = f1 on E.

Later in this section we will provide conditions ensuring the existence of the
integral over elementary sets (see Corollary6.9.10). For now, let us simply high-
light the following result which is a consequence of Theorem6.3.8.

6.9.5 Theorem.Let f ∈G([a, b]) and g ∈BV([a, b]). If E is an elementary sub-
set of[a, b], then the integral

∫
E

f dg exists.

Proof. It is enough to observe thatf χE : [a, b]→R is a regulated function when-
everf ∈G([a, b]) andE is an elementary subset of[a, b]. 2

Now we are going to consider the properties of integrals over arbitrary boun-
ded intervals. For degenerate intervals, i.e., singleton sets, we have the following
result.

6.9.6 Theorem.Let τ ∈ [a, b] and let g : [a, b]→R have finite one-sided limits
g(τ−) and g(τ+) . Then the integral

∫
[τ ]

f dg exists and

∫

[τ ]

f dg = f(τ) ∆g(τ). (6.9.1)
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Proof. Note that
(
fχ[τ ]

)
(t) = f(τ)χ[τ ](t) for all t∈ [a, b] . Hence,

∫

[τ ]

f dg =

∫ b

a

fχ[τ ] dg = f(τ)

∫ b

a

χ[τ ] dg

and the result follows from Example6.3.1(iii). 2

Integration over subintervals of[a, b] is described by the following assertion.

6.9.7 Theorem.Let f : [a, b]→R, g ∈G([a, b]) and a≤ c< d≤ b. Then if one
of the integrals

∫

[c,d]

f dg,

∫

(c,d)

f dg,

∫

[c,d)

f dg,

∫

(c,d]

f dg,

∫ d

c

f dg (6.9.2)

exists, all the others exist as well. In this case, we have the following equalities:

∫

[c,d]

f dg = f(c) ∆−g(c) +

∫ d

c

f dg + f(d) ∆+g(d), (6.9.3)

∫

(c,d)

f dg =−f(c) ∆+g(c) +

∫ d

c

f dg− f(d) ∆−g(d), (6.9.4)

∫

[c,d)

f dg = f(c) ∆−g(c) +

∫ d

c

f dg− f(d) ∆−g(d), (6.9.5)

∫

(c,d]

f dg =−f(c) ∆+g(c) +

∫ d

c

f dg + f(d) ∆+g(d). (6.9.6)

Proof. Note that

∫

[c,d]

f dg =

∫ c

a

(fχ[c,d]) dg +

∫ d

c

f dg +

∫ b

d

(fχ[c,d]) dg.

Clearly, the first and third integral on the right-hand side exist by Examples 6.3.1
(iii). Thus, the integral over[c, d] exists if and only if the integral

∫ d

c
f dg exists.

In this case,

∫

[c,d]

f dg = f(c)

∫ c

a

χ[c] dg +

∫ d

c

f dg + f(d)

∫ b

d

χ[d] dg

= f(c) ∆−g(c) +

∫ d

c

f dg + f(d) ∆+g(d).

Since by Theorem6.9.6, both integrals
∫

[c]
f dg and

∫
[d]

f dg exist, the equiva-
lence between the existence of the integral over[c, d] and the existence of integral
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over the open or half-open corresponding intervals can be easily derived from the
relations

χ[c,d] = χ[c] + χ(c,d) + χ[d] = χ[c] + χ(c,d] = χ[c,d) + χ[d].

The equalities (6.9.4), (6.9.5) and (6.9.6) follow from (6.9.3) using Theorem6.9.6.
The detailed proof is left as an exercise for the reader. 2

6.9.8 Remark. According to Theorem6.9.7, given f : [a, b]→R, g ∈C([a, b])
and a≤ c≤ d≤ b , such that one of the integrals in (6.9.2) exists, then

∫

[c,d)

f dg =

∫

(c,d]

f dg =

∫

(c,d)

f dg =

∫ d

c

f dg =

∫

[c,d]

f dg.

We are now ready to evaluate integrals over elementary sets. To this end, we
will make use of the notion of minimal decomposition of an elementary set (see
Definition2.8.9).

6.9.9 Theorem.Let f : [a, b]→R, g ∈G([a, b]) and letE be an elementary sub-
set of [a, b] with the minimal decomposition{Jk : k = 1, . . . , N}. If the integral∫

E
f dg exists, then also the integrals

∫
Jk

f dg exist for all k ∈{1, . . . , N} and

∫

E

f dg =
N∑

k=1

∫

Jk

f dg. (6.9.7)

Proof. For k = 1, . . . , N, let ck = inf Jk anddk = sup Jk . By the hypothesis, the
integral

∫

E

f dg =

∫ b

a

(fχE) dg

exists, and hence, by Theorem6.1.10, so do all the integrals

∫ dk

ck

(fχE) dg for k ∈{1, . . . , N}.

Note that
∫ dk

ck

f(χE −χJk
) dg = 0, for k ∈{1, . . . , N}

(due to the fact thatf(χE −χJk
) vanishes on[ck, dk]) and, similarly, the integrals

∫ ck

a

(fχJk
) dg and

∫ b

dk

(fχJk
) dg
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are either zero or integrals over singleton sets (depending on whetherck and/or
dk belong toJk ). Since all of these integrals exist, we conclude that

∫

Jk

f dg =

∫ b

a

(f χJk
) dg

exist for all k ∈{1, . . . , N}. Having in mind that the intervals of the minimal
decomposition are pairwise disjoint, (6.9.7) follows from Theorem6.9.3. 2

Theorem6.9.9means that once the integral over an elementary set exists, so
do the integrals over subintervals of the minimal decomposition. This implies
immediately the following assertions.

6.9.10 Corollary. Let E be an elementary subset of[a, b] and let f : [a, b]→R
and g ∈G([a, b]) be such that the integral

∫
E

f dg exists. Then the integral∫
T

f dg exists for every elementary subsetT of E.

In particular, if the integral
∫ b

a
f dg exists, then

∫
T

f dg exists for every ele-
mentary subsetT of [a, b] .

Proof. Let T be an elementary subset ofE and let{I`: ` = 1, . . . , p} be its min-
imal decomposition. Assume that{Jk: k = 1, . . . , N} is the minimal decompo-
sition of E . Fixed an arbitrarỳ ∈{1, . . . , p} , there existsk` ∈{1, . . . , N} such
that I`⊂ Jk`

. By Theorem6.9.9, we know that the integral
∫ b

a
(f χJk`

) dg ex-

ists; therefore
∫ b`

a`
(f χJk`

) dg also exists, wherea` = inf I` and b` = sup I` . Ap-
plying Theorem6.9.7we conclude that the integral

∫
I`
(f χJk`

) dg exists, while
χJk`

χI`
= χI`

implies that
∫

I`

f dg =

∫

I`

(f χJk`
) dg

Since`∈{1, . . . , p} is arbitrary and the intervals of the minimal decomposition
are pairwise disjoint, using Theorem6.9.3the existence of the integral overT has
been proved. 2

6.9.11 Corollary. Let E1 and E2 be elementary subsets of[a, b] and let f :
[a, b]→R and g ∈G([a, b]) be such that both the integrals

∫

E1

f dg and
∫

E2

f dg

exist.
Then the integral

∫
E1∪E2

f dg exists as well and
∫

E1∪E2

f dg =

∫

E1

f dg +

∫

E2

f dg−
∫

E1∩E2

f dg. (6.9.8)
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Similarly, if the integral
∫

E1∪E2
f dg exists, then both the integrals

∫

E1

f dg and
∫

E2

f dg

exist and the equality(6.9.8) holds.

The following estimates are, in a sense, the analogues of the estimates from
Section6.3.

6.9.12 Theorem.Let J be a subinterval of[a, b] and letc = inf J and d = sup J
be such thatc< d. Assume thatf : [a, b]→R and g ∈BV([a, b]) are such that
the integral

∫
J
f dg exists. Then the following assertions are true:

(i) If J = [c, d] , then

∣∣∣
∫

J

f dg
∣∣∣≤

(
sup
t∈J

|f(t)|
)

var(g, J) + |f(c)||∆−g(c)|+ |f(d)||∆+g(d)|.

(ii) If J = [c, d) , then

∣∣∣
∫

J

f dg
∣∣∣≤

(
sup
t∈J

|f(t)|
)

var(g, J) + |f(c)| |∆−g(c)|.

(iii) If J = (c, d] , then

∣∣∣
∫

J

f dg
∣∣∣≤

(
sup
t∈J

|f(t)|
)

var(g, J) + |f(d)| |∆+g(d)|.

(iv) If J = (c, d), then

∣∣∣
∫

J

f dg
∣∣∣≤

(
sup
t∈J

|f(t)|
)

var(g, J).

Proof. (i) In the caseJ = [c, d] , the inequality is an obvious consequence of
(6.9.3) and Theorem6.3.4.

(ii) By (6.9.5) and Theorem6.5.3we get

∫

[c,d)

f dg = f(c) ∆−g(c) +

∫ d

c

f dg− f(d) ∆−g(d)

= f(c) ∆−g(c) + lim
s→d−

∫ s

c

f dg.
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This together with Theorem2.8.4implies

∣∣∣
∫

[c,d)

f dg
∣∣∣≤ |f(c)| |∆−g(c)|+ lim

s→d−

(
sup

t∈[c,s]

|f(t)| varscg
)

= |f(c)| |∆−g(c)|+
(

sup
t∈[c,d)

|f(t)|
)

var(g, [c, d)).

(iii) To obtain the corresponding estimate in the case whenJ = (c, d] , we use
(6.9.6) and follow the same arguments used in the proof of (ii).

(iv) For an arbitrary but fixedτ ∈ (c, d) , by (6.9.4) we have

∫

(c,d)

f dg =

∫ d

c

f dg− f(c) ∆+g(c)− f(d) ∆−g(d)

=

∫ τ

c

f dg− f(c) ∆+g(c) +

∫ d

τ

f dg− f(d) ∆−g(d).

Thus, applying Theorem6.5.3we obtain

∫

(c,d)

f dg = lim
s→c+

∫ τ

s

f dg + lim
s→d−

∫ s

τ

f dg,

and consequently

∣∣∣
∫

(c,d)

f dg
∣∣∣≤ lim

s→c+

(
sup

t∈[s,τ ]

|f(t)| varτsg
)
+ lim

s→d−

(
sup

t∈[τ,s]

|f(t)| varsτg
)

= ( sup
t∈(c,d)

|f(t)|
)(

lim
s→c+

varτsg + lim
s→d−

varsτg
)
.

The estimate in (iv) then follows from Theorem2.8.4. 2

As a consequence of Definition2.8.10, Theorem6.9.12and Theorem6.9.9we
have the following result.

6.9.13 Corollary. Let E be an elementary subset of[a, b] and let f : [a, b]→R
and g ∈BV([a, b])∩C([a, b]) be such that the integral

∫
E

f dg exists. Then

∣∣∣
∫

E

f dg
∣∣∣≤

(
sup
t∈E

|f(t)|
)

var(g, E).
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6.10 Integrals of vector, matrix and complex func-
tions

Let us recall that, by part (xiii) of Conventions and Notation, the norm of a matrix
A∈L (Rm,Rn) is denoted by the symbol|A| and defined by

|A|= max
j=1,...,m

n∑
i=1

|ai,j|.

Vectors fromRn are identified withn× 1 matrices (i.e., they are treated as col-
umn vectors). In other words, we identify the spacesRn and L (Rn,R). Conse-
quently, the norm of a vectorx∈Rn is

|x|=
n∑

i=1

|xi|.

Clearly, we have|Ax| ≤ |A| |x| for all A∈L (Rm,Rn), x∈Rn. It is also known
that

|A|= sup
{|Ax| : x∈Rn, |x| ≤ 1

}
.

Let F : [a, b]→L (Rm,Rp) andG : [a, b]→L (Rp,Rn) be matrix-valued fun-
ctions with components

fi,k, i∈{1, . . . , m}, k ∈{1, . . . , p},
and

gk,j, k ∈{1, . . . , p}, j ∈{1, . . . , n},
respectively. Then, if all the integrals

∫ b

a

fi,k dgk,j i∈{1, . . . , m}, k ∈{1, . . . , p}, j ∈{1, . . . , n}

exist, the symbols
∫ b

a

F (t) dG(t) or
∫ b

a

F dG

stand for them×n matrix M ∈L (Rm,Rn) with elements

mi,j =

p∑

k=1

∫ b

a

fi,k dgk,j, i = 1, . . . , m, j = 1, . . . , n.
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6.10.1 Exercise.Verify that if
∫ b

a
F (t) dG(t) exists and equalsM ∈L (Rm,Rn),

then for eachε> 0, there is a gaugeδ on [a, b] such that the inequality

∣∣∣
ν(P )∑

`=1

F (ξ`) (G(α`)−G(α`−1))−M
∣∣∣ <ε

holds for eachδ -fine partitionP = (α, ξ) of [a, b].

Analogously, we can define the integrals
∫ b

a
dF G, or

∫ b

a
F dGH, where the

values ofF, G andH are matrices of appropriate dimensions.

The variation of a matrix-valued functionF : [a, b]→L (Rm,Rn) is defined
by the same formula as in the scalar case, i.e.,

varba F = sup
α∈D [a,b]

ν(α)∑
j=1

|F (αj)−F (αj−1)|.

One can easily verify the inequalities

max
i=1,...,m
j=1,...,n

(
varba fi,j

)≤ varba F ≤
m∑

i=1

n∑
j=1

varba fi,j.

This means that a matrix-valued functionF : [a, b]→L (Rm,Rn) has bounded
variation if and only if all its components have bounded variation. Similarly,F is
continuous or regulated if and only if all its components have the same property.

The results obtained in this and in the preceding chapter are easily general-
ized for matrix or vector functions. One only needs to keep in mind that matrix
multiplication is in general not commutative, i.e., it is not allowed to change the
order of matrix-valued functions involved in various products. For example, the
integration by parts formula (Theorem6.4.2) has to be formulated as follows:

If F : [a, b]→L (Rm,Rp) is regulated andG : [a, b]→L (Rp,Rn) has bounded
variation, then both the integrals

∫ b

a

F dG and
∫ b

a

dF G

exist, and we have
∫ b

a

F dG +

∫ b

a

dF G = F (b) G(b)−F (a) G(a)

+
∑

x∈[a,b]

(
∆−F (x) ∆−G(x)−∆+F (x) ∆+G(x)

)
.
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Similarly, the substitution theorem (Theorem6.6.1) for matrix functions reads as
follows:

Let H : [a, b]→L (Rm,Rp) be bounded and letF : [a, b]→L (Rp,Rq) and
G : [a, b]→L (Rq,Rn) be such that the integral

∫ b

a
F dG exists. If one of the

integrals
∫ b

a

H(x) d
[ ∫ x

a

F dG
]
,

∫ b

a

(H F ) dG,

exists, then the other exists as well, and we have
∫ b

a

H(x) d
[ ∫ x

a

F dG
]
=

∫ b

a

(H F ) dG.

Finally, let us consider Kurzweil-Stieltjes integrals of complex-valued func-
tions. Given a pair of functionsf, g : [a, b]→C with real partsf1, g1 and imagi-
nary partsf2, g2, we define

∫ b

a

f dg =

∫ b

a

(f1 + if2) d(g1 + ig2)

=

∫ b

a

f1 dg1−
∫ b

a

f2 dg2 + i

(∫ b

a

f1 dg2 +

∫ b

a

f2 dg1

)

whenever all four integrals on the right-hand side exist.
Again, most results obtained in this chapter, such as the integration by parts

formula or substitution theorem, are still valid for complex-valued functions. We
leave the verification of this fact up to the reader; the proofs are straightforward
and based on the decomposition of complex functions into the real and imaginary
parts.

6.10.2 Exercise.Given a pair of functionsf, g : [a, b]→C, verify that if
∫ b

a
f dg

exists and equalsI ∈C, then for eachε> 0, there is a gaugeδ on [a, b] such that
the inequality∣∣∣∣∣∣

ν(P )∑
j=1

f(ξj) (g(αj)− g(αj−1))− I

∣∣∣∣∣∣
<ε

holds for eachδ -fine partitionP = (α, ξ) of [a, b]. In this context, the symbol|z|
denotes the absolute value of a complex numberz.

6.10.3 Exercise.Let f, g : [a, b]→C be such that the integral
∫ b

a
f dg exists.

Show that
∫ b

a

f dg =

∫ b

a

f̄ dḡ,

where the symbol̄z denotes the complex conjugate of a complex numberz.
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6.11 Relation between Lebesgue-Stieltjes and Kurz-
weil-Stieltjes integrals

The goal of this section is to clarify the relationship between Kurzweil-Stieltjes
integrals and Lebesgue-Stieltjes integrals. We assume some basic familiarity with
measure theory and Lebesgue integration. Since the rest of the book makes no
use of the results from this section, readers who are not interested in Lebesgue-
Stieltjes integrals can skip this part.

First, let us recall some facts about Lebesgue-Stieltjes measures. More details
can be found e.g. in Section 22 of [153].

Throughout this section, we always assume thatg :R→R is nondecreasing.
Then the outer Lebesgue-Stieltjes measure of an arbitrary setE⊂R is given by

µ∗g(E) := inf

{ ∞∑
n=1

(g(bn+)− g(an+)) : E⊂
∞⋃

n=1

(an, bn]

}
.

The outer measure is either a nonnegative real number, or∞. The functionµ∗g is
defined on the collection of all subsets ofR, but it need not beσ -additive. By
restrictingµ∗g to a certainσ -algebra of sets that are calledµg -measurable, we get
the Lebesgue-Stieltjes measureµg, which is σ -additive. This measure has the
following properties:

• Each Borel set (in particular, each open or closed set) isµg -measurable.

• The measures of various types of intervals are calculated as follows:

µg([a, b]) = g(b+)− g(a−),

µg((a, b]) = g(b+)− g(a+),

µg([a, b)) = g(b−)− g(a−),

µg((a, b)) = g(b−)− g(a+).

In particular, the measure of a singleton{a} is µg({a}) = g(a+)− g(a−).

• If E⊂R is µg -measurable andε> 0, there exists an open setG such that
E⊂G andµg(G \E) <ε.

• If E⊂R satisfiesµ∗g(E) = 0, thenE is µg -measurable andµg(E) = 0.

In Lebesgue’s integration theory, it is common to deal with functions whose
values can be not only real numbers, but also±∞. For this reason, we set
R∗ =R∪{±∞}.



KURZWEIL-STIELTJES INTEGRAL 219

A function f :R→R∗ is calledµg -measurable if the set{x∈R : f(x) >r}
is µg -measurable for eachr∈R. A function s :R→R is called simple if it can
be expressed in the form

s =
n∑

j=1

cjχAj
,

where c1, . . . , cn are distinct real numbers, andA1, . . . , An are disjoint subsets
of R. Obviously, s is µg -measurable if and only if the setsA1, . . . , An are
µg -measurable. Ifs is µg -measurable and nonnegative (i.e., ifc1, . . . , cn≥ 0),
we define its Lebesgue-Stieltjes integral by the formula

∫

R
s dµg =

n∑
j=1

cjµg(Aj).

If cj = 0 andµg(Aj) =∞ for a certainj ∈{1, . . . , n}, we use the convention that
0 ·∞= 0. The value of the integral is either a nonnegative real number, or∞.

For each nonnegativeµg -measurable functionf :R→R∗, there exists a non-
decreasing sequence of simple nonnegative functions which is convergent tof.
We define
∫

R
f dµg= sup

{∫

R
s dµg: s is a simpleµg-measurable function with0≤ s≤ f

}
.

Finally, for an arbitraryµg -measurable functionf :R→R∗, we define
∫

R
f dµg =

∫

R
f+ dµg −

∫

R
f− dµg

whenever the difference on the right-hand side makes sense (i.e., it is not of the
form ∞−∞).

If E⊂R is a µg -measurable set, we let
∫

E

f dµg =

∫

R
fχE dµg

whenever the last integral exists. Since the values off outsideE are unimportant,
we can assume thatf is defined only onE (and extend it toR in an arbitrary
way).

If g(x) = x for all x∈R, then µg is simply the Lebesgue measure, and the
Lebesgue-Stieltjes integral reduces to the ordinary Lebesgue integral.

Note that if
∫
R f dµg exists and is finite, then

∫
R |f | dµg also exists and is

finite, because|f | is µg -measurable,|f |= f+ + f−, and the integrals off+ and
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f− are finite. For this reason, we say that the Lebesgue-Stieltjes integral isab-
solutely convergent.

Our goal is to prove that Lebesgue-Stieltjes integrability implies Kurzweil-
Stieltjes integrability. This fact will be a fairly straightforward consequence of the
next lemma.

6.11.1 Lemma.If E⊂ [a, b] is a µg -measurable set, then the Kurzweil-Stieltjes
integral

∫ b

a
χE dg exists, and we have

∫ b

a

χE dg =

∫

(a,b)

χE dµg + χE(a) ∆+g(a) + χE(b) ∆−g(b).

Proof. Let Ẽ = E ∩ (a, b) and observe that

∫

(a,b)

χE dµg =

∫

R
χ eE dµg = µg(Ẽ).

SinceE ∩{a} andE ∩{b} are either empty or singleton sets, we have

∫ b

a

χE∩{a} dg = χE(a) ∆+g(a),

∫ b

a

χE∩{b} dg = χE(b) ∆+g(b).

Thus, it suffices to show that

∫ b

a

χ eE dg = µg(Ẽ). (6.11.1)

Let H = (a, b) \ Ẽ. Consider an arbitraryε > 0. It is well known (cf. e.g. Lemma
22.10 in [153]) that there exist open setsG1, G2⊂R such that

Ẽ⊂G1, µg(G1) <µg(Ẽ) + ε, H ⊂G2, µg(G2) <µg(H) +
ε

2
.

Let δ be a gauge on[a, b] with the following properties:

• δ(x) < dist(x,R \G1) for every x∈ Ẽ, and δ(x) < dist(x,R \G2) for
everyx∈H.

• δ(x) <x− a for eachx∈ (a, b], andδ(x) <b− x for eachx∈ [a, b).

• If x∈ (a, a + δ(a)), then g(x)− g(a+) <ε/4; if x∈ (b− δ(b), b), then
g(b−)− g(x) <ε/4.
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Let P = (α, ξ) be aδ -fine partition of[a, b]. The first property from the definition
of δ ensures that ifξi ∈ Ẽ, then [αi−1, αi]⊂G1, and if ξi ∈H, then [αi−1, αi]⊂
G2. The second property guarantees thatξ1 = a andξν(P ) = b. We can write

⋃

ξi∈ eE
[αj−1, αj] =

⋃
j∈J

[βj−1, βj],

where the right-hand side is a finite union of disjoint intervals contained inG1

(note that the intervals on the left-hand side are nonoverlapping, but in general
not disjoint). Consequently, we get

S(χ eE, P ) =
∑

ξi∈ eE
(g(αi)− g(αi−1)) =

∑
j∈J

(g(βj)− g(βj−1))

≤
∑
j∈J

(g(βj+)− g(βj−1−)) =
∑
j∈J

µg([βj−1, βj])

≤µg(G1) <µg(Ẽ) + ε.

To obtain a lower bound forS(χ eE, P ), we write
⋃

ξi∈H

[αi−1, αi] =
⋃

k∈K

[γk−1, γk],

where the right-hand side is a finite union of disjoint intervals contained inG2.
Recalling thatξ1 = a /∈ Ẽ andξν(P ) = bẼ, we get

S(χ eE, P ) = g(b)− g(a)−
∑

ξi∈[a,b]\ eE
(g(αi)− g(αi−1))

= g(b)− g(a)

−
(

g(α1)− g(α0) +
∑

ξi∈H

(
g(αi)− g(αi−1)

)
+ g(αν(P ))− g(αν(P )−1)

)

= g(αν(P )−1)− g(α1)−
∑

ξi∈H

(g(αi)− g(αi−1))

= g(αν(P )−1)− g(α1)−
∑

k∈K

(g(γk)− g(γk−1))

>g(b−)− ε

4
− g(a+)− ε

4
−

∑

k∈K

(g(γk+)− g(γk−1−))

≥ g(b−)− g(a+)− ε

2
−

∑

k∈K

µg([γk−1, γk])

≥µg((a, b))− ε

2
−µg(G2)≥µg((a, b))−µg(H)− ε = µg(Ẽ)− ε.
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We have proved that

|S(χ eE, P )−µg(Ẽ)|<ε

for eachδ -fine partitionP = (α, ξ), which implies that the identity (6.11.1) holds
and the proof is complete. 2

Using the definition of a simple function and its Lebesgue-Stieltjes integral,
we get the next result.

6.11.2 Corollary. If s : [a, b]→R is a µg -measurable simple function, then the
Kurzweil-Stieltjes integral

∫ b

a
sdg exists, and we have

∫ b

a

s dg =

∫

(a,b)

s dµg + s(a) ∆+g(a) + s(b) ∆−g(b). (6.11.2)

6.11.3 Theorem.If f : [a, b]→R and the Lebesgue-Stieltjes integral
∫
(a,b)

f dµg

has a finite value, then the Kurzweil-Stieltjes integral
∫ b

a
f dg exists, as well, and

∫ b

a

f dg =

∫

(a,b)

f dµg + f(a) ∆+g(a) + f(b) ∆−g(b). (6.11.3)

If g(a+) = g(a) and g(b+) = g(b), then
∫ b

a

f dg =

∫

(a,b]

f dµg. (6.11.4)

If g(a−) = g(a) and g(b−) = g(b), then
∫ b

a

f dg =

∫

[a,b)

f dµg. (6.11.5)

Proof. If the Lebesgue-Stieltjes integral exists, thenf (which is considered to be
zero outside[a, b]) is necessarilyµg -measurable. Each of the functionsf+, f−

is nonnegative andµg -measurable, and therefore it is the limit of a nondecreasing
sequence of nonnegativeµg -measurable simple functions. The Kurzweil-Stieltjes
and Lebesgue-Stieltjes integrals of these simple functions exist and satisfy the
relation (6.11.2). Using the monotone convergence theorems for the Kurzweil-
Stieltjes and Lebesgue-Stieltjes integrals, we get

∫ b

a

f+ dg =

∫

(a,b)

f+ dµg + f+(a) ∆+g(a) + f+(b) ∆−g(b),

∫ b

a

f− dg =

∫

(a,b)

f− dµg + f−(a) ∆+g(a) + f−(b) ∆−g(b),



KURZWEIL-STIELTJES INTEGRAL 223

which immediately implies (6.11.3).
If g(a+) = g(a) andg(b+) = g(b), observe that∆+g(a) = 0 and

f(b) ∆−g(b) = f(b) (g(b+)− g(b−)) = f(b) µg({b}) =

∫

{b}
f dµg.

Similarly, if g(a−) = g(a) andg(b−) = g(b), then∆−g(b) = 0 and

f(a) ∆+g(a) = f(a) (g(a+)− g(a−)) = f(a) µg({a}) =

∫

{a}
f dµg.

These facts together with (6.11.3) imply (6.11.4) and (6.11.5), respectively. 2

6.11.4 Exercise.In Section6.9 we have introduced Kurzweil-Stieltjes integrals
of the form

∫
E

f dg, where f, g : [a, b]→R and E is an elementary subset of
[a, b]. Suppose that we extendg to R in such a way thatg(a−) = g(a) and
g(b+) = g(b). Show that if I ⊂ [a, b] is an interval of an arbitrary type and the
Lebesgue-Stieltjes integral

∫
I
f dµg exists, then the Kurzweil-Stieltjes integral∫

I
f dg exists as well and has the same value. Conclude that the same statement

holds if I is replaced by an elementary setE⊂ [a, b]. Let f : [a, b]→R, g :R→R
and a subintervalI of [a, b] be given and letg(a−) = g(a) and g(b+) = g(b).
Assume that the Lebesgue-Stieltjes integral

∫
I
f dg exists. Then the Kurzweil-

Stieltjes integral
∫

I
f dg exists as well, and both integrals have the same value.

Our next goal is to prove a partial converse to Theorem6.11.3and show that
for nonnegative functionsf, Kurzweil-Stieltjes integrability implies Lebesgue-
Stieltjes integrability. We begin by establishing two auxiliary results.

6.11.5 Lemma.Let f : [a, b]→R be a nonnegative function such that the Kurz-
weil-Stieltjes integral

∫ b

a
f dg exists, andE = {x∈ [a, b] : f(x)≥ 1}. Then for

eachε> 0, there exists aµg -measurable setG⊂ [a, b] containingE and such
that

∫ b

a
χG dg≤ ε +

∫ b

a
f dg.

Proof. We havef = fχ{a} + fχ(a,b] andE = E1 ∪E2, whereE1 = E ∩{a} and

E2 = E ∩ (a, b]. Note that both
∫ b

a
fχ{a} dg and

∫ b

a
fχ(a,b] dg exist. We will con-

struct measurable setsG1, G2⊂ [a, b] such thatE1⊂G1, E2⊂G2,
∫ b

a

χG1 dg≤ ε

2
+

∫ b

a

fχ{a} dg,

∫ b

a

χG2 dg≤ ε

2
+

∫ b

a

fχ(a,b] dg.

ThenG = G1 ∪G2 containsE, and
∫ b

a

χG dg≤
∫ b

a

(χG1 + χG2) dg≤ ε +

∫ b

a

f dg.
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If f(a) < 1, it suffices to takeG1 = ∅. Otherwise, iff(a)≥ 1, find a c∈ (a, b]
such thatg(c)− g(a+)≤ ε/2, and letG1 = [a, c). ThenE1⊂{a}⊂G1 and

∫ b

a

χG1 dg = g(c−)− g(a) = g(c−)− g(a+) + g(a+)− g(a)

≤ g(c)− g(a+) +
f(a) ∆+g(a)

f(a)

= g(c)− g(a+) +
1

f(a)

∫ b

a

fχ{a} dg

≤ ε

2
+

∫ b

a

fχ{a} dg.

Note thatg is right-continuous in[a, b) with at most countably many excep-
tions. Hence, there exists a sequence of divisions{αn} of [a, b] such that for each
n∈N, αn+1 is a refinement ofαn, |αn| ≤ (b− a)/2n, andg is right-continuous
at the division pointsαn

1 , . . . , αn
ν(α)−1.

Let δ be a gauge on[a, b] such that

|S(fχ(a,b], dg, P )−
∫ b

a

fχ(a,b] dg|<ε/2

for eachδ -fine partitionP of [a, b]. We now construct a collectionI of interval-
point pairs of the form((u, v], τ). In the beginning, letI = ∅. For eachn∈N,
perform the following step: Find all intervals[αn

j−1, α
n
j ] which are not contained

in any interval inI and such that there exists a pointτ ∈ [αn
j−1, α

n
j ]∩E2 sat-

isfying [αn
j−1, α

n
j ]⊂ (τ − δ(τ), τ + δ(τ)) ; then add((αn

j−1, α
n
j ], τ) to I. If there

are several possible choices ofτ for a given [αn
j−1, α

n
j ], take only one of these

interval-point pairs.
This procedure leads to a collectionI= {((uk, vk], τk): k ∈K}, whereK ⊂

N is either finite or countable. All intervals inI are pairwise disjoint, and all
pointsτk satisfyf(τk)≥ 1 (becauseτk ∈E2 ). Moreover, we have

E2⊂
⋃

k∈K

(uk, vk].

Indeed, if x∈E2, take n∈N such that(b− a)/2n <δ(x). Since x belongs to
(αn

j−1, α
n
j ] for a certainj ∈{1, . . . , ν(αn)}, and (recall that|αn| ≤ (b− a)/2n )

x− b− a

2n
≤αn

j −
b− a

2n
≤αn

j−1≤αn
j ≤αn

j−1 +
b− a

2n
≤ x +

b− a

2n
,

we see that that[αn
j−1, α

n
j ]⊂ (x− δ(x), x + δ(x)). Thus, either(αn

j−1, α
n
j ] was

added toI in the n-th stage of its construction, or it is contained in an interval
added earlier. In any case,x∈⋃

k∈K(uk, vk].



KURZWEIL-STIELTJES INTEGRAL 225

If L is an arbitrary finite subset ofK, then the collection{([uk, vk], τk) : k∈L}
can be extended to aδ -fine tagged partitionP of [a, b], and therefore

∑

k∈L

(g(vk)− g(uk))≤
∑

k∈L

f(τk) (g(vk)− g(uk))

≤S(fχ(a,b], dg, P ) <
ε

2
+

∫ b

a

fχ(a,b] dg.

It follows that

∑

k∈K

(g(vk)− g(uk))≤ ε

2
+

∫ b

a

fχ(a,b] dg.

Let G2 =
⋃

k∈K(uk, vk]. Since G2 is µg -measurable, the integral
∫ b

a
χG2 dg

exists by Lemma6.11.1, and we have

∫ b

a

χG2 dg≤
∑

k∈K

∫ b

a

χ(uk,vk] dg.

If vk = b, then
∫ b

a
χ(uk,vk] dg = g(vk)− g(uk+). If vk <b, then g is right-conti-

nuous atvk, and

∫ b

a

χ(uk,vk] dg = g(vk+)− g(uk+) = g(vk)− g(uk+).

Thus, we get

∫ b

a

χG2 dg≤
∑

k∈K

(
g(vk)− g(uk+)

)≤
∑

k∈K

(
g(vk)− g(uk)

)≤ ε

2
+

∫ b

a

fχ(a,b] dg,

which completes the proof. 2

6.11.6 Lemma.Let f : [a, b]→R be a nonnegative function such that the Kurz-
weil-Stieltjes integral

∫ b

a
f dg exists. Then for eachε> 0, there exists a non-

negativeµg -measurable functionϕ : [a, b]→R satisfyingf(x)≤ϕ(x) + ε for all
x∈ [a, b], and

∫ b

a
ϕ dg≤ ε +

∫ b

a
f dg.

Proof. Let ε> 0 be given. Suppose first thatf(a) = f(b) = 0. For eachn∈N∪
{0}, let

fn(x) =





0 if f(x)≤n ε,

f(x)−n ε if f(x)∈ [n ε, (n + 1) ε],

ε if f(x)≥ (n + 1) ε,
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and observe that

f(x) =
∞∑

n=0

fn(x) for x∈ [a, b]. (6.11.6)

We claim that
∫ b

a
fn dg exists for eachn∈N∪{0}. To see this, note that

fn(x) = min{max{f(x)−n ε, 0}, ε} for x∈ [a, b].

Since|f(x)−n ε| ≤ f(x) + n ε and both
∫ b

a
(f −n ε) dg and

∫ b

a
(f + n ε) dg ex-

ist, Theorem6.7.4implies that
∫ b

a
|f −n ε| dg exists as well. According to Theo-

rem6.7.5, this means that
∫ b

a
max{f −n ε, 0} dg exists and consequently

∫ b

a

min{max{f −n ε, 0}, ε} dg

exists, too; this proves the claim.
Using (6.11.6) and Levi’s theorem (Theorem6.8.10and Remark6.8.11), we

get
∫ b

a

f dg =
∞∑

n=0

∫ b

a

fn dg. (6.11.7)

For eachn∈N∪{0}, Lemma6.11.5implies the existence of aµg -measurable
setGn⊂ [a, b] such that

{x∈ [a, b] : fn(x) = ε}= {x∈ [a, b] :
1

ε
fn(x)≥ 1}⊂Gn,

and
∫ b

a

χGn dg≤ 1

2n+1
+

1

ε

∫ b

a

fn dg. (6.11.8)

Sincef(a) = f(b) = 0, we can assume that all the setsGn are contained in the
open interval(a, b). Denote

ψ(x) = ε

∞∑
n=0

χGn(x) for x∈ [a, b].

Since the last sum need not be convergent, the functionψ takes values in[0,∞].
Using Levi’s theorem for the Lebesgue-Stieltjes integral, Theorem6.11.3and
(6.11.8), we get

∫

[a,b]

ψ dµg = ε

∞∑
n=0

∫

[a,b]

χGn dµg = ε

∞∑
n=0

∫ b

a

χGn dg≤ ε +

∫ b

a

f dg.
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The finiteness of the integral implies thatψ must be finiteµg -almost everywhere
in [a, b], i.e., if N = {x∈ [a, b] : ψ(x) =∞}, then µg(N) = 0. It follows that the
function χN f is µg -measurable. Consequently, the functionϕ : [a, b]→R given
by

ϕ = χ[a,b]\N ψ + χN f = ε

∞∑
n=0

χGn\N + χN f

is µg -measurable, nonnegative, and everywhere finite. Let

Hn ={x∈ [a, b]: nε<f(x) < (n+1)ε}= {x∈ [a, b]: 0 <fn(x) <ε} for n∈N∪{0}.
Note that all the setsHn are pairwise disjoint, and

fn(x)≤ ε (χGn(x) + χHn(x)) for x∈ [a, b].

Thus, if x∈ [a, b] \N, we obtain

f(x) =
∞∑

n=0

fn(x)≤ ε

∞∑
n=0

χGn(x) + ε

∞∑
n=0

χHn(x)≤ϕ(x) + ε.

On the other hand, ifx∈N, thenf(x) = ϕ(x).

Sinceµg(N) = 0, we have
∫
(a,b)

χNf dµg = 0, and thus (by Theorem6.11.3)

∫ b

a

χNf dg = 0.

Levi’s theorem for the Kurzweil-Stieltjes integral and (6.11.8) imply

∫ b

a

ϕ dg = ε

∞∑
n=0

∫ b

a

χGn\N dg +

∫ b

a

χN f dg≤ ε

∞∑
n=0

∫ b

a

χGn dg≤ ε +

∫ b

a

f dg.

Therefore, we have shown thatϕ has all the required properties.
In a general case whenf(a) and f(b) are arbitrary, consider the function

fχ(a,b). By the previous part of the proof, there is aµg -measurable functioñϕ
such that

fχ(a,b)≤ ϕ̃ + ε and
∫ b

a

ϕ̃ dg≤ ε +

∫ b

a

fχ(a,b) dg.

Taking ϕ = ϕ̃ + fχ{a,b}, we see that

f = fχ(a,b) + fχ{a,b}≤ ϕ̃ + ε + fχ{a,b} = ϕ + ε,

and
∫ b

a
ϕ dg≤ ε +

∫ b

a
f dg. 2
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6.11.7 Theorem.Let g : [a, b]→R be given and letf : [a, b]→R be a nonneg-
ative function such that the Kurzweil-Stieltjes integral

∫ b

a
f dg exists. Then the

Lebesgue-Stieltjes integral
∫
(a,b)

f dµg also exists and is finite.

Proof. First, assume that
∫ b

a
f dg = 0. Define

Ek={x∈ (a, b) : f(x)≥ 1/k} for k ∈N.

For eachε> 0, Lemma6.11.5implies the existence of aµg -measurable subset
G of [a, b] containing the set{x∈ [a, b] : k f(x)≥ 1} and satisfying

∫ b

a
χG dg≤ ε.

Observing thatEk⊂G∩ (a, b) and using Lemma6.11.1, we get

µ∗g(Ek)≤µg(G∩ (a, b)) =

∫

(a,b)

χG∩(a,b) dµg

=

∫ b

a

χG∩(a,b) dg≤
∫ b

a

χG dg≤ ε.

Sinceε> 0 was arbitrary, we haveµ∗g(Ek) = 0. Hence,Ek is µg -measurable and
µg(Ek) = 0. It follows that

0 = µg

( ∞⋃

k=1

Ek

)
= µg({x∈ (a, b) : f(x) > 0}).

Consequently,fχ(a,b) is µg -measurable and
∫

(a,b)
f dµg = 0.

Next, assume that
∫ b

a
f dg > 0. Using Lemma6.11.6with ε = 1/k, k ∈N, we

get a sequence of nonnegativeµg -measurable functions{ϕk} satisfying
f ≤ϕk + 1/k and

∫ b

a

ϕk dg≤ 1

k
+

∫ b

a

f dg, k ∈N.

Hence,h = lim infk→∞ ϕk is µg -measurable,f ≤h, and Fatou’s lemma implies

∫ b

a

h dg≤ lim inf
k→∞

∫ b

a

ϕk dg≤ lim inf
k→∞

(
1

k
+

∫ b

a

f dg

)
=

∫ b

a

f dg≤
∫ b

a

h dg,

i.e.,
∫ b

a
(h− f) dg = 0.

By the first part of the proof, the Lebesgue-Stieltjes integral
∫

(a,b)
(h− f) dµg

exists and equals zero. For eachk ∈N, Theorem6.11.3implies

∫

(a,b)

ϕk dµg ≤
∫ b

a

ϕk dg.
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Using Fatou’s lemma for the Lebesgue-Stieltjes integral, we get
∫

(a,b)

h dµg ≤ lim inf
k→∞

(∫

(a,b)

ϕk dµg

)
≤ lim inf

k→∞

(∫ b

a

ϕk dg

)
=

∫ b

a

h dg,

which shows that
∫
(a,b)

h dµg is finite. Consequently,
∫

(a,b)

f dµg =

∫

(a,b)

h dµg −
∫

(a,b)

(h− f) dµg

exists and is finite. 2

Theorems6.11.3and6.11.7show that for nonnegative functionsf, the Kurz-
weil-Stieltjes integral

∫ b

a
f dg exists if and only if the Lebesgue-Stieltjes integral∫

(a,b)
f dµg exists and is finite; the relation between their values is given by for-

mula (6.11.3).

6.12 Relation of the Kurzweil-Stieltjes integral
to other Stieltjes-type integrals

In Section6.2 we have already clarified the relationships between the Kurzweil-
Stieltjes (KS) integral on one side and the Riemann-Stieltjes (RS) integrals (both
(δ) and (σ)), or the Perron-Stieltjes integral on the other side. We have touched
also the relation with the Newton integral. The relationship with the Lebesgue-
Stieltjes integral was discussed in the previous section. Now, in addition, we will
briefly outline the relationship with some of the other known integrals of Stieltjes
type.

YOUNG INTEGRAL

Let f : [a, b]→R andg ∈G([a, b]). Define

SY (P )

=

ν(P )∑
j=1

(
f(αj−1) ∆+ g(αj−1) + f(ξj) [g(αj−)−g(αj−1+)] + f(αj)∆

−g(αj)
)

for every tagged partitionP = (α, ξ) of [a, b]. We say that the(σ)Young-integral
(σY)

∫ b

a
f dg exists and has a valueI ∈R if

for everyε> 0 there is a divisionαε of [a, b] such that

|SY (P )− I|<ε

holds for all partitionsP = (α, ξ) of [a, b] such thatα⊃αε and

αj−1 <ξj <αj for all j ∈{1, . . . , ν(α)}.
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Notice that the expressionSY (P ) can be equivalently rewritten as follows:

SY (P ) = f(a) ∆+g(a) +

ν(P )−1∑
j=1

f(αj) ∆ g(αj) + f(b)∆−g(b)

+

ν(P )∑
j=1

f(ξj) [g(αj−)− g(αj−1+)]





(6.12.1)

Integral sums of the form (6.12.1) were introduced by W. H. Young in [157],
where related(δ)-type integrals were discussed, as well. To our knowledge, a
systematic study of the(σ)Young integral was initiated by T. H. Hildebrandt in
[53]. More details are available in Section II.19 of his monograph [55]. The
(σ)Young integral is more general than the corresponding RS-integrals. If the
function f is regulated on[a, b] and g has a bounded variation on[a, b], then it
is known that the integral(σY)

∫ b

a
f dg exists and coincides with the KS-integral

(KS)
∫ b

a
f dg (cf. Schwabik [120] and [121]). However, proceeding similarly as

in the proofs of Theorems6.3.8and6.3.11, it is possible to extend this assertion
as follows.

6.12.1 Proposition.Supposef and g are regulated on[a, b] and at least one of
them has a bounded variation on[a, b]. Then both integrals

(KS)

∫ b

a

f dg and (σY)

∫ b

a

f dg

exist and have the same value.

The proof essentially follows the ideas of Section6.3 and we leave it to the
reader as the following (somewhat more advanced) exercise. 2

6.12.2 Exercise.Prove Proposition6.12.1.
Hint:

• Verify that the formulas (6.3.1)–(6.3.10) from Examples6.3.1hold also for
the (σ)Young integral.

• Using Exercise2.1.12(ii) show that the estimate

|SY (P )| ≤ ‖f‖∞ varba g

holds for all partitionsP of [a, b] and allf, g : [a, b]→R.

• For f : [a, b]→R, g ∈G([a, b]) and α, ξ, β ∈ [a, b] such thata≤α≤ ξ≤
β≤ b, verify the equality

f(α) [g(α+)−g(α)] + f(ξ) [g(β−)−g(α+)] + f(β) [g(β)−g(β−)]

= [f(α)−f(ξ)] g(α+) + [f(ξ)−f(β)] g(β−) + f(β) g(β)− f(α) g(α).
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Having this in mind, it is easy to see that the estimate

|SY (P )| ≤ (|f(a)|+ |f(b)|+ varba f) ‖g‖∞
is valid for all partitionsP of [a, b] and allf, g : [a, b]→R.

• Notice that due to the previous two steps, the estimates

∣∣(σY)

∫ b

a

f dg
∣∣≤‖f‖∞ varba g

and
∣∣(σY)

∫ b

a

f dg
∣∣≤ 2 ‖f‖BV ‖g‖∞

hold whenever the corresponding integrals exist.

• Modify the proofs of Theorems6.3.7and6.3.10to show that their ana-
logues are true also for the(σ)Young integral.

• Finally, complete the proof of Proposition6.12.1by proceeding as in the
proofs of Theorems6.3.8and6.3.11.

6.12.3 Remark. (i) If g is regulated on[a, b] and

g(a) = g(t−) = g(s+) = g(b) for t∈ (a, b], s∈ [a, b), (6.12.2)

then, by (6.12.1), SY (P ) = 0 for every functionf : [a, b]→R and every partition
P of [a, b], i.e., (σY)

∫ b

a
f dg = 0. In general, this is no longer true for the KS-

integral, as shown by the following example taken from [120] (see Example 2.1
there): Let

tk =
1

k + 1
for k ∈N and g(t) =

{
2−k if t = tk for some k ∈N,

0 for t∈ [0, 1] \ {tk : k ∈N},
and

f(t) =

{
2k if t = tk for somek ∈N,

0 for t∈ [0, 1] \ {tk : k ∈N},

Evidently, g has a bounded variation on[0, 1] and g(a) = g(t−) = g(s+) = g(b)
for t∈ (a, b ] and s∈ [a, b). (Notice thatf is not regulated on[0, 1] as f(0+)
does not exist.)

Consider an arbitrary gaugeδ and let `∈N be such thatt` ∈ (0, δ(0)). We
can choose aδ -fine partitionP = (α, ξ) of [0, 1] in such a way that

α0 = ξ1 = 0, α1 = ξ2 = t` and g(αj) = 0 for j ∈{2, . . . , ν(α)}.



232

Then

S(P ) = f(ξ2) [g(α2)− g(α1)] =−f(t`) g(t`) =−1

On the other hand, we can choose aδ -fine partitionP = (α, ξ) in such a way that
α∩{tk}= ∅. As S(P ) = 0 for such partitions, it follows that the KS-integral∫ b

a
f dg does not exist.

(ii) Of course, if g(x) = x, then the Dirichlet functionfD (cf. Remark6.2.4) is
not (σ)Young integrable with respect tog. Thus, the existence of the KS-integral
does not in general imply the existence of the(σ)Young integral.

SCHWABIK ’ S MODIFIED KS-INTEGRAL

To avoid the trouble illustrated by the first part of the above remark,Š. Schwabik
introduced in [121] the notion of the modified KS-integral in the following way:

We sayI ∈R is the modified KS-integral off with respect tog if for each
ε> 0 we can find a gaugeδ such that|S(P )− I|<ε holds for eachδ -fine parti-
tion P of [a, b] such that

a≤ ξ1 <α1,

αj−1 <ξj <αj for all j ∈{2, . . . , ν(α)− 1}
and

αν(α)−1 < ξν(α)≤ b.

6.12.4 Exercises. (i) Show that in the example described in the first part of
Remark6.12.3, the modified KS-integral off with respect tog equals 0.
(ii) Let g(a) = g(t+) = g(s−) = g(b) for all t∈ (a, b] and alls∈ [a, b). Prove that
the modified KS-integral off with respect tog equals 0 for eachf : [a, b]→R.

So far, there exists no systematic treatment of the modified KS-integral. How-
ever, it is evident that the modified KS-integral exists whenever the KS-integral
exists and in such a case they have the same value. The applications presented in
this book show that the KS-integral is sufficient for many purposes.

KREJČÍ ’ S KN- INTEGRAL

Recently (see [71]), P. Kreǰćı modified the notion of the KS-integral so that his in-
tegral, called the KN-integral, fully covers not only the(σ)Young integral but also
Schwabik’s modified KS-integral. His definition is based on a skillful reduction
of the set of permissible partitions. We can formulate it as follows:

Let f, g : [a, b]→R andI ∈R. We write

(KN)

∫ b

a

f dg = I
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if for every ε> 0 there are a gaugeδ on [a, b] and a countable setA⊂ [a, b] such
that the inequality

|S(P )− I|<ε

holds for everyδ -fine partitionP such that none of its tags belongs to the setA.

DUSHNIK (INTERIOR) INTEGRAL

We say that the(σ)Dushnik-integral(σD)
∫ b

a
f dg exists and equalsI ∈R if

for everyε> 0 there is a divisionαε of [a, b] such that

|S(P )− I|<ε

holds for all partitionsP = (α, ξ) of [a, b] such thatα⊃αε and

αj−1 <ξj <αj for all j ∈{1, . . . , ν(α)}.





The Dushnik integral is also known as theinterior integral, cf. Dushnik [31].

6.12.5 Exercise.Assume thatf is the Dirichlet function andg(x) = x on [a, b].

Show that the(σ)Dushnik integral(σD)
∫ b

a
f dg does not exist.

Thus, unlike the modified KS-integral and KN-integral, the(σ)Dushnik inte-
gral does not fully cover the KS-integral. Still, this concept of integral is suffi-
ciently general for many purposes, because(σD)

∫ b

a
f dg exists if f, g are regu-

lated and one of them has a bounded variation. However, the value of the integral
is in general different from the KS-integral. This is evident from the next exercise,
which should be compared with Examples 6.3.1.

6.12.6 Exercises. (i) For any functionf ∈G([a, b]), show that the following
relations are true:

(σD)

∫ b

a

f dχ(τ,b ] = f(τ+) if τ ∈ [a, b),

(σD)

∫ b

a

f dχ[τ,b ] = f(τ−) if τ ∈ (a, b],

(σD)

∫ b

a

f dχ[a,τ ] =−f(τ+) if τ ∈ [a, b),

(σD)

∫ b

a

f dχ[a,τ) =−f(τ−) if τ ∈ (a, b],

and

(σD)

∫ b

a

f dχ[τ ] =





−f(a+) if τ = a,

−∆f(τ) if τ ∈ (a, b),

f(b−) if τ = b.
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(ii) For any functiong : [a, b]→R, show that the following relations are true:

(σD)

∫ b

a

χ(τ,b ] dg = g(b)− g(τ) if τ ∈ [a, b),

(σD)

∫ b

a

χ[τ,b ] dg = g(b)− g(τ) if τ ∈ (a, b],

(σD)

∫ b

a

χ[a,τ ] dg = g(τ)− g(a) if τ ∈ [a, b),

(σD)

∫ b

a

χ[a,τ) dg = g(τ)− g(a) if τ ∈ (a, b],

and

(σD)

∫ b

a

χ[τ ] dg = 0 for τ ∈ [a, b].

The next result provides more information on the relation between(σ)Dushnik
and KS-integrals.

6.12.7 Proposition.Assume thatf and g are regulated on[a, b] and at least one
of them has a bounded variation on[a, b]. Then both integrals

(σD)

∫ b

a

f dg and (KS)

∫ b

a

g df

exist and the equality

(σD)

∫ b

a

f dg + (KS)

∫ b

a

g df = f(b) g(a)− f(a) g(a) (6.12.3)

holds.

Similarly to Proposition6.12.1, the proof is left as an exercise to the reader.

6.12.8 Exercise.Prove Proposition6.12.7.
Hint: Follow the steps of Exercise6.12.2with the (σ)Young integral replaced
by the (σ)Dushnik integral. Take into account the results of Exercises6.12.6and
observe that (6.12.3) holds if one of the functionsf, g is regulated and the other
is a finite step function.

Notice that, combining relation (6.12.3) with the integration-by-parts formula
(6.4.2), we obtain the equality

(σD)

∫ b

a

f dg = (KS)

∫ b

a

f dg

−
∑

a≤x≤b

(
∆−f(x) ∆−g(x)−∆+f(x) ∆+g(x)

)
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valid wheneverf and g are regulated on[a, b] and at least one of them has a
bounded variation on[a, b].

We point out that a relation between the(σ)Young and(σ)Dushnik integrals
analogous to Proposition6.12.7has been already known for a long time, cf. The-
orem B in MacNerney [96] or Theorem 4.7 in Ḧonig [61].

A noteworthy study of the Dushnik integral is contained in the monograph [60]
by Ch.S. Ḧonig, who extended its definition to functions with values in Banach
spaces and subsequently used it to develop the theory of abstract Volterra-Stieltjes
integral equations.

INTEGRATION IN ABSTRACT SPACES

The extension of integration to vector and matrix functions was shown in Sec-
tion 6.10. One can act analogously even in the case of abstract functions, i.e.
functions with values in Banach spaces. IfX is a Banach space andL (X ) is
the corresponding Banach space of continuous linear operators onX and

F : [a, b]→L (X), G : [a, b]→L (X), g : [a, b]→X,

then we can define KS-integrals
∫ b

a

dF g,

∫ b

a

F dg,

∫ b

a

dF G,

∫ b

a

F dG.

For example,
∫ b

a
dF g = I ∈ X if for every ε> 0 there is a gaugeδ on [a, b] such

that

∥∥∥
ν(P )∑
j=1

F (ξj)
[
g(αj)− g(αj−1)

]− I
∥∥∥
X

<ε

holds for everyδ -fine partitionP = (α, ξ) of [a, b]. The notion of the variation
can be easily transferred to abstract functions, too. For a functionf : [a, b]→ X
and a divisionα of the interval[a, b], we define

V (f, α) =

ν(α)∑
j=1

‖f(αj)− f(αj−1)‖X
and

varba f = sup{V (f, α) : α∈D [a, b]}.
It is also obvious how to define the spaceG([a, b], X ) of regulated functions with
values inX . Then e.g. both integrals

∫ b

a

dF G and
∫ b

a

F dG
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exist if F ∈BV([a, b], L (X )) and G∈G([a, b], L (X )) and most of the state-
ments known for the integration of scalar functions (see [124], [128] and [102])
hold. There are some exceptions though: e.g. Corollary6.5.2holds only if the
spaceX has finite dimension. This means that, inter alia, there are certain prob-
lems with the transfer of e.g. the Substitution Theorem to abstract integrals. In
this brief information, it is worth mentioning that if the spaceX does not have a
finite dimension, it makes sense to consider, instead of variation, then in general
weaker notion ofsemivariationwhich is defined as follows:

For a given functionF : [a, b]→L (X ) and a divisionα of [a, b], set first

V b
a (F, α) = sup

{∥∥
ν(α)∑
j=1

[F (αj)−F (αj−1)] xj

∥∥
X

}

where the supremum is taken over all choices of elementsxj ∈X, j∈{1, . . ., ν(α)}
such that‖xj‖X ≤ 1. Then the number

(B) varba F = sup{V b
a (F, α) : α∈D [a, b]}

is called thesemivariationof the functionF on [a, b] (see e.g. [60]). The as-
sumptions concerning bounded variation can be usually (not always) weakened
to bounded semivariation. It is known that ifX has finite dimension, then the
notions of variation and semivariation coincide.

Finally, let us note that the integration of functions with values in Hilbert, or
reflexive Banach spaces, is useful e.g. in the theory of hysteresis (see e.g. [76] or
[77]).



Chapter 7

Generalized linear differential
equations

7.1 Introduction

All integrals in this chapter are KS-integrals whose definition is extended to matrix
valued functions (i.e. the functions mapping the interval[a, b] into the space of
matrices) in the sense of Section6.10. As we already explained in Section6.10, all
properties of KS-integral as well as of both kinds of RS-integral, which we have
proved so far for scalar functions, hold for the vector and matrix valued functions,
too, if the original order of matrices is kept. Therefore, in the proofs, for any
needed properties of functions and integrals, we will refer to the corresponding
statements proved in the previous chapters for scalar functions.

The following definition introduces the spaces of vector and matrix valued
functions that will be used throughout this chapter.

7.1.1 Definition. (i) G([a, b],Rn) is a Banach space of the functionsf : [a, b]→Rn,
which are regulated on[a, b]. The norm onG([a, b],Rn) is defined by

‖f‖= sup
t∈[a,b]

|f(t)| for f ∈G([a, b],Rn)

where|f(t)| is the norm of the vectorf(t) in Rn.

(ii) BV([a, b], L (Rn)) is a Banach space of the functionsF : [a, b]→L (Rn)
which have bounded variation on[a, b]. The norm onBV([a, b], L (Rn)) is de-
fined by

‖F‖BV = |F (a)|+ varba F for F ∈BV([a, b], L (Rn)),

where varba F is defined as in Section6.10and |F (a)| is the norm of the matrix
F (a) in L (Rn).

The spacesBV([a, b],Rn), C([a, b], L (Rn)) and C([a, b],Rn) and their norms
are defined similarly. A set of functionsf : [a, b]→Rn with a derivative that is
continuous on the interval[a, b] is denoted byC1([a, b],Rn). As usual, we define

f ′(a) = f ′(a+) and f ′(b) = f ′(b−) for f ∈C1([a, b],Rn).

The topic of this chapter are the equations of form

x(t)− x(s)−
∫ t

s

dAx = f(t)− f(s) (7.1.1)
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wheret, s∈ [a, b], A is ann×n-matrix valued function,f is ann-vector valued
function and we look forn-vector valued functionx satisfying the following
definition.

7.1.2 Definition. A function x : [a, b]→Rn is a solution of equation (7.1.1) on
[a, b] if the integral

∫ b

a
dA x exists and equation (7.1.1) is satisfied for allt, s∈

[a, b].

The equation (7.1.1) is calledgeneralized linear differential equation.

7.1.3 Remark. Let t0 ∈ [a, b] be given and letx satisfy the equation

x(t)− x(t0)−
∫ t

t0

dAx = f(t)− f(t0) (7.1.2)

for t∈ [a, b]. Then for anys∈ [a, b], we have

x(s) = x(t0) +

∫ s

t0

dAx + f(s)− f(t0).

If we subtract this equation from (7.1.2), we will find out that (7.1.1) holds for all
t, s∈ [a, b], i.e. x is a solution of equation (7.1.1). Thus, the functionx : [a, b]→
Rn is a solution of equation (7.1.1) on [a, b] if and only if for some fixedt0 ∈ [a, b]
it satisfies (7.1.2) on [a, b].

7.2 Differential equations with impulses

The motivation for studying generalized differential equations are among oth-
ers the problems with impulses. A range of practical problems actually involve
perturbations that have negligible persistence time compared to the time of the
whole process which however significantly affect the studied process. The suit-
able model for describing such processes is usuallydifferential equations with
impulses, i.e. differential equations whose solutions does not have to be neither
smooth nor continuous.

The source of the models with impulses is mainly physics (e.g. the descrip-
tion of clock mechanisms, oscillations of electromechanical systems, radiation of
electric or magnetic waves in the environment with rapidly changing parameters,
stabilization of Kapitza’s pendulum, optimal regulation by bang-bang method)
but also medical science (distribution of medicinal substances in a body, strategy
of impulse vaccination in epidemiological models, investigation of the effect of
mass measles vaccination), population dynamics (models with rapid changes in
the amount of some populations) or economics (trade models which admit rapid
changes of prices).
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The simplest idealization of impulse processes are the processes described by
the linear differential equations on which linear impulses act in finite amount of
firmly given points.

Assume

r∈N, a < τ1< · · ·<τr <b,

P ∈C([a, b], L (Rn)), q ∈C([a, b],Rn),

Bk ∈L (Rn), dk ∈Rn for k = 1, . . . , r.





(7.2.1)

(In this chapter, the symbols likeBk, or dk, stand also for matrices, or vectors.)

Denote

D =
{
τ1, τ2, . . . , τr

}
, τ0 = a, τr+1 = b

and, for a given regulated functionx : [a, b]→Rn, define

x[1](t) = x(t) for t∈ [a, τ1]

and

x[ k](t) =

{
x(τk−1+) if t = τk−1,

x(t) if t∈ (τk−1, τk]

for k ∈{2, 3, . . . , r+1}.





(7.2.2)

The linear impulse problem then consists of the linear differential equation

x′ = P (t) x + q(t) (7.2.3)

and linear impulse conditions

∆+x(τk) = Bk x(τk) + dk, k = 1, . . . , r (7.2.4)

while the solution is defined by the following definition.

7.2.1 Definition. We say that a functionx : [a, b]→Rn is a solution to the im-
pulse problem (7.2.3), (7.2.4) if

x[ k] ∈C1([τk−1, τk]) for all k ∈{1, . . . , r+1}, (7.2.5)

x′(t) = P (t) x(t) + q(t) for all t∈ [a, b] \D (7.2.6)

and x satisfies the impulse conditions (7.2.4).

7.2.2 Remark. Notice that a solution to problem (7.2.3), (7.2.4) always belongs
to the spaceG([a, b],Rn).
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Now we will show that problem (7.2.3), (7.2.4) can be equivalently reformu-
lated as a generalized linear differential equation of the form (7.1.2).

First, assume thatr = 1, and letx : [a, b]→Rn be a solution of the impulse
problem (7.2.3), (7.2.4). Integrating equation (7.2.6), we get

x(t) = x(a) +

∫ t

a

P (s) x(s) ds +

∫ t

a

q(s) ds for t∈ [a, τ1]

and

x(t) = x(τ1+) +

∫ t

τ1

P (s) x(s) ds +

∫ t

τ1

q(s) ds for t∈ (τ1, b ].

Substituting (7.2.4) (wherek = r = 1) into the latter relation above, we get

x(t) = x(τ1) + B1 x(τ1) + d1 +

∫ t

τ1

P (s) x(s) ds +

∫ t

τ1

q(s) ds

= x(a) +

∫ t

a

P (s) x(s) ds + B1 x(τ1) +

∫ t

a

q(s) ds + d1,

for t∈ (τ1, b ] and therefore

x(t) = x(a) +

∫ t

a

P (s) x(s) ds + χ(τ1,b ](t) B1 x(τ1)

+

∫ t

a

q(s) ds + χ(τ1,b ](t) d1





for t∈ [a, b]. (7.2.7)

For t∈ [a, b], set

A(t) =

∫ t

a

P (s) ds + χ(τ1,b ](t) B1 and f(t) =

∫ t

a

q(s) ds + χ(τ1,b ](t) d1

ThenA∈BV([a, b], L (Rn)), f ∈BV([a, b],Rn) and

A(t−) = A(t) and f(t−) = f(t) for t∈ (a, b ].

Moreover,

A(t+) =

∫ t

a

P (s) ds + χ[τ1,b ](t) B1 and f(t+) =

∫ t

a

q(s) ds + χ[τ1,b ](t) d1,

that is

∆+A(t) = χ[τ1](t) B1 and ∆+f(t) = χ[τ1](t) d1 for t∈ [a, b).

By the Substitution Theorem6.6.1and formula (6.3.1) from Examples6.3.1(ii)
(see also Examples6.5.7), the equalities

∫ t

a

dAx =

∫ t

a

P (s) x(s) ds + χ(τ1,b ](t) B1 x(τ1)

and
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f(t)− f(a) =

∫ t

a

q(s) ds + χ(τ1,b ](t) d1

hold for t∈ [a, b] and x∈G([a, b],Rn). Substituting to (7.2.7), we find out that
x satisfies on[a, b] (7.1.2), wheret0 = a.

Reversely, ifx∈G([a, b],Rn) verifies (7.1.2) on [a, b], then (7.2.7) surely
holds. Thus, if we define the functionsx[ k] as in (7.2.2), then (7.2.5) and (7.2.6)
will be true. Furthermore, by Hake’s Theorem (see also Exercise6.5.6) x(t−) =
x(t) for eacht∈ (a, b ] and

x(t+) = x(a) + lim
s→t+

∫ s

a

dAx + f(t+)− f(a)

= x(a) +

∫ t

a

dAx + f(t)− f(a) + ∆+A(t) x(t) + ∆+f(t)

= x(t) + χ[τ1](t)
(
B1 x(t) + d1

)
for every t∈ [a, b].

In particular, puttingt = τ1, we find out thatx meets the impulse condition (7.2.4)
wherek = r= 1.

Hence, by Remark7.1.3, the problem (7.2.3), (7.2.4) is equivalent to general-
ized differential equation (7.1.1) if r = 1.

In the general case ofr∈N, we define

A(t) =

∫ t

a

P (s) ds +
r∑

k=1

χ(τk,b ](t) Bk for t∈ [a, b],

f(t) =

∫ t

a

q(s) ds +
r∑

k=1

χ(τk,b ](t) dk for t∈ [a, b].





(7.2.8)

By induction, we verify the following statement easily.

7.2.3 Theorem.Assume(7.2.1) and (7.2.8). Then the impulse problem(7.2.3),
(7.2.4) is equivalent to the generalized differential equation(7.1.2), i.e. x : [a, b]→
Rn is a solution of problem(7.2.3), (7.2.4) on [a, b] if and only if it is a solution
of equation(7.1.1) on [a, b].

2

7.3 Linear operators

Now, let us briefly recall some basic notions and results from functional analysis
which we will need later. More detailed information can be found in the majority
of the textbooks on functional analysis (see e.g. [70] or [115]). The basic overview
is also included in the introduction part of [131].



242

Let X , Y be Banach spaces. The mappingT : X → Y is acontinuous ope-
rator if

lim
n→∞

‖xn−x‖X = 0 =⇒ lim
n→∞

‖T (xn)−T (x)‖Y = 0,

where ‖ · ‖X is the norm onX and ‖ · ‖Y is the norm onY . The operator
L : X → Y is calledlinear if

L(c1 x2+c2 x2) = c1 L(x1)+c2 L(x2) holds forx1, x2 ∈X and c1, c2 ∈R.

Moreover, we say that the linear operatorL is boundedif there is a number
K ∈ [0,∞) such that

‖L(x)‖Y≤K ‖x‖X for all x∈X.

If L is a linear operator, then, as usual, we writeLx instead ofL(x). It is known
that the linear operatorL : X → Y is continuous if and only if it is bounded.

The set of linear bounded mappings of the spaceX into Y is denoted by
L (X , Y ). If X = Y , we write L (X ) instead ofL (X , X ). On L (X , Y ),
the operations of adding the operators and multiplying the operators by a real
number are established in an obvious way andL (X , Y ) is then a Banach space
with respect to the norm

L∈L (X,Y )→‖L‖L (X ,Y )
= sup

{‖Lx‖Y : x∈X and ‖x‖X ≤ 1
}
.

It is known that the spaceL (Rn) is equivalent with the space of matrices of form
n×n.

Finally, we say thatL∈L (X , Y ) is compactif it maps every set bounded
in X onto a set which is relatively compact inY , i.e. if for every sequence
{xn} bounded inX , its value{Lxn}⊂ Y contains a subsequence that is con-
vergent in Y . It is known that every compact linear operator is simultaneously
continuous.

We will use the following two statements in the proofs of the main results of
this chapter. The former one is a generalization of one of Fredholm’s theorems
known from the theory of integral equations. Its proof is included e.g. in the
monographs by N. Dunford and J. T. Schwartz [30] or by M. Schechter [118].

7.3.1 Theorem(FREDHOLM ALTERNATIVE THEOREM). Let X be a Banach
space and let the operatorL∈L (X ) be compact. Then the operator equation

x−Lx = g (7.3.1)
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has exactly one solutionx∈ X for everyg ∈ X if and only if the corresponding
homogeneous equation

x−Lx = 0 (7.3.2)

has only the trivial solutionx = 0∈ X .

The second statement is known also from the elementary theory of matri-
ces. Let us recall its general form borrowed from the monograph [140] (see
Lemma 4.1-C).

7.3.2 Lemma.Let X be a Banach space,L∈L (X ) and ‖L‖L (X )
< 1. Then

the operator
[
I −L

]
has a bounded inverse

[
I −L

]−1
and the inequality

∥∥∥
[
I −L

]−1
∥∥∥

L (X)
≤ 1

1−‖L‖L (X)

is true.

7.4 Existence of solutions

Let us start our consideration of generalized linear differential equations by a sim-
ple observation based on known properties of the KS-integral.

7.4.1 Theorem.Let A∈BV([a, b], L (Rn)) and f ∈G([a, b],Rn). Then every
solution x of equation(7.1.1) on [a, b] is regulated on[a, b] and satisfies the
relations

∆−x(t) = ∆−A(t) x(t) + ∆−f(t) for t∈ (a, b ],

∆+x(s) = ∆+A(s) x(s) + ∆+f(s) for s∈ [a, b).

}
(7.4.1)

P r o o f follows from Corollary6.5.4of Lemma6.5.1(Saks-Henstock Lemma).
2

Thus, by virtue of Theorem7.4.1, it is appropriate to look for solutions of
generalized linear differential equations in the classG([a, b],Rn).

The problem

x(t)− x̃−
∫ t

t0

dAx = f(t)− f(t0), (7.4.2)

where the pointt0 ∈ [a, b] and the vector̃x∈Rn are given beforehand, is an ana-
logue of the initial problems for linear ordinary differential equations.
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7.4.2 Definition. A function x: [a, b]→Rn is said to be a solution to the initial
problem (7.4.2) on [a, b] if equation (7.4.2) is satisfied for everyt∈ [a, b].

7.4.3 Remark.Due to Remark7.1.3, it is obvious that the functionx is a solution
to the initial problem (7.4.2) on [a, b] if and only if it is a solution to equation
(7.1.1) on [a, b] andx(t0) = x̃.

For a given functionx∈G([a, b],Rn) and a pointt0 ∈ [a, b], let the function
At0x be given by

(At0x)(t) =

∫ t

t0

dAx for t∈ [a, b]. (7.4.3)

By Corollary6.5.4all the functions At0x are regulated on[a, b]. The mapping

At0 : x∈G([a, b],Rn)→At0x∈G([a, b],Rn)

is obviously linear. Moreover, by Theorem6.3.4we have

‖At0x‖≤
(
varba A

) ‖x‖ for all x∈G([a, b],Rn).

Thus, for everyt0 ∈ [a, b], At0 is a continuous linear operator on the space
G([a, b],Rn), i.e.

At0 ∈L (G([a, b],Rn)).

Next, we will prove that (7.4.3) defines simultaneously a linear continuous opera-
tor mappingG([a, b],Rn) into BV([a, b],Rn).

7.4.4 Lemma. Let A∈BV([a, b], L (Rn)), t0 ∈ [a, b] and let the functionAt0x
be defined forx∈G([a, b],Rn) by (7.4.3).

ThenAt0x∈BV([a, b],Rn) for everyx∈G([a, b],Rn) and the operator

x∈G([a, b],Rn)→At0x∈BV([a, b],Rn)

is bounded.

Proof. Let α be an arbitrary division of the interval[a, b]. By Theorem6.3.4

ν(α)∑
j=1

∣∣(At0x)(αj)− (At0x)(αj−1)
∣∣ =

ν(α)∑
j=1

∣∣∣
∫ αj

αj−1

dA x
∣∣∣

≤
ν(α)∑
j=1

(
varαj

αj−1
A

) ‖x‖=
(
varba A

) ‖x‖

and
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∣∣(At0x)(a)
∣∣ =

∣∣∣
∫ a

t0

dAx
∣∣∣≤

(
varba A

) ‖x‖.

hold for everyx∈G([a, b],Rn). HenceAt0x∈BV([a, b],Rn) and

‖At0x‖BV = |(At0x)(a)|+ varba(At0x)≤ 2
(
varba A

) ‖x‖

for everyx∈G([a, b],Rn). 2

Using the operatorAt0 from (7.4.3), we can rewrite the initial problem (7.4.2)
as the operator equation

x−At0x = g, where g = x̃ + f − f(t0).

Unfortunately, we do not have tools that would enable us to prove the compactness
of the operatorA ∈L (G([a, b],Rn)). Therefore, we cannot apply the Fredholm
Theorem (Theorem7.3.1) directly and we have to proceed by a kind of indirect
route. In the following theorem, using the Helly Choice Theorem (Theorem2.7.4)
and the Bounded Convergence Theorem (Theorem??), we will show that the
operatorAt0 generates compact mapping of the spaceBV([a, b],Rn) into itself.

7.4.5 Theorem.Let t0 ∈ [a, b], A∈BV([a, b], L (Rn)) and Lx = At0x for
x∈BV([a, b],Rn). ThenL is a compact linear operator onBV([a, b],Rn).

Proof. Since‖x‖≤‖x‖BV for eachx∈BV([a, b],Rn), it follows by Lemma7.4.4
that L∈L (BV([a, b],Rn)).

Next, we will prove that for an arbitrary sequence{xn} bounded inBV([a, b],Rn),
the set of its values{Lxn}⊂BV([a, b],Rn) contains a subsequence that is con-
vergent inBV([a, b],Rn).

Thus, let the sequence{xn}⊂BV([a, b]) and the numberκ ∈ [0,∞) be such
that

‖xn‖BV≤κ<∞ for every n∈N.

By the Helly Choice Theorem (Theorem2.7.4) there are a functionx∈BV([a, b],Rn)
and an increasing subsequence{nk}⊂N such that

‖x‖BV≤ 2κ and lim
k→∞

xnk
(t) = x(t) for every t∈ [a, b].

Setzk(t) = xnk
(t)− x(t) for k ∈N and t∈ [a, b]. Then

|zk(t)| ≤ 4κ and lim
k→∞

zk(t) = 0 for k ∈N and t∈ [a, b].
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Since the integrals
∫ d

c
dAzk and

∫ d

c
d[varsa A] |zk(s)| exist for all c, d∈ [a, b] and

k ∈N, Theorem6.3.4guarantees that the inequalities

ν(α)∑
j=1

|(Lzk)(αj)− (Lzk)(αj−1)|=
ν(α)∑
j=1

∣∣∣
∫ αj

αj−1

dAzk

∣∣∣

≤
ν(α)∑
j=1

∫ αj

αj−1

d
[
varsa A

] |zk(s)| ≤
∫ b

a

d
[
varsa A

] |zk(s)|

hold for every divisionα of [a, b] and everyk ∈N. We thus have

varba (Lzk)≤
∫ b

a

d
[
varsa A

] |zk(s)| for k ∈N.

By the Bounded Convergence Theorem??,

lim
k→∞

∫ b

a

d
[
varsa A

] |zk(s)|= 0,

and hence

lim
k→∞

varba
(
Lxnk

−Lx
)
= lim

k→∞
varba(L zk) = 0.

Similarly,

lim
k→∞

|(Lxnk
(a)−Lx(a)

)|= lim
k→∞

|(L zk)(a)|= lim
k→∞

∣∣∣
∫ a

t0

dAzk

∣∣∣

≤ lim
k→∞

∫ a

t0

[
varsa A

] |zk(s)|= 0.

This completes the proof of the theorem. 2

The following statement is a corollary of Theorems7.3.1and7.4.5.

7.4.6 Theorem.Let A∈BV([a, b], L (Rn)) and t0 ∈ [a, b]. Then the initial value
problem

x(t)−
∫ t

t0

dAx = g(t) (7.4.4)

has exactly one solution on[a, b] for everyg ∈BV([a, b],Rn) if and only if the
corresponding homogeneous problem

x(t)−
∫ t

t0

dAx = 0 (7.4.5)

has only trivial solutionx≡ 0 on [a, b].
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Proof. Equation (7.4.4) is equivalent with the operator equation

x−Lx = g

whereLx = A t0 x for x∈BV([a, b],Rn), i.e.

(L x)(t) =

∫ t

t0

dAx for x∈BV([a, b],Rn) and t∈ [a, b].

By Theorem7.4.5 L is linear compact operator onBV([a, b],Rn). Hence, the
proof can be completed by using Theorem7.3.1. 2

Now, assume thatτ ∈ (t0, b ] and that the functionx∈G([a, b],Rn) satisfies
equation (7.4.2) on [t0, τ). Clearly, x(t0) = x̃ and, using Hake’s theorem (The-
orem 6.5.5, see also Examples6.5.7 and Exercise6.5.8), we easily verify the
following relations

x(τ−) = x̃ + lim
s→τ−

∫ s

t0

dAx +
(
f(τ−)− f(t0)

)

= x̃ +

∫ τ

t0

dAx + f(τ)− f(t0)− lim
s→τ−

∫ τ

s

dAx−∆−f(τ)

= x̃ +

∫ τ

t0

dAx + f(τ)− f(t0)−∆−A(τ) x(τ)−∆−f(τ).

Thus, if the functionx should satisfy (7.4.2) also in τ, the valuex(τ) has to be
such that the equality

[
I −∆−A(τ)

]
x(τ) = x(τ−) + ∆−f(τ) (7.4.6)

is true, whereI stands for then×n-unit matrix (see Conventions and Nota-
tions (xiv)). From this, it is obvious that the solution to the initial problem (7.4.2)
on [t0, τ) can be extended to the pointτ in an unique way if and only if

det
[
I −∆−A(τ)

] 6= 0. (7.4.7)

Similarly, we can conclude that a functionx∈G([a, b],Rn) satisfying (7.4.2) on
(τ, t0], whereτ ∈ [a, t0) can be extended to the pointτ if and only if

[
I + ∆+A(τ)

]
x(τ) = x(τ+)−∆+f(τ), (7.4.8)

which will be true just if

det
[
I + ∆+A(τ)

] 6= 0. (7.4.9)

Thus, we can expect that the conditions (7.4.7) and (7.4.9) should be essential for
the existence of the solution to the problem (7.4.2).
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7.4.7 Lemma.Let A∈BV([a, b], L (Rn)) and t0 ∈ [a, b]. Then problem(7.4.4)
has exactly one solution for every functiong ∈BV([a, b],Rn) if and only if

det
(
I −∆−A(t)

) 6= 0 for all t∈ (t0, b] (7.4.10)

and

det
(
I + ∆+A(s)

) 6= 0 for all s∈ [a, t0). (7.4.11)

(Here (t0, b] = ∅ if t0 = b, and [a, t0) = ∅ if t0 = a.)

Proof. a) Assume thatt0 ∈ [a, b), A satisfies (7.4.10) and (7.4.11) and x satis-
fies (7.4.5) on [a, b]. By Remark7.1.3, x is a solution of (7.1.1) on [a, b] while
x(t0) = 0. By Theorem7.4.1, x is regulated on[a, b] and the second equation
in (7.4.1) yields

∆+x(t0) = ∆+A(t0) x(t0) = 0,

i.e. x(t0+) = 0.

Setα(t) = vartt0A for t∈ [t0, b ]. Then the functionα is nondecreasing on the
interval [t0, b ]. Thus, there is a finite limitα(t0+) and we can choose aδ ∈ (0, b−
t0) such that0≤α(t0 + δ)−α(t0+) < 1/2. From this and using Theorems6.3.4
and6.5.5, we derive fort∈ [t0, t0+δ] the inequalities

|x(t)| ≤
∫ t

t0

|x| dα = ∆+α(t0) |x(t0)|+ lim
τ→t0+

∫ t

τ

|x| dα

= lim
τ→t0+

∫ t

τ

|x| dα≤ [
α(t0+δ)−α(t0+)

] (
sup

t∈[t0,t0+δ]

|x(t)|
)

≤ 1

2

(
sup

t∈[t0,t0+δ]

|x(t)|
)
.

Hence
(

sup
t∈[t0,t0+δ]

|x(t)|
)
≤ 1

2

(
sup

t∈[t0,t0+δ]

|x(t)|
)
,

which is possible if and only ifx = 0 on [t0, t0 + δ].

Now, sett∗ = sup{τ ∈ (t0, b ] : x = 0 on [t0, τ ]}. Obviously, x = 0 on [t0, t
∗)

and hencex(t∗−) = 0. Moreover, by (7.4.1) we have0 =
[
I −∆−A(t∗)

]
x(t∗).

However, thanks to assumption (7.4.10), that is possible if and only ifx(t∗) = 0.

Finally, assume thatt∗ <b. Using the same arguments as those we used to
prove that there is aδ ∈ (0, b− t0] such thatx is zero on[t0, t0 + δ], we would
now show that there is anη ∈ (0, b− t∗) such thatx vanishes on[t∗, t∗ + η]. This
being in contradiction with the definition oft∗, it must bet∗ = b. Thus, we proved
that every solution of the problem (7.4.5) vanishes on[t0, b ].
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Similarly, using the assumption (7.4.11), we would prove that ift0 ∈ (a, b ],
then the solutionx of the problem (7.4.5) vanishes also on[a, t0].

To summarize, we have proved that whenever (7.4.10) and (7.4.11) are sat-
isfied, problem (7.4.5) will have only trivial solution on[a, b]. Consequently,
by Theorem7.4.6, problem (7.4.4) has exactly one solution on[a, b] for each
g ∈BV([a, b],Rn).

b) Assume that e.g. (7.4.10) does not hold. By Lemma7.3.2

det
[
I −∆−A(t)

] 6= 0 if |∆−A(t)| ≤ 1/2.

On the other hand, by Corollary4.1.7, the reverse inequality|∆−A(t)|> 1/2
holds for at most finite number of pointst∈ (t0, b ]. Thus, the matrixI −∆−A(t)
is not regular for at most finite number of pointst∈ (t0, b ] and therefore we can
choose at∗ ∈ (t0, b ] such that

det
[
I −∆−A(t)

] 6= 0 for t∈ (t0, t
∗) and det

[
I −∆−A(t∗)

]
= 0.

Now, it is well known from linear algebra that in such a case there existsd∈Rn

such that
[
I −∆−A(t∗)

]
c 6= d for every c∈Rn. (7.4.12)

Define

g(t) =

{
0 when t 6= t∗,

d when t = t∗.

Theng ∈BV([a, b],Rn) and∆−g(t∗) = d. Assume that equation (7.4.4) has a so-
lution x on [a, b]. Then by the first part of the proofx = 0 on [a, t∗), and thus
also x(t∗−) = 0. By Theorem7.4.1

[
I −∆−A(t∗)

]
x(t∗) = d has to hold. This

is however in contradiction with the statement (7.4.12) and hence problem (7.4.4)
cannot have a solution.

If (7.4.11) does not hold, then we will analogously find a pointt∗ ∈ [a, t0) and
a functiong such that

[
I + ∆+A(t∗)

]
c 6= ∆+g(t∗) for every c∈Rn,

which again leads to the contradiction with Theorem7.4.1. 2

7.4.8 Theorem.Let A∈BV([a, b], L (Rn)) and t0 ∈ [a, b]. Then the initial prob-
lem (7.4.2) has exactly one solution for every functionf ∈BV([a, b],Rn) and
every vector̃x∈Rn if and only if (7.4.10) and (7.4.11) hold.

Proof. The theorem is a corollary of Lemma7.4.7if we set

g(t) = x̃ + f(t)− f(t0) for t∈ [a, b]. 2
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7.5 A priori estimates of solutions

An important role in the theory of ordinary differential equations (e.g. for the
proof the uniqueness of a solution to the initial problem or for the proof of the
continuous dependence of solutions on some parameters) is played by the asser-
tion called Gronwall lemma. Below we recall its statement. Its proof can be found
in the majority of textbooks on ordinary differential equations, see. e.g. Auxiliary
Theorem 4.3.1 in [82].

7.5.1 Lemma(GRONWALL). Let the functionsu and p be continuous and non-
negative on[a, b], let K≥ 0 and let

u(t)≤K +

∫ t

a

(
p(s) u(s)

)
ds for t∈ [a, b].

Then

u(t)≤K exp
( ∫ t

a

p(s) ds
)

for t∈ [a, b].

For our purposes, the generalization of Gronwall lemma to the Stieltjes setting
will be likewise important. To deduce it, we need the following auxiliary result.

7.5.2 Lemma. If h : [a, b]→ [0,∞) is nondecreasing and left-continuous, then
∫ b

a

hk dh≤ hk+1(b)−hk+1(a)

k + 1
for everyk ∈N∪{0}.

Proof. The existence of the integral
∫ b

a
hk dh follows from Theorem6.3.8. Con-

sider an arbitraryε> 0. There exists a gaugeδ : [a, b]→ (0,∞) such that for each
δ -fine partitionP = (α, ξ) of [a, b], we have

∣∣∣∣
∫ b

a

hk dh−S(P )

∣∣∣∣ <ε.

Moreover, using the left-continuity ofh, we can assume thatδ is chosen in such
a way that

hi(τ)−hi(t) <ε for i∈{0, . . . , k}, τ ∈ (a, b], t∈ (τ − δ(τ), τ ]. (7.5.1)

Now, let P = (α, ξ) be an arbitraryδ -fine partition of[a, b]. Then
∫ b

a

hk dh =

∫ b

a

hk dh−S(P ) + S(P ) <ε + S(P )

= ε +

ν(P )∑
j=1

(
hk(ξj) (h(αj)−h(ξj)) + hk(ξj) (h(ξj)−h(αj−1))

)
.





(7.5.2)
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Note that for eachj ∈{1, . . . , ν(P )}, we have

hk(ξj)≤ 1

k + 1

k∑
i=0

hk−i(αj)h
i(ξj)

(sinceh is nondecreasing, the right-hand side corresponds to the average ofk + 1
terms, which are all greater than or equal tohk(ξj)). Consequently,

hk(ξj) (h(αj)−h(ξj))≤ 1

k + 1

k∑
i=0

hk−i(αj) hi(ξj) (h(αj)−h(ξj))

=
1

k + 1
(hk+1(αj)−hk+1(ξj)).

For eachj ∈{1, . . . , ν(P )}, the inequality (7.5.1) implies that

hk(ξj)≤ 1

k+1

k∑
i=0

hk−i(ξj)
(
hi(αj−1) + ε

)
.

Furthermore, sinceh is nondecreasing, we havehk−i(ξj)≤M, where

M = max{hi(b), i = 0, . . . , k}.
Consequently,

hk(ξj) (h(ξj)−h(αj−1))

≤ 1

k + 1

k∑
i=0

hk−i(ξj)
(
hi(αj−1) + ε

)
(h(ξj)−h(αj−1))

=
1

k + 1

k∑
i=0

hk−i(ξj) hi(αj−1) (h(ξj)−h(αj−1))

+
ε

k + 1

(
k∑

i=0

hk−i(ξj)

)
(h(ξj)−h(αj−1))

≤ 1

k + 1
(hk+1(ξj)−hk+1(αj−1)) + εM (h(ξj)−h(αj−1)).

By substituting the previous inequalities into (7.5.2), we get

∫ b

a

hk dh≤ ε +
1

k + 1

ν(P )∑
j=1

(
hk+1(αj)−hk+1(αj−1) + εM (h(ξj)−h(αj−1))

)

≤ ε +
hk+1(b)−hk+1(a)

k + 1
+ εM (h(b)−h(a)),

which completes the proof. 2
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7.5.3 Exercise.Prove the following complementary statement to Lemma7.5.2:
If h : [a, b]→ [0,∞) is nonincreasing and right-continuous, then

∫ b

a

hk dh≥ hk+1(b)−hk+1(a)

k + 1
for everyk ∈N∪{0}.

7.5.4 Theorem(GENERALIZED GRONWALL LEMMA ). Assume thatu : [a, b]→
[0,∞) is bounded,h : [a, b]→ [0,∞) is nondecreasing and left-continuous,K ≥
0, L≥ 0, and

u(t)≤K + L

∫ t

a

u dh for t∈ [a, b]. (7.5.3)

Then

u(t)≤K exp
(
L [h(t)−h(a)]

)
for t∈ [a, b]. (7.5.4)

Proof. Let κ≥ 0 andwκ(t) = κ exp
(
L [h(t)−h(a)]

)
for t∈ [a, b]. Then

∫ t

a

wκ dh = κ

∫ t

a

exp
(
L [h(s)−h(a)]

)
dh(s)

= κ

∫ t

a

( ∞∑

k=0

Lk

k!

[
h(s)−h(a)]k

)
dh(s) for t∈ [a, b].

Since, as is known, the series
∑∞

k=0
Lk

k!

[
h(t)−h(a)]k converges uniformly on

[a, b], we can change the order of the operations of integrating and adding. If
we now use Theorem7.5.2, where we replace the functionh by the difference
h−h(a), we get

∫ t

a

wκ dh = κ

∞∑

k=0

(Lk

k!

∫ t

a

[
h(s)−h(a)

]k
)

d[h(s)]

≤κ

∞∑

k=0

(Lk [h(t)−h(a)]k+1

(k + 1)!

)
=

κ

L

(
exp(L [h(t)−h(a)])− 1

)

=
wκ(t)−κ

L

for t∈ [a, b]. This means that the functionwκ satisfies the inequality

wκ(t)≥κ + L

∫ t

a

wκ dh (7.5.5)

for every κ≥ 0 and t∈ [a, b]. Let ε> 0 be given and letκ = K + ε and vε =
u−wκ. By subtracting the inequalities (7.5.3) and (7.5.5), we find out

vε(t)≤−ε + L

∫ t

a

vε dh holds for t∈ [a, b]. (7.5.6)
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Specially, vε(a)≤−ε< 0. The remaining part of the proof will resemble the
method used in the proof of Lemma7.4.7. The functionsu and wκ are evi-
dently bounded on[a, b] for every κ≥ 0. Hence, the functionvε is bounded on
[a, b], too. By Hake’s theorem6.5.5(ii) we have fort∈ (a, b]

∫ t

a

vε dh = vε(a) ∆+h(a) + lim
δ→0+

∫ t

a+δ

vε dh

≤−ε ∆+h(a) + ‖vε‖ [h(t)−h(a+)]≤‖vε‖ [h(t)−h(a+)],

and therefore

vε(t)≤−ε + L

∫ t

a

vε dh≤−ε + L ‖vε‖ [h(t)−h(a+)] for t∈ (a, b].

Choose anη > 0 in such a way that

L ‖vε‖ [h(t)−h(a+)] <ε/2 holds for t∈ [a, a + η].

Thenvε < 0 on [a, a + η]. Set t∗ = sup{τ ∈ [a, b] : vε < 0 on [a, τ ]}.
We see thatt∗ >a and vε < 0 on [a, t∗). By repeated using Hake’s theorem

6.5.5(i), we get

vε(t
∗)≤−ε + L

∫ t∗

a

vε dh

=−ε + L
(
vε(t

∗)∆−h(t∗) + lim
δ→0+

∫ t∗−δ

a

vε dh
)
≤−ε< 0,

from (7.5.6) as∆−h(t∗) = 0 and
∫ t∗−δ

a
vε dh≤ 0 for everyδ > 0.

If t∗ <b, we would repeat the previous method and show that there exists
θ∈ (0, b− t∗) such thatvε < 0 on the interval[a, t∗ + θ] which is in contradiction
with Definition t∗. Hencet∗ = b, vε < 0 on the whole[a, b] and

u(t) <wκ(t) = K exp
(
L (h(t)−h(a))

)
+ ε exp

(
L (h(t)−h(a))

)
for t∈ [a, b].

Sinceε> 0 was arbitrary, it means that (7.5.4) holds. 2

7.5.5 Exercise.Prove the following variant of Theorem7.5.4:
Let u : [a, b]→ [0,∞) be bounded on[a, b], h : [a, b]→ [0,∞) be nondecreas-

ing and continuous from right on(a, b], K ≥ 0, L≥ 0 and

u(t)≤K + L

∫ b

t

u dh for t∈ [a, b]. (7.5.7)

Then

u(t)≤K exp
(
L [h(b)−h(t)]

)
for t∈ [a, b]. (7.5.8)
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7.5.6 Remark. More general versions of generalized Gronwall lemma are in-
cluded in the monographs byŠ. Schwabik [122] (see Theorem 1.40) and J. Kurzweil
[85] (see chapter 22).

In the following theorem, we will use generalized Gronwall lemma for deriv-
ing an important estimate for the solution of the problem (7.4.2).

7.5.7 Theorem.Let t0 ∈ [a, b] and A∈BV([a, b], L (Rn)) meet the conditions
(7.4.10) and (7.4.11), f ∈G([a, b],Rn), x̃∈Rn and let x be a solution of the
initial problem(7.4.2) on [a, b]. Then

varba (x− f)≤ (varba A) ‖x‖<∞, (7.5.9)

c(A,t0):= max
{

1, sup
t∈(t0,b ]

∣∣[I −∆−A(t)]−1
∣∣ ,

sup
t∈[a,t0)

∣∣[I + ∆+A(t)]−1
∣∣

}
<∞,





(7.5.10)

|x(t)| ≤ c(A,t0)

(|x̃|+ 2 ‖f‖) exp
(
2 c(A,t0) vartt0 A

)
for t∈ [t0, b ],

|x(t)| ≤ c(A,t0)

(|x̃|+ 2 ‖f‖) exp
(
2 c(A,t0) vart0t A

)
for t∈ [a, t0].




(7.5.11)

Proof. a) For any divisionα of the interval[a, b], we have

ν(α)∑
j=1

∣∣∣x(αj)− f(αj)− x(αj−1) + f(αj−1)
∣∣∣

=

ν(α)∑
j=1

∣∣∣
∫ αj

αj−1

d[ A] x
∣∣∣≤

ν(α)∑
j=1

[
(varαj

αj−1
A) ‖x‖] = (varba A) ‖x‖<∞.

This gives immediately (7.5.9).

b) Let t∈ (t0, b ] be such that|∆−A(t)| ≤ 1
2
. Then, using Lemma7.3.2, we get

∣∣[I −∆−A(t)]−1
∣∣≤ 1

1− |∆−A(t)| < 2.

Since the set
{
t∈ [a, b]: |∆−A(t)|> 1

2

}
has at most finitely many elements, Corol-

lary 4.1.7implies that

sup
t∈(t0,b ]

∣∣[I −∆−A(t)]−1
∣∣ <∞.

Similarly, we would argue to prove that

sup
t∈[a,t0)

∣∣[I + ∆+A(t)]−1
∣∣ <∞.
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To summarize, (7.5.10) is true.

c) Let x satisfy (7.4.2). Set

B(t) =

{
A(t) if t∈ [a, t0],

A(t−) if t∈ (t0, b ].

Obviously,A(t)−B(t) = ∆−A(t) and

vartt0(B−A) =
∑

s∈(t0,t ]

|∆−A(s)| ≤ vartt0A

for t∈ (t0, b ] (see Corollary2.3.8). Hence

A−B ∈BV([a, b],Rn) and vartt0B≤ 2 vartt0A.

Furthermore,∆+B(t0) = ∆+A(t0) and hence, using Corollary6.3.16, we get
∫ t

t0

d[A−B] x = ∆−A(t) x(t) for t∈ (t0, b ].

The equation (7.4.2) is thus reduced to

[I −∆−A(t)] x(t) = x̃ +

∫ t

t0

d[B] x + f(t)− f(t0) for t∈ [t0, b ].

From here and having in mind thatc(A,t0)≥ 1 we easily derive the inequality

|x(t)| ≤K + L

∫ t

t0

|x| dh for t∈ [t0, b ],

where

K = c(A,t0) (|x̃|+ 2 ‖f‖) , L = c(A,t0) and h(t) = vartt0 B.

The functionh is nondecreasing on[t0, b ]. Moreover, sinceB is continuous from
the left on(t0, b ], the functionh is by Lemma2.3.3also continuous from the left
on (t0, b ]. Now, applying the Generalized Gronwall Lemma7.5.4we get finally
the former inequality in (7.5.11).

For the proof of the latter inequality in (7.5.11) we can argue in a similar way,
while using the variation of the generalized Gronwall inequality from Exercise
7.5.5. 2

7.5.8 Exercise.Under the assumptions of Theorem7.5.7, prove the inequalities

0 < sup
t∈[a,t0)

∣∣[I + ∆+A(t)]−1
∣∣<∞

and

|x(t)| ≤ c(A,t0)

(|x̃|+ 2 ‖f‖) exp
(
2 c(A,t0) vart0t A

)
for t∈ [a, t0]

in details.
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7.6 Continuous dependence of solutions on parame-
ters

Let t0 ∈ [a, b] andA∈BV([a, b], L (Rn)) meet the conditions (7.4.10) and (7.4.11),
x̃∈Rn, f ∈G([a, b],Rn) and letx be a solution of problem (7.4.2) on [a, b]. Also,
let y be a solution of

y(t)− ỹ−
∫ t

t0

dAy = g(t)− g(t0) (7.6.1)

on [a, b], whereg ∈G([a, b],Rn) and ỹ ∈Rn. Then

(
x(t)− y(t)

)
=

(
x̃− ỹ

)
+

∫ t

t0

dA
(
x− y

)
+

(
f(t)− g(t)

)− (
f(t0)− g(t0)

)

for t∈ [a, b]. Thus, by Theorem7.5.7we have

‖x− y‖≤ c(A,t0)

(∣∣x̃− ỹ
∣∣ + 2

∥∥f − g‖) exp
(
2 c(A,t0) varba A

)
,

wherec(A,t0) ∈ (0,∞) is defined in (7.5.10). We see that the ,,distance“ between
the solutions of initial problems (7.4.2) and (7.6.1) is proportional to the ,,dis-
tance“ between the input data (i.e. the initial values ofx̃, ỹ and the right hand
side f, g ) of these equations. This phenomenon is described in more details by
the following theorem.

7.6.1 Theorem.Let t0 ∈ [a, b] and A∈BV([a, b], L (Rn)) satisfy(7.4.10) and
(7.4.11). Further, let f, fk ∈G([a, b],Rn) and x̃, x̃k ∈Rn for k ∈N are such
that

lim
k→∞

‖fk− f‖= 0 (7.6.2)

and

lim
k→∞

x̃k = x̃. (7.6.3)

Finally, let for eachk∈N the initial problem

xk(t)− x̃k−
∫ t

t0

dAxk = fk(t)− fk(t0) (7.6.4)

have a solutionxk on [a, b]. Then problem(7.4.2) has a solutionx on [a, b] and

lim
k→∞

∥∥xk− x
∥∥ = 0. (7.6.5)
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Proof. a) As a consequence of (7.6.2) and (7.6.3), there exists ank0 such that

‖fk‖≤‖f‖+ 1 and |x̃k| ≤ |x̃|+ 1 for k≥ k0.

Thus, by Theorem7.5.7, we have

‖xk‖≤κ0 <∞ for k≥ k0, (7.6.6)

where

κ0 = c(A,t0)

(|x̃|+ 2 ‖f‖+ 3
)

exp
(
2 c(A,t0) varba A

)

does not depend onk. Furthermore, by the same theorem, we also have

varba(xk− fk)≤κ0 varba A<∞ for k≥ k0.

Now, by Helly’s Selection Theorem (Theorem2.7.4) there arey ∈BV([a, b],Rn)
and an increasing sequence{k`}⊂N such thatk1≥ k0,

‖y‖BV≤ 2 max{κ0 varba A,κ0 + ‖f‖+ 1}
and

lim
`→∞

(
xk`

(t)− fk`
(t)

)
= y(t) for t∈ [a, b].

Having in mind (7.6.2), we see that the limit

x(t) := lim
`→∞

xk`
(t)

exists for everyt∈ [a, b]. By (7.6.6) the sequence{xk`
} is uniformly bounded.

Hence, using the Bounded Convergence Theorem (Theorem??), we get

lim
`→∞

∫ t

t0

dAxk`
=

∫ t

t0

dAx for eacht∈ [a, b].

Moreover, letting`→∞ in (7.6.4) (and therefore using assumptions (7.6.2) and
(7.6.3)), we find out thatx is a solution to problem (7.4.2) on [a, b].

b) If for everyk ∈N we repeat the arguments from the introduction to this section
with y replaced byxk, g replaced byfk and ỹ replaced bỹx− k, we will find
out that

‖x− xk‖≤K
(∣∣x̃− x̃k

∣∣ + 2
∥∥f − fk‖

)

holds for everyk ∈N, where

K = c(A,t0) exp
(
2 c(A,t0) varba A

)
<∞

does not depend onk. Therefore, (7.6.5) holds, too. 2

Now we are ready to extend Theorem7.4.8to the general case off ∈G([a, b],Rn).
The existence results, which we have up to now at our disposal, applies only to
the cases when the right hand sidef has a bounded variation on[a, b].



258

7.6.2 Theorem.Let A∈BV([a, b], L (Rn)), t0 ∈ [a, b] and let(7.4.10) and(7.4.11)
hold.

Then the initial problem(7.4.2) has exactly one solution on[a, b] for every
functionf ∈G([a, b],Rn) and every vector̃x∈Rn.

Proof. a) If we have two solutionsx, y of the problem (7.4.2) on the interval
[a, b], their difference on[a, b] will be a solution of homogeneous problem (7.4.5)
which however has only trivial solution by Lemma7.4.7. Therefore,x≡ y has to
hold on [a, b].

b) Setx̃k = x̃ for k ∈N. By Theorem4.1.5there exists a sequence{fk} of step
functions (therefore of functions fromBV([a, b],Rn)) which converges uniformly
on [a, b] to f. By Theorem7.4.8there exists exactly one solutionxk of the prob-
lem (7.6.4) for every k ∈N and by Theorem7.6.1the sequence{xk} converges
uniformly to the solution of problem (7.4.2). 2

In the remaining part of the section, we will investigate the initial problem

x(t)− x̃−
∫ t

t0

dAx = f(t)− f(t0) (7.6.7)

as the limit of the problems

xk(t)− x̃k−
∫ t

t0

dAk xk = fk(t)− fk(t0), (7.6.8)

where the kernelsAk depend on the parameterk ∈N. This case is slightly more
complicated than the one we dealt with in Theorem7.6.1. First, we will prove
convergence theorem for KS-integrals for the situation which is not covered by
the theorems from the Chapter 6.

7.6.3 Theorem.Let f, fk ∈G([a, b],Rn), A, Ak ∈BV([a, b], L (Rn)) for k ∈N.
Assume that conditions(7.6.2),

lim
k→∞

‖Ak−A‖= 0 (7.6.9)

and

α∗ := sup
k∈N

varba Ak <∞ (7.6.10)

are satisfied. Then

lim
k→∞

(
sup

t∈[a,b]

∣∣∣
∫ t

a

dAk fk−
∫ t

a

dAf
∣∣∣
)

= 0.
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Proof. Let ε> 0 be given. By Theorem4.1.5 we can choose a functionϕ :
[a, b]→Rn such that its every component is a step function on[a, b] and at the
same time,‖f−ϕ‖<ε. Moreover, by (7.6.2) and (7.6.9) we can choose ak0 ∈N
such that

‖fk− f‖<ε and ‖Ak−A‖<ε for k≥ k0.

For givent∈ [a, b] andk≥ k0, using Theorems6.3.4and6.3.5, we get

∣∣∣
∫ t

a

dAk fk−
∫ t

a

dAf
∣∣∣

≤
∣∣∣
∫ t

a

dAk

(
fk −ϕ

)∣∣∣ +
∣∣∣
∫ t

a

d
[
Ak−A

]
ϕ
∣∣∣ +

∣∣∣
∫ t

a

dA
(
ϕ− f

)∣∣∣
≤ (varba Ak) ‖fk−ϕ‖+ 2 ‖Ak−A‖ ‖ϕ‖BV + (varba A) ‖ϕ− x‖
≤α∗

(‖fk− f‖+ ‖f −ϕ‖) + 2 ‖Ak−A‖ ‖ϕ‖BV + (varba A) ‖ϕ− f‖
≤ (

2 α∗ + 2 ‖ϕ‖BV + varba A
)
ε = K ε,

where

K =
(
2 α∗ + 2 ‖ϕ‖BV + varba A

)∈ (0,∞)

does not depend neither onk nor on t. This completes the proof. 2

The following auxiliary statement will be useful, too.

7.6.4 Lemma.If A, Ak ∈G([a, b],Rn) for k ∈N are such thatAk ⇒ A on [a, b] ,
then the following statements hold:

1. If I −∆−A(t) is invertible for eacht∈ (t0, b] , then there exists ak0 ∈N
such thatI −∆−Ak(t) is invertible for all k≥ k0 , t∈ (t0, b] . Moreover,

sup
t∈(t0,b]

∣∣(I −∆−Ak(t))
−1

∣∣ < 2 sup
t∈(t0,b]

∣∣(I −∆−A(t))−1
∣∣ (7.6.11)

for eachk≥ k0 .

2. If I + ∆+A(s) is invertible for eachs∈ [a, t0) , then there exists ak0 ∈N
such thatI −∆+Ak(s) is invertible for all k≥ k0 , t∈ [a, t0) . Moreover,

sup
t∈[a,t0)

∣∣(I + ∆+Ak(s))
−1

∣∣ < 2 sup
t∈[a,t0)

∣∣(I + ∆+A(s))−1
∣∣ (7.6.12)

for eachk≥ k0 .
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Proof. We prove the first statement; the proof of the second one is similar and is
left to the reader.

According to the proof of Theorem7.5.7, the quantity

c = sup
t∈(t0,b]

∣∣(I −∆−A(t))−1
∣∣

is finite. By Lemma4.2.3, we have∆−Ak ⇒ ∆−A on [a, b] . Thus, there exists
a k0 ∈N such that

|∆−Ak(t)−∆−A(t)|< 1

4(c + 1)
(7.6.13)

for all t∈ [a, b] , k≥ k0 . For t∈ (t0, b] , we can write

I −∆−Ak(t) = (I −∆−A(t))− (∆−Ak(t)−∆−A(t))

=
(
I −∆−A(t)

)(
I −Tk(t)

)
,

where

Tk(t) =
(
I −∆−A(t)

)−1(
∆−Ak(t)−∆−A(t)

)
.

To prove thatI −∆−Ak(t) is invertible, it suffices to show thatI −Tk(t) is in-
vertible. By (7.6.13) we have

|Tk(t)| ≤
∣∣(I −∆−A(t)

)−1∣∣ ·
∣∣∆−Ak(t)−∆−A(t)

∣∣ <
1

4

for all t∈ (t0, b] , k≥ k0 . Thus, Lemma7.3.2 guarantees thatI −Tk(t) and
consequently alsoI −∆−Ak(t) are invertible; moreover,

∣∣(I −Tk(t)
)−1∣∣ < 2 .

Hence, it follows that
∣∣(I −∆−Ak(t)

)−1∣∣≤
∣∣(I −Tk(t)

)−1∣∣ ·
∣∣(I −∆−A(t)

)−1∣∣ < 2
∣∣(I −∆−A(t))−1

∣∣,
which proves the estimate (7.6.11). 2

7.6.5 Exercise.Prove the second part of Lemma7.6.4.

Now we are ready to formulate and prove the main result of this section.

7.6.6 Theorem. Let A,Ak ∈BV([a, b], L (Rn)) , f, fk ∈G([a, b],Rn) , x̃, x̃k ∈
Rn for all k ∈N , whereAk ⇒ A , fk ⇒ f , x̃k→ x̃ for k→∞ . Furthermore,
assume thatsupk∈N varba Ak <∞ and conditions(7.4.10), (7.4.11) hold.

Then there exists ak0 ∈N such that for everyk≥ k0 , the equation

xk(t) = x̃k +

∫ t

a

dAk xk + fk(t)− fk(a), t∈ [a, b], (7.6.14)
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has a unique solutionxk : [a, b]→Rn . Moreover,xk ⇒ x , wherex : [a, b]→Rn

is the unique solution of the equation

x(t) = x̃ +

∫ t

a

dAx + f(t)− f(a), t∈ [a, b]. (7.6.15)

Proof. By Lemma7.6.4, there is ak0 ∈N such that ifk≥ k0 , I −∆−Ak(t) is in-
vertible for all t∈ (t0, b] , andI + ∆+Ak(t) is invertible for all t∈ [a, t0) . Hence,
Theorem7.6.2implies that equation (7.6.14) has a unique solutionxk : [a, b]→Rn

for everyk≥ k0 , and equation (7.6.15) has a unique solutionx : [a, b]→Rn . Let

wk = (xk− fk)− (x− f), k ∈N.

Then xk− x = wk +
(
fk− f

)
, and the theorem will be proved if we show that

wk ⇒ 0 . Observe that

wk(t) = w̃k +

∫ t

a

dAk wk + hk(t)−hk(a) for k ∈N and t∈ [a, b],

wherew̃k = (x̃k− fk(a))− (x̃− f(a)) , and

hk(t) =

∫ t

a

d[Ak−A] (x− f) +
( ∫ t

a

dAk fk−
∫ t

a

dAf
)
. (7.6.16)

If we denoteα∗ = supk∈N varba Ak , then it follows from Theorem7.5.7that

|wk(t)| ≤ ck

(|w̃k|+ 2 ‖hk‖
)
exp

(
2 ckα

∗), t∈ [a, b], k ∈N

where

ck = max
{

1, sup
t∈(t0,b]

∣∣(I −∆−Ak(t))
−1

∣∣ , sup
t∈[a,t0)

∣∣(I + ∆+Ak(t))
−1

∣∣
}

.

The sequence{ck} is bounded, because Lemma7.6.4implies

ck≤max
{

1, 2 sup
t∈(t0,b]

∣∣(I −∆−A(t))−1
∣∣ , 2 sup

t∈[a,t0)

∣∣(I + ∆+A(t))−1
∣∣
}

.

Next, notice thatw̃k = x̃k− x̃ + f(a)− fk(a)→ 0 . Hence, to show thatwk ⇒ 0 ,
it is enough to prove thathk ⇒ 0 .

By Theorem7.6.3, we have

lim
k→∞

sup
t∈[a,b]

∣∣∣
∫ t

a

dAk fk−
∫ t

a

dAf
∣∣∣ = 0. (7.6.17)
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From Theorem6.3.5, we have the estimate

∣∣∣
∫ t

a

d[Ak−A] (x− f)
∣∣∣≤ 2 ‖Ak−A‖ ‖x− f‖BV for t∈ [a, b].

Since(x− f)∈BV([a, b],Rn) by Theorem7.5.7, it follows that

lim
k→∞

sup
t∈[a,b]

∣∣∣
∫ t

a

d[ Ak−A] (x− f)
∣∣∣ = 0. (7.6.18)

Taking into account (7.6.17)–(7.6.18), we see from (7.6.16) that hk ⇒ 0 , and the
proof is complete. 2

7.7 Fundamental matrices

The equation

x(t)− x(s)−
∫ t

s

dAx = 0 (7.7.1)

is a generalization of a homogeneous system of linear ordinary differential equa-
tions. Assume thatA∈BV([a, b], L (Rn)), t0 ∈ [a, b], and conditions (7.4.10)
and (7.4.11) are satisfied. For everỹx∈Rn, Theorem7.4.8 (with f = 0 on
[a, b]) implies that equation (7.7.1) has a unique solutionx : [a, b]→Rn satis-
fying x(t0) = x̃. By the first part of Corollary6.5.4, the solutionx is a regulated
function. Thus, the second part of the same corollary implies thatx has bounded
variation.

Clearly, the relation between solutionsx of (7.7.1) and their values at the point
t0 is a one-to-one correspondence. It is easy to verify that ifx, y are solutions of
(7.7.1) on [a, b] and c1, c2 ∈R, then c1 x + c2 y is also a solution of (7.7.1) on
[a, b]. These observations are summarized in the following statement.

7.7.1 Theorem.Let A∈BV([a, b], L (Rn)) and let (7.4.10) and (7.4.11) hold.
Then the set of all solutions of equation(7.7.1) on [a, b] is a linear subspace of
BV([a, b],Rn) having dimensionn.

We now introduce an analogue of the classical notion of a fundamental matrix.

7.7.2 Definition. A matrix-valued functionX : [a, b]→L (Rn) is called a funda-
mental matrix of equation (7.7.1) on the interval[a, b] if

X(t) = X(s) +

∫ t

s

dA X for all t, s∈ [a, b] (7.7.2)

anddet X(t) 6= 0 for at least onet∈ [a, b].
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7.7.3 Remark. If a matrix-valued functionX satisfies the relation (7.7.2), then
it is easy to verify that for anyc∈Rn, the functionx(t) = X(t)c is a solution
to (7.7.1).

7.7.4 Lemma. Assume thatA∈BV([a, b], L (Rn)), t0 ∈ [a, b], and conditions
(7.4.10) and (7.4.11) are satisfied.

Then for every matrixX̃ ∈L (Rn), there exists a unique matrix-valued func-
tion Xt0 ∈BV([a, b], L (Rn)) such that

Xt0(t) = X̃ +

∫ t

t0

dAXt0 for all t∈ [a, b]. (7.7.3)

Proof. For eachk ∈{1, . . . , n}, let x̃k denote thek -th column of the matrix
X̃. Thus, x̃k ∈Rn for k = 1, . . . , n, and X̃ =

(
x̃1, x̃2, . . . , x̃n

)
. For eachk ∈

{1, . . . , n}, Theorem7.4.8implies the existence of a unique functionxk : [a, b]→
Rn satisfying the equation

xk(t)− x̃k−
∫ t

t0

dAxk = 0 for t∈ [a, b].

By Corollary6.5.4, xk has bounded variation on[a, b]. The function

Xt0(t) =
(
x1(t), x2(t), . . . , xn(t)

)

(i.e., the matrix-valued function with the columnsxk, k = 1, . . . , n) is therefore
a unique solution of (7.7.3) and has bounded variation on[a, b]. 2

7.7.5 Remark. If t0 ∈ [a, b], X̃ ∈L (Rn) and Xt0 is the function defined by
Lemma7.7.4, then the functionX = Xt0 obviously satisfies (7.7.2). Therefore,
X is a fundamental matrix of equation (7.7.1) wheneverdet X̃ 6= 0.

For simplicity, we will now assume that

det
(
I −∆−A(t)

) 6= 0 for every t∈ (a, b],

det
(
I + ∆+A(s)

) 6= 0 for every s∈ [a, b).

}
(7.7.4)

7.7.6 Lemma.If A∈BV([a, b], L (Rn)), condition(7.7.4) holds, andX is a fun-
damental matrix of(7.7.1) on [a, b], then

det X(t) 6= 0 for eacht∈ [a, b]. (7.7.5)

Proof. If X is a fundamental matrix of (7.7.1) and (7.7.5) does not hold, then
there exist pointsτ0, τ1 ∈ [a, b] such that

det X(τ0) 6= 0 and det X(τ1) = 0.
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The latter equality implies that the columnsx1(τ1), x2(τ1), . . . , xn(τ1) of the ma-
trix X(τ1) are linearly dependent. Hence, there are coefficientsc1, c2, . . . , cn ∈R,
not all zero, such that

n∑

k=1

ckxk(τ1) = 0.

Set x(t) =
∑n

k=1 ck xk(t) for eacht∈ [a, b]. Then x is a solution to (7.7.1) (see
Remark7.7.3) with x(τ1) = 0, i.e., x is a solution of the initial-value problem

x(t) =

∫ t

τ1

dAx for t∈ [a, b].

However, the same equation also has the trivial solution. Since Theorem7.4.8
guarantees uniqueness of solutions (note that (7.7.4) implies that conditions (7.4.10)
and (7.4.11) are satisfied fort0 = τ1 ), we necessarily havex = 0 on [a, b]. In par-
ticular,

x(τ0) =
n∑

k=1

ck xk(τ0) = 0,

which contradicts the assumption thatdet X(τ0) 6= 0. 2

For functions of two variables, we use the following notation.

7.7.7 Notation. Consider a functionU : [a, b]× [a, b]→L (Rn). For each fixed
τ ∈ [a, b], the symbolU(τ, ·) stands for the functions 7→U(τ, s) of a single vari-
ables∈ [a, b]. Similarly, the symbolU(·, τ) denotes the functiont 7→U(t, τ) of a
single variable
t∈ [a, b]. Finally, we let

U(τ, s+) = lim
δ→0+

U(τ, s + δ), U(τ, s−) = lim
δ→0+

U(τ, s− δ),

U(t+, τ) = lim
δ→0+

U(t + δ, τ), U(t−, τ) = lim
δ→0+

U(t− δ, τ)

whenever the limits exist.

The following assertion follows from Lemmas7.7.4and7.7.6.

7.7.8 Theorem.If A∈BV([a, b], L (Rn)) satisfies(7.7.4), then there exists a unique
matrix-valued functionU : [a, b]× [a, b]→L (Rn) such that

U(t, s) = I +

∫ t

s

d[A(τ)] U(τ, s) for all t, s∈ [a, b]× [a, b]. (7.7.6)

For each t0 ∈ [a, b], the functionU(·, t0) is a fundamental matrix of(7.7.1) on
[a, b]. Furthermore,U has the following properties:
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(i) U(·, s)∈BV([a, b], L (Rn)) for everys∈ [a, b].

(ii) U(t, t) = I for everyt∈ [a, b].

(iii) det U(t, s) 6= 0 for all t, s∈ [a, b].

Proof. For eacht, s∈ [a, b], let U(t, s) = Xs(t), whereXs ∈BV([a, b], L (Rn))
is the unique matrix-valued function satisfying

Xs(t) = I +

∫ t

s

dAXs for t∈ [a, b].

(see Lemma7.7.4). ThenU satisfies equation (7.7.6) andU(t, t) = I for t∈ [a, b].
By Remark7.7.5, this means that for everyt0 ∈ [a, b], the functionU(·, t0) is
a fundamental matrix of (7.7.1) on [a, b]. Finally, the fact thatdet U(t, s) 6= 0 for
all t, s∈ [a, b] follows from Lemma7.7.6. 2

7.7.9 Theorem.Assume thatA∈BV([a, b], L (Rn)), t0 ∈ [a, b], x̃∈Rn, (7.7.4)
holds andU is the matrix-valued function defined by Theorem7.7.8. Thenx :
[a, b]→Rn is a solution of the initial-value problem

x(t)− x̃−
∫ t

t0

dAx = 0 (7.7.7)

on [a, b] if and only if

x(t) = U(t, t0) x̃ for t∈ [a, b]. (7.7.8)

Proof. The functionx given by the relation (7.7.8) is a solution of (7.7.7), be-
cause (7.7.6) implies

∫ t

t0

dAx =

∫ t

t0

d[A(τ)] U(τ, s) x̃ =
(
U(t, t0)− I

)
x̃ = x(t)− x̃ for t∈ [a, b].

By Theorem7.4.8, this solution of (7.7.7) is necessarily unique. 2

7.7.10 Definition. If A∈BV([a, b], L (Rn)) and conditions (7.7.4) hold, then the
matrix-valued functionU defined by Theorem7.7.8is called theCauchy matrix
of equation (7.7.1) on [a, b].

7.7.11 Corollary. Let A∈BV([a, b], L (Rn)), t0 ∈ [a, b] and X̃ ∈L (Rn). Fur-
ther, assume that conditions(7.7.4) hold andU is the Cauchy matrix of(7.7.1)
on [a, b]. Then a matrix-valued functionX : [a, b]→L (Rn) satisfies the equation

X(t) = X̃ +

∫ t

t0

dAX

if and only if X(t) = U(t, t0)X̃ for all t∈ [a, b].
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Proof. For eachk = 1, . . . , n, if xk is thek -th column of the matrix-valued func-
tion X, we know from Theorem7.7.9that

xk(t) = U(t, t0)x̃k for all t∈ [a, b],

wherex̃k is thek -th column of the matrixX̃. This completes the proof. 2

7.7.12 Theorem.If A∈BV([a, b], L (Rn)), the conditions(7.7.4) are satisfied
and U is the Cauchy matrix of(7.7.1) on [a, b], then the relations

U(t, r) U(r, s) = U(t, s), (7.7.9)

(U(t, r))−1 = U(r, t) (7.7.10)

hold for any triplet of pointst, s, r∈ [a, b].

Proof. Let r, s∈ [a, b] be given. Using the definition ofU, we have

U(t, s) = I +

∫ t

s

d[A(τ)] U(τ, s)

= I +

∫ r

s

d[A(τ)] U(τ, s) +

∫ t

r

d[A(τ)] U(τ, s)

= U(r, s) +

∫ t

r

d[A(τ)] U(τ, s)

for all t∈ [a, b]. Hence, the relation (7.7.9) follows by Corollary7.7.11.
Insertings = t, we get

U(t, r) U(r, t) = U(t, t) = I,

which implies relation (7.7.10). 2

7.7.13 Remark. If U is the Cauchy matrix for equation (7.7.1) on [a, b], then,
by Theorem7.7.12, we have

U(t, s) = U(t, a) U(a, s) = U(t, a)U(s, a)−1 for all t, s∈ [a, b].

Thus, if we setX(t) = U(t, a) for t∈ [a, b], then

U(t, s) = X(t)X(s)−1

for all t, s∈ [a, b]. Obviously,X is a fundamental matrix for (7.7.1) on [a, b].

In the rest of this section, we will describe some additional properties of the
Cauchy matrix of (7.7.1) on [a, b].
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7.7.14 Theorem.Let A∈BV([a, b], L (Rn)), let (7.7.4) hold and letU be the
Cauchy matrix of(7.7.1) on [a, b]. Then there exists anM ∈ (0,∞) such that

|U(t, s)|+ varba U(·, s) + varba U(t, · )≤M for all t, s∈ [a, b]. (7.7.11)

Proof. a) Fork ∈{1, . . . , n}, let ek stand for thek th column of the unit matrix
I. Then |ek|= 1 for everyk∈{1, . . . , n}. By Theorem7.5.7, for t, s∈ [a, b] and
k∈{1, . . ., n}, we have

|uk(t, s)| ≤M1: = cA exp
(
2 cA varba A

)
<∞, (7.7.12)

where, thanks to assumption (7.7.4), we can set

cA := max
{

1, sup
t∈(a,b]

∣∣[I −∆−A(t)]−1
∣∣ , sup

t∈[a,b)

∣∣[I + ∆+A(t)]−1
∣∣
}

.

Thus,

|U(t, s)|= max
k=1,...,n

|uk(t, s)| ≤M1 for t, s∈ [a, b]. (7.7.13)

b) Let t1, t2, s∈ [a, b] and t1≤ t2. Then

|uk(t2, s)−uk(t1, s)|=
∣∣∣
∫ t2

t1

d[A(τ)] uk(τ, s)
∣∣∣≤M1 var t2

t1A

for eachk ∈{1, . . . , n}. Hence, for alls∈ [a, b], k ∈{1, . . . , n} and all divisions
α of [a, b], we have

V (uk(·, s), α)≤M1

ν(α)∑
j=1

varαj
αj−1

A = M1 varba A =: M2 <∞.

Therefore

varba U(·, s)≤ max
k=1,...,n

varba uk(·, s)≤M2 for all s∈ [a, b]. (7.7.14)

c) Let s1, s2 ∈ [a, b] ands1≤ s2. Then, for everyt∈ [a, b] and anyk ∈{1, . . . , n},
we have

uk(t, s2)−uk(t, s1)

=

∫ t

s2

d[A(τ)] uk(τ, s2)−
∫ t

s2

d[A(τ)] uk(τ, s1)−
∫ s2

s1

d[A(τ)] uk(τ, s1)

=−
∫ s2

s1

d[A(τ)]uk(τ, s1) +

∫ t

s2

d[A(τ)]
(
uk(τ, s2)−uk(τ, s1)).
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Hence, the functionx(t) = uk(t, s2)−uk(t, s1) is a solution of the initial problem

x(t) =−
∫ s2

s1

d[A(τ)]uk(τ, s1) +

∫ t

s2

dAx

on [a, b]. Consequently, by Theorem7.7.9we have

uk(t, s2)−uk(t, s1) =−U(t, s2)
( ∫ s2

s1

d[A(τ)]uk(τ, s1)
)

for t∈ [a, b] andk ∈{1, . . . , n} and, thus,

|uk(t, s2)−uk(t, s1)| ≤M2
1 var s2

s1
A for k ∈{1, . . . , n} and t∈ [a, b]. (7.7.15)

As a result, for allt∈ [a, b], k = 1, . . . , n and all divisionsα of [a, b], we get

V (uk(t, · ),α)≤M2
1

ν(α)∑
j=1

varαj
αj−1

A = M2
1 varba A<∞.

Consequently

varba U(t, · )≤ max
k=1,...,n

varba uk(t, · )≤M2
1 varba A<∞ for t∈ [a, b]

and hence

varba U(t, · )≤M2
1 varba A =: M3 <∞ for t∈ [a, b]. (7.7.16)

d) By virtue of (7.7.11)–(7.7.14), the statement of the theorem holds with

M = M1 + M2 + M3. 2

7.7.15 Remark.Considering an arbitrary subinterval[s1, s2] of [a, b] in place of
[a, b], one can see that also the following estimates are true

vars2
s1

U(t, ·)≤M2
1 vars2

s1
A

for all s1, s2 ∈ [a, b] such thats1≤ s2 and allt∈ [a, b].

}
(7.7.17)

7.7.16 Theorem.Let A∈BV([a, b], L (Rn)), let conditions(7.7.4) be satisfied
and letU be the Cauchy matrix of equation(7.7.1) on [a, b]. Then

U(t+, s) =
[
I + ∆+A(t)

]
U(t, s) for t∈ [a, b), s∈ [a, b],

U(t−, s) =
[
I −∆−A(t)

]
U(t, s) for t∈ (a, b ], s∈ [a, b],

U(t, s+) = U(t, s)
[
I + ∆+A(s)

]−1
for t∈ [a, b], s∈ [a, b),

U(t, s−) = U(t, s)
[
I −∆+A(s)

]−1
for t∈ [a, b], s∈ (a, b ].





(7.7.18)
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Proof. First, notice that, by the previous theorem, the functionsU(·, s) and
U(t, · ) have bounded variations on[a, b] for all t, s∈ [a, b]. Thus, all one-sided
limits appearing in the relationships (7.7.18) are well justified.
a) The first two relations in (7.7.3) can be derived if we substitute successively
the columns of the functionU for x into relations (7.4.1) from Lemma7.4.7.

b) Let s∈ [a, b) andδ ∈ (0, b− s) be given. Then from (7.7.6) we deduce that

U(t, s + δ)−U(t, s) =

∫ t

s+δ

d[A(τ)] U(τ, s + δ)−
∫ t

s

d[A(τ)] U(τ, s)

=

∫ t

s+δ

d[A(τ)]
(
U(τ, s + δ)−U(τ, s)

)−
∫ s+δ

s

d[A(τ)] U(τ, s)

hold for eacht∈ [a, b]. Thus, the functionY (t) = U(t, s + δ)−U(t, s) satisfies
the equation

Y (t) = Ỹ +

∫ t

s+δ

d[A(τ)] Y (τ) for t∈ [a, b],

where

Ỹ =−
∫ s+δ

s

d[A(τ)] U(τ, s).

Then, Corollary7.7.11yields

U(t, s + δ)−U(t, s) = U(t, s + δ) Ỹ

=−U(t, s + δ)

∫ s+δ

s

d[A(τ)] U(τ, s) for t∈ [a, b].

Letting δ→ 0+ and using Hake’s Theorem6.5.5, we get fort∈ [a, b]

U(t, s+)−U(t, s) =−U(t, s+) ∆+A(s) U(s, s) =−U(t, s+) ∆+A(s),

that is

U(t, s) = U(t, s+)
[
I + ∆+A(s)

]
.

Therefore the third relationship from (7.7.18) is true, as well. The remaining one
would be proven analogously. 2

7.8 Variation of constants formula

Let us now go back to the nonhomogeneous initial value problem

x(t)− x̃−
∫ t

t0

dAx = f(t)− f(t0) (7.8.1)
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(cf. (7.4.2)). We will assume thatA∈BV([a, b], L (Rn)) satisfies conditions
(7.7.4). By Theorem7.6.2, for any x̃∈Rn andf ∈G([a, b],Rn), there is exactly
one solutionx of the initial value problem (7.8.1) and this solution is regulated
on [a, b].

The aim of this section is to show that this solution can be expressed in a form
resembling thevariation of constantsformula known from the theory of ordinary
differential equations. To establish this result, we need several auxiliary lemmas.

7.8.1 Lemma.Consider a functionK : [a, b]× [a, b]→L (Rn) such thatK(·, s)
is regulated for eachs∈ [a, b]. Moreover, suppose there exists a nondecreasing
function
h : [a, b]→R such that

|K(t, s2)−K(t, s1)| ≤h(s2)−h(s1) for t∈ [a, b] and [s1, s2]⊂ [a, b].

(7.8.2)

Then, for eachg ∈G([a, b]) the function

ψ(t) =

∫ b

a

ds[K(t, s)] g(s) for t∈ [a, b], (7.8.3)

is regulated, and

ψ(t−) =

∫ b

a

ds[K(t−, s)] g(s) for t∈ (a, b],

ψ(t+) =

∫ b

a

ds[K(t+, s)] g(s) for t∈ [a, b).

Proof. Let g ∈G([a, b],Rn) and letψ be given by (7.8.3). Obviously,ψ is then
well defined on[a, b], because (7.8.2) implies thatK(t, ·) has a bounded variation
for eacht∈ [a, b].

a) First, let an arbitraryτ ∈ (a, b] be given and let{tk} be an arbitrary sequence
of points from [a, τ) such that lim

k→∞
tk = τ. Having in mind (7.8.2), it is easy to

verify (cf. also Exercise2.1.12) that

varba K(tk, ·)≤h(b)−h(a) for every k ∈N, (7.8.4)

lim
k→∞

K(tk, s) = K(τ−, s) for every s∈ [a, b] (7.8.5)

and, by Theorem2.7.2, also

varba K(τ−, ·)≤h(b)−h(a),

i.e. K(τ−, ·)∈BV([a, b], L (Rn)). Furthermore, thanks to (7.8.2) the conver-
gence
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in (7.8.5) is by Corollary4.3.10uniform. Therefore, Theorem7.6.3, where we
put

Ak = K(tk, ·), A = K(τ−, ·) and fk = g for k ∈N,

ensures that the relations

lim
k→∞

ψ(tk) = lim
k→∞

∫ b

a

ds[K(tk, s)] g(s) =

∫ b

a

ds[K(τ−, s)] g(s)

are true. In particular,

ψ(τ−) =

∫ b

a

ds[K(τ−, s)] g(s) for all τ ∈ (a, b].

b) The proof of the relation

ψ(τ+) =

∫ b

a

ds[K(τ+, s)] g(s) for all τ ∈ [a, b)

is analogous and may be left to the reader.

All this together leads us to conclude thatψ is regulated. 2

Next result is a corollary of the previous lemma.

7.8.2 Corollary. Let t0 ∈ [a, b], A∈BV([a, b], L (Rn)) satisfy conditions(7.7.4)
and let U be the Cauchy matrix of equation(7.7.1) on [a, b]. Then, for each
g ∈G([a, b],Rn) the function

ψ(t) :=

∫ t

t0

ds[U(t, s)] g(s) for t∈ [a, b]

is regulated on[a, b].

Proof. The functionψ is obviously well defined on[a, b]. Furthermore,

ψ(t) =





∫ t0

a

ds[Ka(t, s)] g(s) if t∈ [a, t0],

∫ b

t0

ds[Kb(t, s)] g(s) if t∈ [t0, b],

where

Ka(t, s) =

{
−U(t, t) if a≤ s≤ t≤ t0,

−U(t, s) if a≤ t≤ s≤ t0

and
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Kb(t, s) =

{
U(t, s) if t0≤ s< t≤ b,

U(t, t) if t0≤ t≤ s≤ b.

By (7.7.17), there is a constantM1 ∈ (0,∞) such that for everyt∈ [a, t0] and
every subinterval[s1, s2] of [a, t0] we have

|Ka(t, s2)−Ka(t, s1)| ≤ vars2
s1

Ka(t, ·)≤ vars2
s1

U(t, ·)≤M2
1 vars2

s1
A,

i.e.,

|Ka(t, s2)−Ka(t, s1)| ≤ha(s2)−ha(s1) for t∈ [a, t0] and [s1, s2]⊂ [a, t0],

whereha(s) = M2
1 varsa A for s∈ [a, t0]. Similarly,

|Kb(t, s2)−Kb(t, s1)| ≤hb(s2)−hb(s1) for t∈ [t0, b] and [s1, s2]⊂ [t0, b],

wherehb(s) = M2
1 varst0 A for s∈ [t0, b].

Now, taking either{[a, t0], Ka, ha} or {[t0, b], Kb, hb} in place of{[a, b], K, h},
we can apply Lemma7.8.1to justify that ψ is regulated on[a, t0] or [t0, b], re-
spectively. 2

Next auxiliary assertion deals with adjusting an iterated integral which will be
useful for the proof of the main result of this section.

7.8.3 Lemma. Let t0 ∈ [a, b], A∈BV([a, b], L (Rn)) satisfy conditions(7.7.4)
and let U be the Cauchy matrix of equation(7.7.1) on [a, b]. Then, for every
g ∈G([a, b],Rn) and t∈ [a, b] we have

∫ t

t0

d[A(r)]
( ∫ r

t0

ds [U(r, s) ] g(s)
)

=

∫ t

t0

ds[U(t, s)] g(s) +

∫ t

t0

d[A(s)] g(s).





(7.8.6)

Proof. The fact thatU has bounded variation in both variables together with
Corollary7.8.2imply that all integrals in (7.8.6) have a sense.

a) Given an arbitraryt> t0, we will consider the interval[t0, t] fixed along
the proof (the caset≤ t0 can be treated in similar way). Recalling that regulated
functions can be uniformly approximated by finite step functions, let us first prove
(7.8.6) for functionsg of the form

g = χ(τ,t ] ξ, g = χ[τ,t ] ξ, g = χ[t ] ξ, where τ ∈ [t0, t) and ξ ∈Rn can be arbitrary.

(7.8.7)

So, let τ ∈ [t0, t) and ξ ∈Rn be given and letg = χ(τ,t ] ξ. First, having in mind
Examples6.3.1(cf. (6.3.6)), we can see that the relations

∫ t

t0

d[A(s)] g(s) =

∫ t

τ

d[A(s)] g(s) = [A(t)−A(τ+)] ξ (7.8.8)
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hold. Like in Corollary7.8.2put

ψ(r) :=

∫ r

t0

ds[U(r, s)] g(s) for r∈ [t0, t].

Using again Examples6.3.1and having in mind thatU(r, r) = I for all r, it is not
difficult to verify that

ψ(r) = χ(τ,t](r) [I −U(r, τ+)] ξ for r∈ [t0, t]. (7.8.9)

Further, applying Theorem6.5.3, we get

∫ t

t0

d[A(r)] ψ(r) =

∫ t

τ

d[A(r)] ψ(r) = lim
σ→τ+

∫ t

σ

d[A(r)] ψ(r)

= lim
σ→τ+

∫ t

σ

d[A(r)] [I −U(r, τ+)] ξ,

i.e.,

∫ t

t0

d[A(r)]ψ(r) = (A(t)−A(τ+)) ξ− lim
σ→τ+

∫ t

σ

d[A(r)] U(r, τ+) ξ. (7.8.10)

Next, applying Theorem6.5.3again, and then Theorem7.7.16and relation (7.7.6),
we deduce

lim
σ→τ+

∫ t

σ

d[A(r)] U(r, τ+) ξ =
( ∫ t

τ

d[A(r)] U(r, τ+)−∆+A(τ) U(τ, τ+)
)

ξ

=
(∫ t

τ

d[A(r)] U(r, τ)[I+∆+A(τ)]−1−∆+A(τ) U(τ, τ) [I+∆+A(τ)]−1
)
ξ

=
(
(U(t, τ)− I) [I + ∆+A(τ)]−1−∆+A(τ) [I + ∆+A(τ)]−1

)
ξ

=
(
U(t, τ) [I + ∆+A(τ)]−1− [I + ∆+A(τ)] [I + ∆+A(τ)]−1

)
ξ

=
(
U(t, τ+)− I

)
ξ =−ψ(t),

wherefrom we conclude using (7.8.8) – (7.8.10) that the relations

∫ t

t0

d[A(r)] ψ(r) = (A(t)−A(τ+)) ξ + ψ(t) = ψ(t) +

∫ t

t0

d[A(s)] g(s)

are true, that is, (7.8.6) holds.

Analogously, we can show that relation (7.8.6) holds also fort≤ t0 and for all
other functionsg from the set (7.8.7).



274

b) Assume thatg is an arbitrary regulated function on[a, b] and let{gn} be a
sequence of finite step functions converging uniformly tog on [t0, t]. By the first
part of the proof we have

∫ t

t0

d[A(r)]
( ∫ r

t0

ds [U(r, s) ] gn(s)
)

=

∫ t

t0

ds[U(t, s)] gn(s) +

∫ t

t0

d[A(s)] gn(s)

for eachn∈N. Furthermore, by Theorem6.3.7

lim
n→∞

∫ t

t0

d[A(s)] gn(s) =

∫ t

t0

d[A(s)] g(s)

and

lim
n→∞

∫ t

t0

ds[U(t, s)] gn(s) =

∫ t

t0

ds[U(t, s)] g(s). (7.8.11)

It remains to show that

lim
n→∞

∫ t

t0

d[A(s)] ψn(s) =

∫ t

t0

d[A(s)] ψ(s), (7.8.12)

where

ψ(r) =

∫ r

t0

ds [U(r, s) ] g(s) and ψn(r) =

∫ r

t0

ds [U(r, s) ] gn(s),

for n∈N andr∈ [t0, t]. Note that, by Theorem6.3.4

|ψn(r)| ≤ varrt0U(r, ·) ‖gn‖ for n∈N and r∈ [t0, t].

The fact that the sequence{gn} is uniformly bounded, together with Theorem
7.7.14implies that the sequence{ψn} is also uniformly bounded. Since (7.8.11)
guarantees thatlim

n→∞
ψn(r) = ψ(r) for eachr∈ [t0, t], the convergence in (7.8.12)

is a consequence of Theorem??and this completes the proof of the assertion.2

Now we can state and prove the promised analogy of the classicalvariation of
constants formulafor solutions of nonhomogeneous linear generalized differential
equations.

7.8.4 Theorem.Let t0 ∈ [a, b], A∈BV([a, b], L (Rn)) satisfy conditions(7.7.4)
and letU be the Cauchy matrix of equation(7.7.1) on [a, b]. Then problem(7.8.1)
has for everỹx∈Rn and everyf ∈G([a, b],Rn) exactly one solutionx on [a, b].
This solution is given by the formula

x(t) = U(t, t0) x̃ + f(t)− f(t0)−
∫ t

t0

ds[U(t, s)]
(
f(s)− f(t0)

)
for t∈ [a, b].

(7.8.13)
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Proof. Let an arbitraryt∈ [a, b] be given.
By Corollary7.8.2, the function

x(s) = U(s, t0) x̃ + f(s)− f(t0)−
∫ s

t0

dr[U(s, r) ] (f(r)− f(t0))

is regulated on[a, b]. Inserting it into the integral
∫ t

t0
d[A(s)] x(s), we get

∫ t

t0

d[A(s)] x(s) =

∫ t

t0

d[A(s) ] U(s, t0) x̃ +

∫ t

t0

d[A(s) ] (f(s)−f(t0))

−
∫ t

t0

d[A(s) ]

(∫ s

t0

dr [U(s, r)] (f(r)− f(t0))

)
,

where both sides have a sense. Further, by Theorem7.7.9we have

∫ t

t0

d[A(s) ] U(s, t0) x̃ = U(t, t0) x̃− x̃,

while Lemma7.8.3with g(s) = f(s)− f(t0) yields

∫ t

t0

d[A(r) ]

(∫ r

t0

ds [U(r, s)] (f(s)− f(t0))

)

=

∫ t

t0

ds[U(t, s)] (f(s)− f(t0)) +

∫ t

t0

d[A(s)] (f(s)− f(t0)).

Therefore,
∫ t

t0

d[A(s)] x(s) = U(t, t0) x̃− x̃−
∫ t

t0

ds[U(t, s)] (f(s)− f(t0))

= x(t)− x̃− (f(t)− f(t0)),

which proves the result. 2

In the case thatA is left-continuous on(a, b ] and t0 = a, formula (7.8.13)
can be somewhat simplified, if we defineX(t) = U(t, a) for t∈ [a, b] and

Y (s) =

{
U(a, s+), if a≤s< b,

U(a, b), if s = b.
(7.8.14)

7.8.5 Corollary. Let t0 = a and letA∈BV([a, b], L (Rn)) be left-continuous on
(a, b ]. Furthermore, let

det[I + ∆+A(t)] 6= 0 for t∈ [a, b)
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and letU be the Cauchy matrix for(7.7.1),

X(t) = U(t, a) pro t∈ [a, b]

and letY be given by(7.8.14).
Then equation(7.6.7) have for each̃x∈Rn and eachf ∈G([a, b],Rn) left-

continuous on(a, b ] a unique solutionx on [a, b]. This solution is given by

x(t) = X(t) x̃ + X(t)
( ∫ t

a

Y df
)

for t∈ [a, b]. (7.8.15)

Proof. Let x̃∈Rn and letf ∈G([a, b],Rn) be continuous from the left on(a, b ].
By Theorem7.8.4, equation (7.6.7) has a unique solutionx on [a, b] and for-
mula (7.8.13) can be rewritten as

x(t) = X(t) x̃ +
(
f(t)− f(a)

)−X(t)
( ∫ t

a

d[X−1(s)]
(
f(s)− f(a)

))
,

whereX−1(s) = U(a, s) for s∈ [a, b]. Due to (7.8.14), we have

X−1(s) = Y (s)−∆+X−1(s) for s∈ [a, b).

By Lemma6.3.19, the relation
∫ t

a

d[X−1(s)]
(
f(s)− f(a)

)

=

∫ t

a

d[Y (s)]
(
f(s)− f(a)

)−∆+X−1(t)
(
f(t)− f(a)

)

holds for everyt∈ [a, b]. Sincef is continuous from the left on(a, b ] andY is
continuous from the right on[a, b), using Integration by parts Theorem6.4.2, we
get

x(t) = X(t) x̃ +
(
f(t)− f(a)

)−X(t)
( ∫ t

a

d[X−1(s) ]
(
f(s)− f(a)

))

= X(t) x̃− (
f(t)− f(a)

)
+ X(t)

∫ t

a

Y df

+ X(t) ∆+X−1(t)
(
f(t)− f(a)

)−X(t) Y (t)
(
f(t)− f(a)

)

for every t∈ [a, b]. Finally, as

X(t) ∆+X−1(t)
(
f(t)− f(a)

)−X(t) Y (t)
(
f(t)− f(a)

)

= X(t)
(
X−1(t+)−X−1(t) (f(t)−f(a))

)

−X(t) X−1(t+)
(
f(t)−f(a)

)

=−(
f(t)− f(a)

)

for eacht∈ [a, b], we get (7.8.15). 2
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7.8.6 Remark. Thanks to Theorem7.8.4, or rather to its Corollary7.8.5, it is
already possible to successfully investigate for example the boundary value prob-
lems in which one looks for the function satisfying equation (7.7.7) on the in-
terval [a, b] and, simultaneously, some other conditions, for instance two-point
conditions

M x(a) + N x(b) = 0

whereM,N ∈L (Rn).

7.9 Generalized elementary functions

We now show that the theory of generalized linear differential equations can be
used to extend the definitions of the exponential, hyperbolic and trigonometric
functions.

One possible way of introducing the classical exponential function is to define
it as the unique solution of the initial-value problem

z′(t) = z(t), z(0) = 1.

More generally, for every continuous functionp defined on the real line, the
initial-value problemz′(t) = p(t) z(t), z(t0) = 1, which can be written in the
equivalent integral form

z(t) = 1 +

∫ t

t0

p(s)z(s) ds, (7.9.1)

has the unique solutionz(t) = e
R t

t0
p(s) ds

. Using Substitution Theorem6.6.1, we
can rewrite equation (7.9.1) as the generalized linear differential equation

z(t) = 1 +

∫ t

t0

z(s) dP (s) (7.9.2)

with P (s) =
∫ s

s0
p. In this section, we study equation (7.9.2) for an arbitrary func-

tion P with bounded variation (not necessarily differentiable or continuous). The
solution of this equation will be called the generalized exponential function and
denoted byedP . If P is a real function, thenedP is simply a special case of the
Cauchy matrixU introduced in Definition7.7.10with n = 1. In this scalar case,
we will be able to obtain a much more detailed information about solutions of
equation (7.9.2) than in then-dimensional case studied in Section7.7. Moreover,
we will focus on the more general case whenP is a complex-valued function.
To this end, we need an existence and uniqueness theorem for generalized linear
differential equations with complex coefficients.
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7.9.1 Theorem.Consider a functionP : [a, b]→C, which has bounded variation
on [a, b]. Let t0 ∈ [a, b] and assume that1 + ∆+P (t) 6= 0 for everyt∈ [a, t0), and
1−∆−P (t) 6= 0 for everyt∈ (t0, b]. Then, for everỹz ∈C, there exists a unique
functionz : [a, b]→C such that

z(t) = z̃ +

∫ t

t0

z(s) dP (s), t∈ [a, b]. (7.9.3)

The functionz has bounded variation on[a, b]. If P and z̃ are real, thenz is
real as well.

Proof. We decompose all complex quantities into real and imaginary parts as
follows: P = P1 + iP2, z = z1 + iz2, and z̃ = z̃1 + i z̃2. Now, we see that equa-
tion (7.9.3) is equivalent to the following system of two equations with real coef-
ficients:

z1(t) = z̃1 +

∫ t

t0

z1(s) dP1(s)−
∫ t

t0

z2(s) dP2(s)

z2(t) = z̃2 +

∫ t

t0

z1(s) dP2(s) +

∫ t

t0

z2(s) dP1(s)

The system can be also written in the vector form

u(t) = ũ +

∫ t

t0

d[A(s)] u(s), t∈ [a, b] (7.9.4)

with

ũ =

(
z̃1

z̃2

)
, u(t) =

(
z1(t)
z2(t)

)
, A(t) =

(
P1(t) −P2(t)
P2(t) P1(t)

)
, t∈ [a, b].

SinceP has bounded variation on[a, b], it is clear thatA has the same prop-
erty. The condition1 + ∆+P (t) 6= 0 implies

1 + ∆+P1(t) 6= 0 or ∆+P2(t) 6= 0 for t∈ [a, t0),

and similarly1−∆−P (t) 6= 0 implies

1−∆−P1(t) 6= 0 or ∆−P2(t) 6= 0 for t∈ (t0, b].

In view of this, we have

det(I + ∆+A(t)) = (1 + ∆+P1(t))
2 + (∆+P2(t))

2 6= 0 for t∈ [a, t0),

det(I −∆−A(t)) = (1−∆−P1(t))
2 + (∆−P2(t))

2 6= 0 for t∈ (t0, b].
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Hence, existence and uniqueness of solution to equation (7.9.3) follows from The-
orem7.4.8. By Corollary6.5.4, the solution has bounded variation on[a, b].

If P and z̃ are real, the equation forz2 simplifies toz2(t) =
∫ t

t0
z2 dP1, whose

solution is identically zero and thereforez is real. 2

The previous existence and uniqueness theorem guarantees that the definition
of the generalized exponential function is meaningful.

7.9.2 Definition. Consider a functionP : [a, b]→C, which has bounded varia-
tion on [a, b]. Let t0 ∈ [a, b] and assume that1 + ∆+P (t) 6= 0 for everyt∈ [a, t0),
and 1−∆−P (t) 6= 0 for every t∈ (t0, b]. Then we define the generalized expo-
nential functiont 7→ edP (t, t0), t∈ [a, b], as the unique solutionz : [a, b]→C of
the generalized linear differential equation

z(t) = 1 +

∫ t

t0

z(s) dP (s).

To explore the properties of the generalized exponential function, we need the
following auxiliary lemma, which can generalizes the formula

∫ b

a

hk(t)h′(t) dt =
hk+1(b)−hk+1(a)

k + 1

to the case whenh is continuous but not necessarily differentiable. (Recall that
Lemma7.5.2and Exercise7.5.3deal with the situation whenh is discontinuous.)

7.9.3 Lemma. If h : [a, b]→C is a continuous function with bounded variation,
then

∫ b

a

hk dh =
hk+1(b)−hk+1(a)

k + 1
for everyk ∈N∪{0}.

Proof. Sinceh has bounded variation andhk is continuous for eachk ∈N∪{0} ,
the integral

∫ b

a
hk dh exists as a Riemann-Stieltjes integral (see Theorem5.6.3).

The statement of the lemma obviously holds fork = 0 . Let us assume that it
holds for a certaink ∈N∪{0} , and show its validity fork + 1 . Using first the
substitution theorem (Theorem5.4.3) and then the integration by parts formula
(Theorem5.5.1), we get

∫ b

a

hk+1(t) dh(t) =

∫ b

a

h(t) ·hk(t) dh(t) =

∫ b

a

h(t) d

(∫ t

a

hk dh

)

=

∫ b

a

h(t) d

(
hk+1(t)−hk+1(a)

k + 1

)
=

1

k + 1

∫ b

a

h(t) dhk+1(t)

=
1

k + 1

(
hk+2(b)−hk+2(a)−

∫ b

a

hk+1(t) dh(t)

)
.
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By equating the first and the last term in the previous chain of equalities and
solving for

∫ b

a
hk+1 dh , we obtain

∫ b

a

hk+1 dh =
hk+2(b)−hk+2(a)

k + 2
,

which completes the proof by induction. 2

The next theorem summarizes the basic properties of the generalized expo-
nential functions. Some of them were already established in Section7.7 in the
context of Cauchy matrices, but we repeat them here for reader’s convenience. In
each of the eight statements, we assume that the functionP is such that all ex-
ponentials appearing in the given identity are defined. For example, in statement
(v), it is necessary to assume that

1 + ∆+P (t) 6= 0 for every t∈ [a, max{s, r}),
1−∆−P (t) 6= 0 for every t∈ (min{s, r}, b].

7.9.4 Theorem.Let P : [a, b]→C be a function with bounded variation. The
generalized exponential function has the following properties:

(i) If P is constant, thenedP (t, t0) = 1 for everyt∈ [a, b].

(ii) edP (t, t) = 1 for everyt∈ [a, b].

(iii) The functiont 7→ edP (t, t0) is regulated on[a, b] and satisfies

∆+edP (t, t0) = ∆+P (t) edP (t, t0) for t∈ [a, b),

∆−edP (t, t0) = ∆−P (t) edP (t, t0) for t∈ (a, b],

edP (t+, t0) = (1 + ∆+P (t)) edP (t, t0) for t∈ [a, b),

edP (t−, t0) = (1−∆−P (t)) edP (t, t0) for t∈ (a, b].

(iv) The functiont 7→ edP (t, t0) has bounded variation on[a, b].

(v) edP (t, s) edP (s, r) = edP (t, r) for everyt, s, r∈ [a, b].

(vi) edP (t, s) = edP (s, t)−1 for everyt, s∈ [a, b].

(vii) edP (t, t0) = edP (t, t0) for everyt∈ [a, b], wherez denotes the complex con-
jugate ofz ∈C.

(viii) If P is continuous, thenedP (t, t0) = eP (t)−P (t0) for everyt∈ [a, b].
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Proof. The first two statements are obvious. Statement (iii) is a consequence
of Corollary6.5.4(extended to complex-valued case), and statement (iv) follows
from Theorem7.9.1.

To prove statement (v), note that, given arbitraryr, s∈ [a, b], we have

edP (t, r) = 1 +

∫ t

r

edP (τ, r) dP (τ)

= 1 +

∫ s

r

edP (τ, r) dP (τ) +

∫ t

s

edP (τ, r) dP (τ)

= edP (s, r) +

∫ t

s

edP (τ, r) dP (τ)

for every t∈ [a, b]. Hence, the functiony(t) = edP (t, r) is a solution on[a, b] of
the generalized linear differential equation

x(t) = x̃ +

∫ t

s

x(s) dP (s), where x̃ = edP (s, r).

On the other hand, it is not hard to see thatz(t) = edP (t, s) x̃ for t∈ [a, b] is
also a solution of the same equation. By the uniqueness of solutions, we have
y(t) = z(t) for all t∈ [a, b], which proves statement (v).

Statement (vi) is a direct consequence of statement (v). Indeed, fort, s∈ [a, b],
we obtain

edP (t, s) edP (s, t) = edP (t, t) = 1.

By the definition of the exponential function, we have

edP (t, t0) = 1 +

∫ t

t0

edP (s, t0) dP (s).

Taking the complex conjugate of both sides, we get

edP (t, t0) = 1 +

∫ t

t0

edP (s, t0) dP (s),

which proves statement (vii).
To prove statement (viii), assume thatP is a continuous function with bounded

variation. Let P̃ (t) = P (t)−P (t0) and z(t) = eP̃ (t) for all t∈ [a, b] . Using the
uniform convergence theorem (Theorem5.6.1) and Lemma7.9.3, we get

1 +

∫ t

t0

z(s) dP (s) = 1 +

∫ t

t0

z(s) dP̃ (s) = 1 +

∫ t

t0

( ∞∑

k=0

P̃ (s)k

k!

)
dP̃ (s)
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= 1 +
∞∑

k=0

(
1

k!

∫ t

t0

P̃ (s)k dP̃ (s)

)
= 1 +

∞∑

k=0

1

k!

P̃ (t)k+1− P̃ (t0)
k+1

k + 1

= 1 +
∞∑

k=0

P̃ (t)k+1

(k + 1)!
= z(t)

for all t∈ [a, b] . It follows that edP (t, t0) = z(t) = eP (t)−P (t0) . 2

As an immediate consequence of parts (iii) and (vi) of Theorem7.9.4, we
see that the generalized exponential function is regulated with respect to both
arguments; this fact will be used in the proof of the next result.

We now derive an explicit formula for the value ofedP (t, t0) . It is sufficient to
focus on the case whent> t0 ; the formula for the caset < t0 then follows easily
from the identityedP (t, t0) = edP (t0, t)

−1 .
The next theorem involves infinite products of (possibly complex) numbers.

Recall that if
∑∞

k=1 ak is an absolutely convergent series of complex numbers,
then the infinite product

∏∞
k=1(1 + ak) is also absolutely convergent; in particu-

lar, the product converges to the same value after an arbitrary rearrangement of
the sequence{ak} . Now, suppose thatP : [a, b]→R is a function of bounded
variation with infinitely many discontinuity points in(a, b) , which are arranged
in a sequence{sk} . By Theorem2.3.6, the sum

∑∞
k=1(|∆+P (sk)|+ |∆−P (sk)|)

is finite. Hence, the products
∏∞

k=1(1 + ∆+P (sk)) and
∏∞

k=1(1−∆−P (sk)) are
absolutely convergent. Since the order of the factors is unimportant, we introduce
a similar convention as in Remark2.3.7, and write

∏

x∈(a,b)

(1 + ∆+P (x)) =
∞∏

k=1

(1 + ∆+P (sk)),

∏

x∈(a,b)

(1−∆−P (x)) =
∞∏

k=1

(1−∆−P (sk)).

The symbols

∏

x∈[a,b)

,
∏

x∈(a,b]

, and
∏

x∈[a,b]

should be understood in an analogous way.

7.9.5 Theorem.If t> t0 , then

edP (t, t0) =
eP (t−)−P (t0+)

e
P

τ∈(t0,t) ∆P (τ)

∏
τ∈[t0,t)(1 + ∆+P (τ))∏
τ∈(t0,t](1−∆−P (τ))

. (7.9.5)
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Proof. We begin by verifying the formula in the case whenP has only finitely
many discontinuities in[t0, t] . Let α be a division of[t0, t] containing all dis-
continuity points ofP . ThenP is continuous on each interval(αk−1, αk) , where
k ∈{1, . . . , ν(α)} . Parts (ii), (iii), (v), (vi), (viii) of Theorem7.9.4imply

edP (t, t0) =

ν(α)∏

k=1

edP (αk, αk−1)

=

ν(α)∏

k=1

edP (αk, αk−)edP (αk−, αk−1+)edP (αk−1+, αk−1)

=

ν(α)∏

k=1

(1−∆−P (αk))
−1eP (αk−)−P (αk−1+)(1 + ∆+P (αk−1))

=
eP (t−)−P (t0+)

e
Pν(α)−1

k=1 ∆P (αk)

∏ν(α)
k=1 (1 + ∆+P (αk−1))∏ν(α)

k=1 (1−∆−P (αk))
,

which agrees with (7.9.5).
Now, assume thatP has infinitely many discontinuities in[t0, t] , and letD =

{sk} be a sequence of all discontinuity points contained in(t0, t) . According to
Theorem2.6.1and its proof (which remains valid for complex functions), we have
the Jordan decompositionP = P C + P B , where

P B(τ) = P (t0) + ∆+P (t0) χ(t0,t](τ) + ∆−P (t) χ[t](τ)

+
∞∑

k=1

(
∆+P (sk) χ(sk,t](τ) + ∆−P (sk) χ[sk,t](τ)

)
, τ ∈ [t0, t],

is the jump part ofP , andP C = P −P B is the continuous part ofP . For each
n∈N , let Pn = P C + P B

n , where

P B
n (τ) = P (t0) + ∆+P (t0) χ(t0,t](τ) + ∆−P (t) χ[t](τ)

+
n∑

k=1

(
∆+P (sk) χ(sk,t](τ) + ∆−P (sk) χ[sk,t](τ)

)
, τ ∈ [t0, t].

For eachn∈N , we have∆+Pn(t0) = ∆+P (t0) and ∆−Pn(t) = ∆−P (t) ;
moreover,∆+Pn(sk) = ∆+P (sk) and∆−Pn(sk) = ∆−P (sk) for all k≤n . Since
the discontinuities ofPn are contained in the finite set{t0, s1, . . . , sn, t} , we ob-
tain

edPn(t, t0) =
ePn(t−)−Pn(t0+)

e
P

τ∈(t0,t) ∆Pn(τ)

1 + ∆+Pn(t0)

1−∆−Pn(t)

∏
τ∈(t0,t)(1 + ∆+Pn(τ))∏
τ∈(t0,t)(1−∆−Pn(τ))

=
ePn(t−)−Pn(t0+)

e
Pn

k=1 ∆P (sk)

1 + ∆+P (t0)

1−∆−P (t)

∏n
k=1(1 + ∆+P (sk))∏n
k=1(1−∆−P (sk))

.
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According to the proof of Lemma2.6.5, the sequence{Pn} is convergent
to P in the BV norm. It follows that the variations ofPn , n∈N , are uniformly
bounded, and{Pn} is uniformly convergent toP . Hence, Theorem7.6.6(con-
tinuous dependence of solutions to generalized linear differential equations with
respect to the right-hand side) implies

edP (t, t0) = lim
n→∞

edPn(t, t0)

=
eP (t−)−P (t0+)

e
P∞

k=1 ∆P (sk)

1 + ∆+P (t0)

1−∆−P (t)

∏∞
k=1(1 + ∆+P (sk))∏∞
k=1(1−∆−P (sk))

.

The series
∑∞

k=1 ∆P (sk) and the two infinite products on the right-hand side are
absolutely convergent, which proves that formula (7.9.5) holds. 2

To obtain some additional properties of the generalized exponential function,
we need the following auxiliary result, which is a fairly straightforward conse-
quence of Lemma6.3.18.

7.9.6 Lemma. If f : [a, b]→R has bounded variation andg : [a, b]→R is regu-
lated, then

∫ b

a

∆+f dg =
∑

x∈(a,b)

∆+f(x) ∆g(x) + ∆+f(a) ∆+g(a), (7.9.6)

∫ b

a

∆−f dg =
∑

x∈(a,b)

∆−f(x) ∆g(x) + ∆−f(b) ∆−g(b), (7.9.7)

with the convention that∆−f(a) = 0, ∆+f(b) = 0.

Proof. Since f has bounded variation, it has only finitely or countably many
discontinuities. Moreover, by Corollary2.3.8, the sums

∑

x∈[a,b]

|∆+f(x)| and
∑

x∈[a,b]

|∆−f(x)|

are finite. This means that∆+f and∆−f are step functions with bounded vari-
ation. The formulas (7.9.6) and (7.9.7) are now an immediate consequence of
Lemma6.3.18with c = 0 andh = ∆+f or h = ∆−f, respectively. 2

In the next theorem, we prove that the product of two exponentialsedP and
edQ equals the exponential of a certain function denoted byP ⊕Q. We have
P ⊕Q = P + Q if P, Q are continuous, but the general definition ofP ⊕Q is
more complicated and takes into account the jumps ofP and Q. We make the
following agreement: Ifc> d, then a sum of the form

∑
s∈[c,d) h(s) should be

interpreted as−∑
s∈(d,c] h(s), and the sum

∑
s∈(c,d] h(s) should be understood

as
∑

s∈[d,c) h(s).
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7.9.7 Theorem.Assume thatP, Q : [a, b]→C have bounded variation and

(1 + ∆+P (t)) (1 + ∆+Q(t)) 6= 0 for every t∈ [a, t0)

(1−∆−P (t)) (1−∆−Q(t)) 6= 0 for every t∈ (t0, b].

Then

edP (t, t0) edQ(t, t0) = ed(P⊕Q)(t, t0), t∈ [a, b],

where

(P ⊕Q)(t) = P (t) + Q(t) +

∫ t

t0

∆+Q(s) dP (s)−
∫ t

t0

∆−P (s) dQ(s), (7.9.8)

with the convention that∆+Q(t) = 0, ∆−P (t0) = 0. Equivalently, we have

(P ⊕Q)(t) = P (t) + Q(t) +
∑

s∈[t0,t)

∆+Q(s)∆+P (s)−
∑

s∈(t0,t]

∆−Q(s)∆−P (s).

Proof. By Lemma7.9.6, we have
∫ t

t0

∆+Q(s) dP (s)−
∫ t

t0

∆−P (s) dQ(s)

=
∑

s∈(t0,t)

(
∆+Q(s) ∆P (s)−∆−P (s) ∆Q(s)

)

+ ∆+Q(t0) ∆+P (t0)−∆−P (t) ∆−Q(t)

=
∑

s∈(t0,t)

(
∆+Q(s) (∆+P (s) + ∆−P (s))−∆−P (s) (∆+Q(s) + ∆−Q(s))

)

+ ∆+Q(t0) ∆+P (t0)−∆−P (t) ∆−Q(t)

=
∑

s∈[t0,t)

∆+Q(s) ∆+P (s)−
∑

s∈(t0,t]

∆−Q(s) ∆−P (s).

Hence, the two formulas forP ⊕Q are equivalent. Fort∈ [a, b], let

R(t) =
∑

s∈(t0,t]

∆−Q(s)∆−P (s) and T (t) =
∑

s∈[t0,t)

∆+Q(s)∆+P (s).

Using the definition of variation together with Corollary2.3.8, it is not difficult
to check thatR, T have bounded variation. Furthermore, the definitions ofR, T
imply

∆−R(t) = ∆−Q(t) ∆−P (t), ∆+R(t) = 0,

∆−T (t) = 0, ∆+T (t) = ∆+Q(t) ∆+P (t).
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In view of this, it is clear thatP ⊕Q has bounded variation on[a, b]. Moreover,

1−∆−(P ⊕Q)(t) = 1−∆−P (t)−∆−Q(t)−∆−T (t) + ∆−R(t)

= 1−∆−P (t)−∆−Q(t) + ∆−Q(t) ∆−P (t)

=
(
1−∆−P (t)

)(
1−∆−Q(t)

) 6= 0 for t∈ (t0, b].

Proceeding in a similar way, one can show that

1 + ∆+(P ⊕Q)(t) =
(
1 + ∆+P (t)

)(
1 + ∆+Q(t)

) 6= 0 for t∈ [a, t0).

Therefore, the exponential functiont 7→ ed(P⊕Q)(t, t0) is defined.
For t∈ [a, b], integration by parts gives

edP (t, t0) edQ(t, t0) = edP (t0, t0) edQ(t0, t0)

+

∫ t

t0

edP (s, t0) d[edQ(s, t0)] +

∫ t

t0

edQ(s, t0) d[edP (s, t0)]

+
∑

s∈[t0,t)

∆+edP (s, t0) ∆+edQ(s, t0)−
∑

s∈(t0,t]

∆−edP (s, t0) ∆−edQ(s, t0).

Let us examine the terms on the right-hand side. Obviously,

edP (t0, t0)edQ(t0, t0) = 1.

Using the substitution theorem, we have
∫ t

t0

edP (s, t0) d[edQ(s, t0)] =

∫ t

t0

edP (s, t0) d

[
1 +

∫ s

t0

edQ(u, t0) dQ(u)

]

=

∫ t

t0

edP (s, t0)edQ(s, t0) dQ(s),

and ∫ t

t0

edQ(s, t0) d[edP (s, t0)] =

∫ t

t0

edQ(s, t0) d

[
1 +

∫ s

t0

edP (u, t0) dP (u)

]

=

∫ t

t0

edQ(s, t0) edP (s, t0) dP (s).

Finally, by performing an algebraic manipulation and using subsequently Lemma7.9.6,
part (3) of Theorem7.9.4and the substitution theorem, we get

∑

s∈[t0,t)

∆+edP (s, t0) ∆+edQ(s, t0)−
∑

s∈(t0,t]

∆−edP (s, t0) ∆−edQ(s, t0)

= ∆+edP (t0, t0) ∆+edQ(t0, t0) +
∑

s∈(t0,t)

[∆+edP (s, t0) + ∆−edP (s, t0)] ∆
+edQ(s, t0)

−
∑

s∈(t0,t)

∆−edP (s, t0) [∆−edQ(s, t0) + ∆+edQ(s, t0)]−∆−edP (t, t0) ∆−edQ(t, t0))
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= ∆+edP (t0, t0) ∆+edQ(t0, t0) +
∑

s∈(t0,t)

∆edP (s, t0) ∆+edQ(s, t0)

−
∑

s∈(t0,t)

∆−edP (s, t0) ∆edQ(s, t0)−∆−edP (t, t0) ∆−edQ(t, t0))

=

∫ t

t0

∆+edQ(s, t0) d[edP (s, t0)]−
∫ t

t0

∆−edP (s, t0) d[edQ(s, t0)]

=

∫ t

t0

∆+Q(s)edQ(s, t0) edP (s, t0) dP (s)−
∫ t

t0

∆−P (s)edP (s, t0) edQ(s, t0) dQ(s)

=

∫ t

t0

edQ(s, t0) edP (s, t0) d

[∫ s

t0

∆+Q(u) dP (u)−
∫ s

t0

∆−P (u) dQ(u)

]
.

By combining the previous results, we obtain

edP (t, t0) edQ(t, t0) = 1 +

∫ t

t0

edP (s, t0) edQ(s, t0) d [(P ⊕Q)(s)] ,

with P ⊕Q given by (7.9.8). 2

7.9.8 Exercise.Obviously, the binary operation⊕ introduced in the previous
theorem is commutative. Verify that

((P ⊕Q)⊕R)(t) = (P ⊕ (Q⊕R))(t) = P (t) + Q(t) + R(t)

+
∑

s∈[t0,t)

(
∆+Q(s)∆+P (s) + ∆+R(s)∆+P (s) + ∆+Q(s)∆+R(s)

)

+
∑

s∈[t0,t)

∆+P (s) ∆+Q(s) ∆+R(s)

−
∑

s∈(t0,t]

(
∆−Q(s) ∆−P (s) + ∆−R(s) ∆−P (s) + ∆−Q(s) ∆−R(s)

)

+
∑

s∈(t0,t]

∆−P (s) ∆−Q(s) ∆−R(s),

i.e., the operation⊕ is also associative.

The next result shows that the reciprocal value of an exponential function is
again an exponential function.

7.9.9 Theorem.Assume thatP : [a, b]→C has bounded variation and

1 + ∆+P (t) 6= 0 for every t∈ [a, b),

1−∆−P (t) 6= 0 for every t∈ (a, b].
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Then

(edP (t, t0))
−1 = ed(ªP )(t, t0) for t∈ [a, b], (7.9.9)

where

(ªP )(t) =−P (t) +
∑

s∈[t0,t)

(∆+P (s))2

1 + ∆+P (s)
−

∑

s∈(t0,t]

(∆−P (s))2

1−∆−P (s)
.

Proof. For t∈ [a, b], we have(ªP )(t) =−P (t) + R1(t)−R2(t), where

R1(t) =
∑

s∈[t0,t)

(∆+P (s))2

1 + ∆+P (s)
, R2(t) =

∑

s∈(t0,t]

(∆−P (s))2

1−∆−P (s)
.

These functions have bounded variation on[a, b] and satisfy

∆−R1(t) = 0, ∆+R1(t) =
(∆+P (t))2

1 + ∆+P (t)
,

∆+R2(t) = 0, ∆−R2(t) =
(∆−P (t))2

1−∆−P (t)
.

(7.9.10)

Thus,ªP has bounded variation on[a, b] and

1 + ∆+(ªP )(t) = 1−∆+P (t) +
(∆+P (t))2

1 + ∆+P (t)
=

1

1 + ∆+P (t)
6= 0 for t∈ [a, t0),

1−∆−(ªP )(t) = 1 + ∆−P (t) +
(∆−P (t))2

1−∆−P (t)
=

1

1−∆−P (t)
6= 0 for t∈ (t0, b],

which implies that the exponential functioned(ªP ) is defined.
Using the relations (7.9.10) together with the definition of⊕ given in Theo-

rem7.9.7, we obtain

(P ⊕ (ªP ))(t) = P (t)−P (t) + R1(t)−R2(t)

+
∑

s∈[t0,t)

∆+(−P + R1−R2)(s) ∆+P (s)

−
∑

s∈(t0,t]

∆−(−P + R1−R2)(s) ∆−P (s) = R1(t)−R2(t)

+
∑

s∈[t0,t)

(
−(∆+P (s))2 +

(∆+P (s))3

1 + ∆+P (s)

)
−

∑

s∈(t0,t]

(
−(∆−P (s))2− (∆−P (s))3

1−∆−P (s)

)

= R1(t)−R2(t)−
∑

s∈[t0,t)

(∆+P (s))2

1 + ∆+P (s)
+

∑

s∈(t0,t]

(∆−P (s))2

1−∆−P (s)
= 0.
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Now, it follows from Theorem7.9.7and part (1) of Theorem7.9.4that

edP (t, t0) ed(ªP )(t, t0) = ed(P⊕(ªP ))(t, t0) = 1,

which proves the relation (7.9.9). 2

Our next goal is to investigate the sign of the generalized exponential function
corresponding to a real functionP.

7.9.10 Theorem.Consider a functionP : [a, b]→R, which has bounded varia-
tion and

1 + ∆+P (t) 6= 0 for every t∈ [a, b),

1−∆−P (t) 6= 0 for every t∈ (a, b].

Then, for everyt0 ∈ [a, b], the following statements hold:

(i) edP (t, t0) 6= 0 for all t∈ [a, b].

(ii) If t∈ [a, b) and 1 + ∆+P (t) < 0, thenedP (t, t0) edP (t+, t0) < 0.

(iii) If t∈ (a, b] and 1−∆−P (t) < 0, thenedP (t, t0) edP (t−, t0) < 0.

(iv) If t∈ (a, b), 1 + ∆+P (t) > 0 and1−∆−P (t) > 0, thent 7→ edP (t, t0) does
not change sign in the neighborhood oft.

Proof. If edP (t, t0) = 0 for a certaint∈ [a, b], we can use Theorem7.9.4to obtain

1 = edP (t0, t0) = edP (t0, t)edP (t, t0) = 0,

which is a contradiction. This proves statement (i). Statements (ii) and (iii) follow
immediately from part (iii) of Theorem7.9.4. Finally, if 1 + ∆+P (t) > 0 and1−
∆−P (t) > 0, then edP (t+, t0) and edP (t−, t0) have the same sign asedP (t, t0),
which proves (iv). 2

According to the previous theorem, the exponential function changes sign at
all points t such that1 + ∆+P (t) < 0 or 1−∆−P (t) < 0. SinceP has bounded
variation, we conclude that the interval[a, b] can contain only finitely many points
where the exponential function changes its sign.

The next theorem describes the class of all real functionsP for which the
generalized exponential function remains positive.

7.9.11 Theorem.Let P+ be the class consisting of all functionsP : [a, b]→R
that have bounded variation and satisfy1 + ∆+P (t) > 0 for everyt∈ [a, b), and
1−∆−P (t) > 0 for everyt∈ (a, b]. Then the following statements hold:
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(i) P ∈P+ if and only if 1 + ∆+P (t) 6= 0 for everyt∈ [a, b), 1−∆−P (t) 6= 0
for every t∈ (a, b], and the inequalityedP (t, t0) > 0 holds for all t, t0 ∈
[a, b].

(ii) If P, Q∈P+, thenP ⊕Q∈P+.

(iii) If P ∈P+, thenªP ∈P+.

Proof. The first statement follows from Theorem7.9.10and the fact thatedP (t0, t0)
is positive. Statement (ii) is a consequence of the formulas

1−∆−(P ⊕Q)(t) =
(
1−∆−P (t)

) (
1−∆−Q(t)

)
,

1 + ∆+(P ⊕Q)(t) =
(
1 + ∆+P (t)

) (
1 + ∆+Q(t)

)
,

which were obtained in the proof of Theorem7.9.7. Similarly, the last statement
is a consequence of the formulas

1 + ∆+(ªP )(t) =
1

1 + ∆+P (t)
, 1−∆−(ªP )(t) =

1

1−∆−P (t)
,

which were obtained in the proof of Theorem7.9.9. 2

Using the exponential function, we can now introduce the generalized hyper-
bolic functions.

7.9.12 Definition. Consider a functionP : [a, b]→C, which has bounded varia-
tion on [a, b]. Let t0 ∈ [a, b] and assume that

1− (∆+P (t))2 6= 0 for every t∈ [a, t0) and 1− (∆−P (t))2 6= 0 for every t∈ (t0, b].

Then we define the generalized hyperbolic functionscoshdP and sinhdP by the
formulas

coshdP (t, t0) =
edP (t, t0) + ed(−P )(t, t0)

2
for t∈ [a, b],

sinhdP (t, t0) =
edP (t, t0)− ed(−P )(t, t0)

2
for t∈ [a, b].

Note that the condition1− (∆+P (t))2 6= 0 is equivalent to

(1 + ∆+P (t))(1 + ∆+(−P )(t)) 6= 0,

and1− (∆−P (t))2 6= 0 is equivalent to

(1−∆−P (t))(1−∆−(−P )(t)) 6= 0.

Therefore,edP anded(−P ) are well defined.
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Obviously, the two hyperbolic functions are real ifP is real, and forP (s) = s,
we obtain the classical hyperbolic functions:

coshdP (t, t0) = cosh(t− t0), sinhdP (t, t0) = sinh(t− t0).

More generally, ifP is continuous, then

coshdP (t, t0) = cosh(P (t)−P (t0)) and sinhdP (t, t0) = sinh(P (t)−P (t0)).

In the next theorem, we obtain the analogues of the well-known formulas

(cosh z)′ = sinh z, (sinh z)′ = cosh z and cosh2 z− sinh2 = 1.

7.9.13 Theorem.Consider a functionP : [a, b]→C, which has bounded varia-
tion and

1− (∆+P (t))2 6= 0 for everyt∈ [a, t0),

1− (∆−P (t))2 6= 0 for everyt∈ (t0, b].

The generalized hyperbolic functions have the following properties:

(i) coshdP (t0, t0) = 1, sinhdP (t0, t0) = 0.

(ii) coshdP (t, t0) = 1 +
∫ t

t0
sinhdP (s, t0) dP (s) for t∈ [a, b].

(iii) sinhdP (t, t0) =
∫ t

t0
coshdP (s, t0) dP (s) for t∈ [a, b].

(iv) cosh2
dP (t, t0)− sinh2

dP (t, t0) = edQ(t, t0) for t∈ [a, b], where

Q(t) = (P ⊕ (−P ))(t) =

∫ t

t0

(∆−P (s)−∆+P (s)) dP (s)

=
∑

s∈(t0,t]

(∆−P (s))2−
∑

s∈[t0,t)

(∆+P (s))2

with the convention that∆+P (t) = 0, ∆−P (t0) = 0.

Proof. The first statement is obvious. Using the definition of the generalized ex-
ponential function, we obtain

coshdP (t, t0) =
1

2

(
1 +

∫ t

t0

edP (s, t0) dP (s) + 1 +

∫ t

t0

ed(−P )(s, t0) d(−P )(s)

)

= 1 +
1

2

∫ t

t0

(edP (s, t0)− ed(−P )(s, t0)) dP (s) = 1 +

∫ t

t0

sinhdP (s, t0) dP (s),
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which proves statement (ii). Similarly we ca prove statement (iii). To verify the
last one, observe that

cosh2
dP (t, t0)− sinh2

dP (t, t0)

=

(
edP (t, t0) + ed(−P )(t, t0)

2

)2

−
(

edP (t, t0)− ed(−P )(t, t0)

2

)2

= edP (t, t0)ed(−P )(t, t0) = ed(P⊕(−P ))(t, t0).

From Theorem7.9.7, we have

(P ⊕ (−P ))(t) =−
∫ t

t0

∆+P (s) dP (s) +

∫ t

t0

∆−P (s) dP (s)

=−
∑

s∈[t0,t)

(∆+P (s))2 +
∑

s∈(t0,t]

(∆−P (s))2,

which completes the proof. 2

Finally, we introduce the generalized trigonometric functions.

7.9.14 Definition. Consider a functionP : [a, b]→C, which has bounded varia-
tion on [a, b]. Let t0 ∈ [a, b] and assume that

1 + (∆+P (t))2 6= 0 for everyt∈ [a, t0) and 1 + (∆−P (t))2 6= 0 for everyt∈ (t0, b].

Then we define the generalized trigonometric functionscosdP and sindP by the
formulas

cosdP (t, t0) =
ed(iP )(t, t0) + ed(−iP )(t, t0)

2
= coshd(iP )(t, t0) for t∈ [a, b],

sindP (t, t0) =
ed(iP )(t, t0)− ed(−iP )(t, t0)

2i
=−i sinhd(iP )(t, t0) for t∈ [a, b].

Note that the condition1 + (∆+P (t))2 6= 0 is equivalent to

(1 + ∆+(iP )(t))(1 + ∆+(−iP )(t)) 6= 0,

and1 + (∆−P (t))2 6= 0 is equivalent to

(1−∆−(iP )(t))(1−∆−(−iP )(t)) 6= 0.

Therefore,ed(iP ) and ed(−iP ) are well defined. IfP is a real function, both con-
ditions are always satisfied.

Again, it is easy to see that forP (s) = s, our definitions coincide with the
classical trigonometric functions:

cosdP (t, t0) = cos(t− t0), sindP (t, t0) = sin(t− t0).
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Also, if P is continuous, then

cosdP (t, t0) = cos(P (t)−P (t0)) and sindP (t, t0) = sin(P (t)−P (t0)).

If P is real, the trigonometric functions are real as well: By part (7) of Theo-
rem7.9.4,

ed(iP ) + ed(−iP ) = ed(iP ) + ed(iP ),

which is purely real. Similarly,

ed(iP )− ed(−iP ) = ed(iP )− ed(iP ),

which is purely imaginary.
We now derive the analogues of the well-known formulas

(cos z)′ =− sin z, (sin z)′ = cos z and cos2 z + sin2 = 1.

7.9.15 Theorem.Consider a functionP : [a, b]→C, which has bounded varia-
tion and

1 + (∆+P (t))2 6= 0 for everyt∈ [a, t0),

1 + (∆−P (t))2 6= 0 for everyt∈ (t0, b].

The generalized trigonometric functions have the following properties:

(i) cosdP (t0, t0) = 1, sindP (t0, t0) = 0.

(ii) cosdP (t, t0) = 1− ∫ t

t0
sindP (s, t0) dP (s) for t∈ [a, b].

(iii) sindP (t, t0) =
∫ t

t0
cosdP (s, t0) dP (s) for t∈ [a, b].

(iv) cos2
dP (t, t0) + sin2

dP (t, t0) = edQ(t, t0) for t∈ [a, b], where

Q(t) = (iP ⊕ (−iP ))(t) =

∫ t

t0

(∆+P (s)−∆−P (s)) dP (s)

=
∑

s∈[t0,t)

(∆+P (s))2−
∑

s∈(t0,t]

(∆−P (s))2

with the convention that∆+P (t) = 0, ∆−P (t0) = 0.



294

Proof. The first statement is obvious. Using the definition of the generalized ex-
ponential function, we get

cosdP (t, t0) =
1

2

(
1 +

∫ t

t0

ed(iP )(s, t0) d[iP (s)] + 1 +

∫ t

t0

ed(−iP )(s, t0) d[−iP (s)]

)

= 1 +
i

2

∫ t

t0

(ed(iP )(s, t0)− ed(−iP )(s, t0)) dP (s)

= 1 +
i

2

∫ t

t0

(2i sindP (s, t0)) dP (s) = 1−
∫ t

t0

sindP (s, t0) dP (s),

which proves statement (ii). The proof of statement (iii) is similar. To prove the
last one, we observe that

cos2
dP (t, t0) + sin2

dP (t, t0)

=

(
ed(iP )(t, t0) + ed(−iP )(t, t0)

2

)2

+

(
ed(iP )(t, t0)− ed(−iP )(t, t0)

2i

)2

= ed(iP )(t, t0) ed(−iP )(t, t0) = ed(iP⊕(−iP ))(t, t0).

From Theorem7.9.7, we have

(iP ⊕ (−iP ))(t) =

∫ t

t0

∆+P (s) dP (s)−
∫ t

t0

∆−P (s) dP (s)

=
∑

s∈[t0,t)

(∆+P (s))2−
∑

s∈(t0,t]

(∆−P (s))2,

which completes the proof. 2

As far as an additional literature to this chapter is concerned, we can recom-
mend for example the monographs [60], [85], [122], [147] or the articles [1], [46],
[103], [126], [127].



Chapter 8

Miscellaneous additional topics

In this chapter we present selected applications of the Kurzweil-Stieltjes integral.

The following two sections are concerned with topics in functional analy-
sis, namely, the general form of continuous linear functionals onC([a, b]) and
G([a, b]), respectively.

8.1 Continuous linear functionals on the space of
continuous functions

One of the most important tasks of functional analysis is to find explicit represen-
tations of continuous linear functionals on function spaces.

Recall thatlinear functionalson a spaceX arelinear mappings ofX into R.
The set of all linear functionals onX is a linear space when equipped with the
usual operations of addition and scalar multiplication (defined pointwise). Fur-
ther, if X is a Banach space equipped with a norm‖ · ‖X , then it is well known
that a linear functionalΦ on X is continuous if and only if it is bounded, i.e., if
there is a numberK ∈ [0,∞) such that|Φ(x)| ≤K ‖x‖X holds for allx∈ X .
The space of continuous linear functionals on the Banach spaceX is denoted by
X ∗ and is called thedual (or adjoint) spaceto X . Furthermore,X ∗ is a Banach
space with respect to the norm given by

‖Φ‖X∗ = sup {|Φ(x)| : x∈X, ‖x‖X ≤ 1} for Φ∈X∗.

It is known that continuous linear functionals on the spaceC([a, b]) are well
described by means of the Riesz representation formula involving the classical
Riemann-Stieltjes(δ)-integral. In [55], we can find a proof of the Riesz theo-
rem based on the Bernstein polynomials approximation of continuous functions.
Herein, following the standards of many books in functional analysis, we rely on
the Hahn-Banach Theorem to obtain the general form of continuous linear func-
tionals onC([a, b]).

8.1.1 Theorem(HAHN-BANACH). Let X be a Banach space, and letY ⊂ X
be its subspace. IfΦ∈ Y ∗ is an arbitrary continuous linear functional onY, then
there exists a continuous linear functionalΦ̃ on X such that

Φ̃(y) = Φ(y) for y ∈Y and ‖Φ̃‖X∗ = ‖Φ‖Y ∗ . (8.1.1)
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Note that our formulation of the Hahn-Banach Theorem is not the most gen-
eral one (see e.g. [30]). However, it is quite sufficient for our purposes.

Now we present a general form of continuous linear functionals on the space
of continuous functions.

8.1.2 Theorem(RIESZ). Φ is a continuous linear functional onC([a, b]) if and
only if there is a functionp∈BV([a, b]) such thatp (a) = 0 and

Φ(x) = (δ)

∫ b

a

x dp for any functionx∈C([a, b]). (8.1.2)

In such a case,‖Φ‖(C([a,b]))∗ = varba p.

Proof. a) Let x∈C([a, b]) andp∈BV([a, b]) be given. Then by Theorem5.6.3
the integral(δ)

∫ b

a
x dp exists and, by Lemma5.1.11, the inequality

∣∣∣(δ)
∫ b

a

x dp
∣∣∣≤

(
varbap

) ‖x‖

is true. Hence, the mappingΦp : C([a, b])→R given by

Φp(x) = (δ)

∫ b

a

x dp

is a continuous linear functional onC([a, b]), and

‖Φp‖(C([a,b]))∗ ≤ varbap. (8.1.3)

b) Let an arbitraryΦ∈ (C([a, b]))∗ be given. Denote byX the set of all
bounded functions on[a, b]. Obviously, X is a Banach space with respect to
the supremum norm andC([a, b]) is a closed subspace ofX . For the rest of the
proof, put Y = C([a, b]).

By Theorem8.1.1, there is a functional̃Φ∈ X ∗ such that‖Φ̃‖X ∗ = ‖Φ‖Y ∗

and Φ̃(y) = Φ(y) for all y ∈ Y . Put

p (a) = 0 and p (t) = Φ̃(χ[a,t]) for t∈ (a, b ]. (8.1.4)

We will prove that p∈BV([a, b]). To this aim, letα be an arbitrary division
of [a, b]. Denotem = ν(α). Then

V (p,α) =
m∑

j=1

|p (αj)− p (αj−1)|=
m∑

j=1

cj [p (αj)− p (αj−1)],
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wherecj = sgn[p (αj)− p (αj−1)] for j ∈{1, . . . , m}. Hence, with respect to the
definition (8.1.4), we obtain

V (p,α) = c1 Φ̃(χ[a,α1]) +
m∑

j=2

cj

[
Φ̃(χ[a,αj ])− Φ̃(χ[a,αj−1])

]

= c1 Φ̃(χ[a,α1]) +
m∑

j=2

cj Φ̃(χ(αj−1,αj ])

= Φ̃
(
c1 χ[a,α1] +

m∑
j=2

cj χ(αj−1,αj ]

)
= Φ̃(h),

where

h(t) = c1 χ[a,α1](t) +
m∑

j=2

cj χ(αj−1,αj ](t) for t∈ [a, b].

Obviously ‖h‖X = ‖h‖= 1 and henceV (p,α)≤‖Φ̃‖X ∗ = ‖Φ‖Y ∗ for any di-
vision α of [a, b]. This means that

varba p≤‖Φ‖Y ∗ . (8.1.5)

It remains to show that (8.1.2) is true or, in other words,Φ = Φp. Let x∈ Y and
ε> 0 be given. Since the functionx is uniformly continuous on[a, b], there is
a δ > 0 such that

|x(t)− x(s)|<ε whenevert, s∈ [a, b] and |t− s|<δ.

Without loss of generality we can assume thatδ > 0 is such that

∣∣∣S(x, dp, P )− (δ)

∫ b

a

x dp
∣∣∣<ε

for all partitionsP = (β, η) of [a, b] with |β|< δ. Let α be an arbitrary division
of [a, b] such that|α|<δ, and consider the function

xα(t) =

{
x(α1) if t∈ [a, α1],

x(αj) if t∈ (αj−1, αj] and j ∈{2, 3, . . . , ν(α)}.

It is easy to see that‖x− xα‖X ≤ ε and

xα(t) = x(α1) χ[a,α1](t) +

ν(α)∑
j=2

x(αj) χ(αj−1,αj ](t) for t∈ [a, b].
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This together with (8.1.4) implies that

Φ̃(xα) = x(α1) Φ̃(χ[a,α1]) +

ν(α)∑
j=2

x(αj)
[
Φ̃(χ[a,αj ])− Φ̃(χ[a,αj−1])

]

= x(α1)
[
p (α1)− p (a)

]
+

ν(α)∑
j=2

x(αj)
[
p (αj)− p (αj−1)

]

=

ν(α)∑
j=1

x(αj)
[
p (αj)− p (αj−1)

]
= S(x, dp, (α, ξ)),

whereξ = {α1, . . . , αν(α)}. Therefore

∣∣∣Φ(x)− (δ)

∫ b

a

x dp
∣∣∣ =

∣∣∣Φ̃(x)− (δ)

∫ b

a

x dp
∣∣∣

≤
∣∣∣Φ̃(x)− Φ̃(xα)

∣∣∣ +
∣∣∣Φ̃(xα)− (δ)

∫ b

a

x dp
∣∣∣

< ‖Φ̃‖X∗‖x− xα‖X +
∣∣∣S(x, dp, (α, ξ))− (δ)

∫ b

a

x dp
∣∣∣

< ‖Φ̃‖X∗ε + ε =
(‖Φ‖Y ∗ + 1

)
ε.

Sinceε> 0 can be arbitrarily small, we conclude that

Φ(x) = Φp(x) = (δ)

∫ b

a

x dp for x∈C([a, b]).

Finally, by (8.1.3) and (8.1.5), we have‖Φ‖(C([a,b]))∗ = ‖Φ‖Y ∗ = varba p. 2

The correspondence

Φ∈ (C([a, b]))∗ 7→ p∈BV([a, b])

is not uniquely determined by the relation (8.1.2). Indeed, ifp1 andp2 are func-
tions such thatp1 = p2 except for a countable set and (8.1.2) holds for p1, then
the relation is also satisfied forp2. This is a consequence of the following lemma.

8.1.3 Lemma.Let g ∈BV([a, b]). Then

(δ)

∫ b

a

f dg = 0 holds for any functionf ∈C([a, b]) (8.1.6)

if and only if there is an at most countable setD⊂ (a, b) such that

g(t) = g(a) for t∈ [a, b] \D. (8.1.7)
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Proof. Without any loss of generality we may assume thatg(a) = 0.

a) Assume (8.1.7). Let f be an arbitrary continuous function on[a, b]. We will
show that

(δ)

∫ b

a

f dg = 0. (8.1.8)

Clearly, if D = ∅, the integral is zero. LetD = {d}, where d∈ (a, b), and let
ε> 0 be given. Chooseδ > 0 in such a way that

|f(t)− f(s)|<ε whenevert, s∈ [a, b] and |t− s|< 2 δ.

Consider an arbitrary partitionP = (α, ξ) of [a, b] such that|α|<δ. Clearly,
S(f, dg, P ) = 0 if d /∈α. Otherwise,d = αj for somej ∈{1, . . . , ν(α)− 1} and
we have

|S(f, dg, P )|= ∣∣f(ξj)− f(ξj+1)
∣∣ |g(d)|<ε ‖g‖,

which proves that (8.1.8) holds in the case whenD is a singleton set. From the
linearity of the integral with respect to the integrator, it follows that (8.1.8) holds
if the setD is finite.

Now, assume thatD is countable, i.e.,D = {dk}. For eachn∈N, put

gn(t) =





g(t) if t∈{d1, d2, . . . , dn},
0 if t∈ [a, b] \ {d1, d2, . . . , dn}

Clearly, the sequence{gn} is pointwise convergent tog and varbagn≤ varbag for
all n∈N. Furthermore, by the previous part of the proof we have(δ)

∫ b

a
f dgn = 0

for everyn∈N. Equality (8.1.8) is then a consequence of the Helly’s convergence
theorem (Theorem5.7.6).

b) Let (8.1.6) hold. Insertingf(t)≡ 1 into (8.1.6) we find thatg(b) = g(a) = 0.
Put

f(t) = (δ)

∫ t

a

g(s) ds for t∈ [a, b].

Then f ∈C([a, b]) and, by Integration by parts Theorem (Theorem5.5.1) and
Substitution Theorem (Theorem5.4.3), we obtain

(δ)

∫ b

a

f dg = f(b) g(b)− f(a) g(a)− (δ)

∫ b

a

g df

=−(δ)

∫ b

a

g2(t) dt.
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Let t0 ∈ (a, b) be such thatg is continuous att0. Then, if it wereg(t0) 6= 0, we
could find anη > 0 such that

g2(t) > 0 for t∈ (t0− η, t0+η).

This leads to

(δ)

∫ b

a

f dg =−(δ)

∫ b

a

g2(t) dt≤−(δ)

∫ t0−η

t0−η

g2(t) dt< 0,

which contradicts the assumption (8.1.6). Therefore,g(t) can be nonzero only
if t is a discontinuity point ofg. By Theorem2.3.2there are at most countably
many such points. This shows that (8.1.7) is true. 2

8.1.4 Remark. From Theorem8.1.2and Lemma8.1.3we deduce that for any
continuous linear functionalΦ on the spaceC([a, b]), there exists a unique func-
tion p∈BV([a, b]) such that

p (a) = 0, p (t+) = p (t) for t∈ (a, b)

and

Φ(x) = (δ)

∫ b

a

x dp for any x∈C([a, b]).





(8.1.9)

Functionsp∈BV([a, b]) that are continuous from the right on(a, b) and
such thatp (a) = 0 are callednormalized function of bounded variation. The
set of all such functions will be denoted by the symbolNBV([a, b]). Obviously,
NBV([a, b]) is a closed subset ofBV([a, b]). Moreover, by Theorem8.1.2and
Lemma8.1.3, the spaces(C([a, b]))∗ and NBV([a, b]) are isomorphic, i.e., the
mapping

Φ∈ (C([a, b]))∗ 7→ p∈NBV([a, b]) (8.1.10)

is one-to-one. Note that the same statement holds ifNBV([a, b]) is replaced by
the space of functions of bounded variation on[a, b] that are left-continuous on
(a, b) and vanish in some fixed pointc∈ [a, b].

Let Φ∈ (C([a, b]))∗ be given and letp∈NBV([a, b]) be determined by (8.1.10).
The following theorem shows that then the equality‖Φ‖(C([a,b]))∗ = ‖p‖BV is true,
i.e., the spaces(C([a, b]))∗ andNBV([a, b]) are isometrically isomorphic.

8.1.5 Theorem.If p∈NBV([a, b]) andΦ(x) = (δ)
∫ b

a
x dp for x∈C([a, b]), then

‖Φ‖(C([a,b]))∗ = ‖p‖BV = varbap.

More precisely, the mappingΦ∈ (C([a, b]))∗ 7→ p∈NBV([a, b]), wherep is de-
termined by relation(8.1.9), is an isometry.
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Proof. By Lemma5.1.11we have
∣∣∣(δ)

∫ b

a

x dp
∣∣∣≤

(
varbap

) ‖x‖. This means that

the inequality

‖Φ‖(C([a,b]))∗ ≤‖p‖BV (8.1.11)

is true. We will prove that for everyε> 0 there exists a functioñx∈C([a, b])
such that

‖x̃‖= 1 and |Φ(x̃)|> varbap− ε. (8.1.12)

Let an arbitraryε> 0 be given. Choose a divisionα of [a, b] in such a way that
ν(α)≥ 2 and

V (p,β) > varbap−
ε

3
for any its refinementβ. (8.1.13)

Set m = ν(α). Recall that the right-continuity ofp on (a, b) implies that the
function v(t) = vartap is right-continuous on(a, b) (Corollary2.3.4). Therefore,
for any j ∈{1, . . . , m−1} there is a pointtj ∈ (αj, αj+1) such that

vartjαj
p = v (tj)− v (αj) <

ε

3(m−1)
. (8.1.14)

Put

x̃(t) =

{
sgn

(
p(α1)− p(a)

)
if t∈ [a, α1]

sgn
(
p(αj+1)− p(tj)

)
if t∈ [tj, αj+1], j ∈{1, . . . , m− 1},

and extend the functioñx to a continuous function on[a, b] in such a way that
it will be linear on the intervals[αj, tj], j = 1, . . . , m− 1. Obviously, ‖x̃‖= 1.
Moreover,

(δ)

∫ b

a

x̃ dp =
∣∣p(α1)− p(a)

∣∣ +
m−1∑
j=1

∣∣p (αj+1)− p (tj)
∣∣ +

m−1∑
j=1

(δ)

∫ tj

αj

x̃ dp.

Since|x̃(t)| ≤ 1 for t∈ [a, b], it follows by (8.1.14) that

∣∣∣(δ)
∫ b

a

x̃ dp
∣∣∣

≥
∣∣p (α1)− p (a)

∣∣ +
m−1∑
j=1

∣∣p (αj+1)− p (tj)
∣∣−

m−1∑
j=1

vartjαj
p

≥V (p, α̃)− 2
m−1∑
j=1

vartjαj
p> V (p, α̃)− 2 ε

3
,
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whereα̃ = {a, α1, t1, α2 . . . , αm−1, tm−1, b}. By (8.1.13) we get
∣∣∣(δ)

∫ b

a

x̃ dp
∣∣∣> V (p, α̃)− 2 ε

3
> varba p− ε,

that is, (8.1.12) holds. Hencesup
‖x‖≤1

|Φ(x)| ≥ varba p, wherefrom by (8.1.11) the

assertion of the theorem follows. 2

In view of Theorem8.1.5, the spaceNBV([a, b]) can be identified with the
space(C([a, b]))∗.

8.1.6 Exercise.Prove the following assertion :
For a given continuous linear functionalΦ on C([a, b]), there exists a unique
function p∈BV([a, b]) such that

p (b) = 0, p (t−) = p (t) for t∈ (a, b)

and

Φ(x) = (δ)

∫ b

a

x dp for any x∈C([a, b]).

Furthermore, in Theorem8.1.5, the spaceNBV([a, b]) can be replaced by the
space of functions left-continuous on(a, b) and such thatp (b) = 0.

8.2 Continuous linear functionals on spaces of re-
gulated functions

For continuous linear functionals on the space of regulated functions, an analogue
of the Riesz representation (Theorem 8.2.1) requires a more general notion than
the Riemann-Stieltjes integral. Results of this type are available in[60], [67],
where the Dushnik integral was used, and in [17], where the Young integral was
used. Herein, we show that continuous linear functionals onG([a, b]) are well
described by means of the Kurzweil-Stieltjes integral. To this end, we introduce
the following notation:

8.2.1 Definition. We will say thatf : [a, b]→R is a summable function iff van-
ishes except for a countable set and

∑

a≤t≤b

|f(t)|<∞. For simplicity, we denote

s[f ] =
∑

a≤t≤b

|f(t)|.

It is not difficult to see that a summable functionf : [a, b]→R has bounded
variation. The following lemmas concerning summable functions will be useful
later.
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8.2.2 Lemma.If r : [a, b]→R is a summable function andx : [a, b]→R is bounded,
then the sum

Ψr(x) =
∑

a≤t≤b

r(t) x(t) (8.2.1)

converges and|Ψr(x)| ≤ s[r] ‖x‖.

Proof. By the definition of a summable function, the sum
∑

a≤t≤b

|r(t)| is finite.

Therefore

|Ψr(x)| ≤
∑

a≤t≤b

|r(t) x(t)| ≤ ‖x‖
∑

a≤t≤b

|r(t)|,

is also finite and the result follows. 2

8.2.3 Lemma. If Φ is a continuous linear functional onG([a, b]), then the func-
tion r : [a, b]→R, given byr(t) = Φ(χ[t]) for t∈ [a, b], is summable.

Proof. For eachn∈N, let Mn = {t∈ [a, b] : r(t)≥ 1/n}. Assume that there ex-
istsN ∈N such thatMN is infinite. LetT ⊂MN be a finite set withm elements.
Then‖χT‖= 1 and

Φ(χT ) =
∑
t∈T

Φ(χ[t]) =
∑
t∈T

r(t)≥ m

N
.

Note thatm∈N can be arbitrarily large (by taking a sufficiently large setT ),
which contradicts the fact thatΦ is bounded. Hence, Mn is finite for every

n∈N and, consequently, the set{t∈ [a, b] : r(t) > 0}=
∞⋃

n=1

Mn is countable. In

a similar way, we can show that{t∈ [a, b] : r(t) < 0} is also countable.
Assume{tk} is anon-repeatingsequence of points in[a, b] such thatr(t) 6= 0

if and only if t = tk for somek ∈N. If {tk} is finite, thenr is clearly summable.
Otherwise, for eachn∈N weget

n∑

k=1

|r(tk)|=
∣∣∣

n∑

k=1

r(tk) λk

∣∣∣ =
∣∣∣Φ

( n∑

k=1

λk χ[tk]

)∣∣∣≤‖Φ‖(G([a,b]))∗ ,

whereλk = sgn(r(tk)) for k ∈{1, . . . , n}. Thus the series
∞∑

k=1

|r(tk)| converges,

and we conclude thatr is summable. 2
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Let p∈BV([a, b]), q ∈R, and letr : [a, b]→R be a summable function. For
eachx∈G([a, b]), define

Φ+
p,q,r(x) = q x(a) +

∫ b

a

p dx +
∑

a≤t<b

r(t) ∆+x(t),

Φ−
p,q,r(x) = q x(a) +

∫ b

a

p dx +
∑

a<t≤b

r(t) ∆−x(t).





(8.2.2)

Lemma8.2.2together with the results of Chapter 6 ensures that bothΦ+
p,q,r and

Φ−
p,q,r are well-defined and linear. Moreover,

|Φ+
p,q,r(x)| ≤ (|q|+ |p(a)|+ |p(b)|+ varbap + 2 s[r]

) ‖x‖ for x∈G([a, b]),

and similarly forΦ−
p,q,r. In summary, for each triple(p, q, r), the identities (8.2.2)

define continuous linear functionals onG([a, b]).

The following theorem shows that any continuous linear functionals on the
space of regulated functions can be described by an identity of the form (8.2.2).

8.2.4 Theorem. If Φ is a continuous linear functional onG([a, b]), then there
existp, p̃∈BV([a, b]), q ∈R and a summable functionr : [a, b]→R such that

Φ(x) = q x(a) +

∫ b

a

p dx−
∑

a≤t<b

r(t) ∆+x(t) for x∈G([a, b]) (8.2.3)

and

Φ(x) = q x(a) +

∫ b

a

p̃ dx +
∑

a<t≤b

r(t) ∆−x(t) for x∈G([a, b]). (8.2.4)

Proof. Let p, r : [a, b]→R be given by

p(t) = Φ(χ[t,b ]) and r(t) = Φ(χ[t]) for t∈ [a, b].

By Lemma8.2.3, the functionr : [a, b]→R is summable. We will prove that
p∈BV([a, b]). To this end, consider an arbitrary divisionα of [a, b]. Taking

cj = sgn(p (αj−1)− p (αj)) for j ∈{1, . . . , ν(α)},
we get

V (p,α) =
∣∣∣

ν(α)∑
j=1

cj [p (αj−1)− p (αj)]
∣∣∣ =

∣∣∣
ν(α)∑
j=1

cj Φ(χ[αj−1,αj))
∣∣∣ = |Φ(hα)|,

wherehα =

ν(α)∑
j=1

cj χ[αj−1,αj). Since‖hα‖≤ 1, it follows that varba p≤‖Φ‖(G([a,b]))∗ .
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Further, putq = Φ(χ[a,b]) and

Φp,q,r(x) = q x(a) +

∫ b

a

p dx−
∑

a≤t<b

r(t) ∆+x(t) for x∈G([a, b]). (8.2.5)

To show thatΦ = Φp,q,r , it is enough to verify that

Φ(x) = Φp,q,r(x) for every x∈ S([a, b]) (8.2.6)

(the result then follows from the continuity of both functionalsΦ and Φp,q,r, to-
gether with the fact thatS([a, b]) is dense inG([a, b])). Let x∈ S([a, b]) be given
by

x =
m∑

j=0

cj χ[tj ] +
m∑

j=1

dj χ(tj−1,tj),

or equivalently,

x =
m−1∑
j=0

(cj − dj+1) χ[tj ] + cm χ[b] +
m∑

j=1

dj χ[tj−1,tj),

where{t0, t1, . . . , tm} is a division of[a, b] andcj, dj ∈R for all j. Then

Φ(x) =
m−1∑
j=0

(cj − dj+1) r(tj) + cm r(b) +
m∑

j=1

dj [p(tj−1)− p(tj)].

On the other hand, by Examples6.3.1we have

∫ b

a

p dx = cm p(b)− c0 p(a) +
m∑

j=1

dj [p(tj−1)− p(tj)].

Noting that p(b) = r(b) and ∆+x(tj) = dj+1− cj for j ∈{0, . . . , m− 1}, from
the expressions above we obtain

Φ(x) = c0 q +

∫ b

a

p dx−
m−1∑
j=0

∆+x(tj) r(tj),

therefore (8.2.6) holds.
In order to prove (8.2.4), put p̃(t) = p(t)− r(t) for t∈ [a, b]. Noticing that

p̃∈BV([a, b]) and applying Lemma6.3.18we get

∫ b

a

r dx = r(a) ∆+x(a) +
∑

a<t<b

r(t) ∆ x(t) + r(b) ∆−x(b) for x∈G([a, b]).
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This combined with (8.2.3) yields

Φ(x) = q x(a) +

∫ b

a

p̃ dx +

∫ b

a

r dx−
∑

a≤t<b

r(t) ∆+x(t)

= q x(a) +

∫ b

a

p̃ dx +
∑

a<t≤b

r(t) ∆−x(t),

that is, (8.2.4) holds. 2

The identities in Theorem8.2.4depend on the value of the regulated function
at the initial pointa. With a dependence on the end pointb, two other represen-
tation formulas for continuous linear functionals onG([a, b]) can be derived.

8.2.5 Theorem. If Φ is a continuous linear functional onG([a, b]), then there
existp, p̃∈BV([a, b]), q ∈R and a summable functionr : [a, b]→R such that

Φ(x) = q x(b)−
∫ b

a

p dx−
∑

a≤t<b

r(t) ∆+x(t) for x∈G([a, b]). (8.2.7)

and

Φ(x) = q x(b)−
∫ b

a

p̃ dx +
∑

a<t≤b

r(t) ∆−x(t) for x∈G([a, b]). (8.2.8)

8.2.6 Exercise.Prove Theorem8.2.5.
Hint: Considerp, p̃ : [a, b]→R given respectively by

p(t) =





Φ(χ[a,t)) if t∈ (a, b],

0 if t = a,

and p̃(t) = p(t) + r(t) for t∈ [a, b].

In the case when the functionx∈G([a, b]) is left-continuous on(a, b], the
identity (8.2.4) reduces to

Φ(x) = q x(a) +

∫ b

a

p dx,

while (8.2.8) yields

Φ(x) = q x(b)−
∫ b

a

p dx.

Analogous expressions hold if we consider functionsx∈G([a, b]) right-continuous
on [a, b), and use identities (8.2.3) and (8.2.7). Therefore, from Theorems8.2.4
and8.2.5we obtain the following representation formulas for continuous linear
functionals defined on certain subspaces ofG([a, b]).
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8.2.7 Theorem.(i) Φ is a continuous linear functional onGR([a, b]) if and only
if there existp, p̃∈BV([a, b]) and q ∈R such that

Φ(x) = q x(a) +

∫ b

a

p dx,

Φ(x) = q x(b)−
∫ b

a

p̃ dx,





(8.2.9)

for everyx∈GR([a, b]).

(ii) Φ is a continuous linear functional onGL([a, b]) if and only if there exist
p, p̃∈BV([a, b]) and q ∈R such that

Φ(x) = q x(a) +

∫ b

a

p dx,

Φ(x) = q x(b)−
∫ b

a

p̃ dx,





(8.2.10)

for everyx∈GL([a, b]).

Proof. (i) Given p, p̃∈BV([a, b]) and q ∈R, it is not difficult to see that each
identity in (8.2.9) defines a continuous linear functionalΦ on GR([a, b]).

Now, consider an arbitrary functionalΦ∈ (GR([a, b]))∗ and, forx∈G([a, b]),
define

x̃(t) =

{
x(t+) if t∈ [a, b),

x(b) if t = b.

and Φ̃(x) = Φ(x̃). By Corollary4.1.9, x̃∈GR([a, b]), and hence the mapping̃Φ :
G([a, b])→R is well defined and linear. Furthermore,

|Φ̃(x)| ≤ ‖Φ‖(GR([a,b]))∗‖x̃‖≤‖Φ‖(GR([a,b]))∗‖x‖ for x∈G([a, b]),

that is,Φ̃ is a continuous linear functional onG([a, b]). Applying Theorems8.2.4
and8.2.5, the equalities in (8.2.9) follow from the fact thatΦ̃ = Φ on GR([a, b]).

The proof of (ii) is analogous. 2

Next we show that Theorem8.2.7(i) infers an isomorphism betweenBV([a, b])
and the dual space ofGR([a, b]).

8.2.8 Theorem.For p∈BV([a, b]), let

Φp(x) = p(a) x(a) +

∫ b

a

p dx for x∈GR([a, b]).
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Then, the mapping

p∈BV([a, b]) 7→Φp ∈ (G̃R([a, b]))∗ (8.2.11)

is an isomorphism.

Proof. Clearly, (8.2.11) defines a linear mapping and, by Theorem??, it is also
surjective. Now, considerp∈BV([a, b]) such thatΦp≡ 0. Since by Examples
6.3.1we have

Φp(χ[a,b]) = p(a),

Φp(χ[τ,b ]) = p (τ) if τ ∈ (a, b],

we conclude thatp≡ 0, showing that the mapping is one-to-one.
Finally, from Theorem6.3.5it follows that

‖Φp‖(GL([a,b]))∗ ≤ 2 |p (a)|+ |p (b)|+ varbap≤ 3 ‖p‖BV,

which implies that (8.2.11) is continuous. 2

Similarly, one can show thatBV([a, b]) is isomorphic to the dual space of
GL([a, b]).

8.2.9 Theorem.For p∈BV([a, b]), let

Φp(x) = p(b) x(b)−
∫ b

a

p dx, x∈ G̃L([a, b]).

Then, the mapping

p∈BV([a, b]) 7→Φp ∈ (GL([a, b]))∗

is an isomorphism.

8.2.10 Exercise.Prove Theorem8.2.9.

8.2.11 Remark.It is worth highlighting that the representations given by (8.2.10)
differ from the one presented in [60] not only in the integral used but also in its
form. According to [60], a functionalΦ∈ (GL([a, b]))∗ can be described by the
equality

Φ(x) = (σD)

∫ b

a

x dp for x∈GL([a, b]),

wherep∈BV([a, b]), p(a) = 0, and the integral is understood as the(σ)Dushnik
integral, cf. Section6.12. On the other hand, the representation by means of the
Kurzweil-Stieltjes integral, besides adding an extra term, has regulated functions
x in the role of integrators.
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Regarding continuous linear functionals onGreg([a, b]), G̃reg([a, b]), G̃L([a, b])

and G̃R([a, b]), their general representations can be obtained by following the
same arguments as those used in the proof of Theorem8.2.7. For example, for
G̃reg([a, b]) we have the following statement.

8.2.12 Theorem.Φ is a continuous linear functional oñGreg([a, b]) if and only
if there existp∈BV([a, b]) and q ∈R such thatΦ = Φp,q, where

Φp,q(x) = q x(a) +

∫ b

a

p dx for x∈ G̃reg([a, b]).

Moreover, the mapping

(p, q)∈BV([a, b])×R 7→Φp,q ∈ (G̃reg([a, b]))∗

is an isomorphism.

8.2.13 Exercise.Prove Theorem8.2.12.
Hint: Consider the functionp : [a, b]→R given by

p (t) =





Φ(χ(a,b ]) if t = a,

Φ(1
2
χ[t] + χ(t,b ]) if t∈ (a, b),

Φ(χ[b ]) if t = b.

8.3 Adjoint classes of KS-integrable functions

In mathematical analysis, to understand classes of functions which are integrable
(in some sense) is fairly crucial for applications to differential equations. When
the integration process is of the Stieltjes type though, there are two possible ways
of addressing the question of integrability. First, for a fixed integratorg, we can
ask for which functionsf the integral

∫
f dg exists. Second, for a fixed integrand

f, we can ask for which class of functionsg the integral
∫

f dg exists. To put it
another way, in Stieltjes-type integration a class of functionsB determines a class
A so that the integral

∫
f dg exists providedf ∈A andg ∈B. Related notion is

that of adjoint classes defined as follows (see also [18]).

8.3.1 Definition. Let A andB be two classes of functions defined on[a, b], and
consider an integration processT. We say thatA is adjoint withB regarding the
integral T if the following three conditions are satisfied:

(i) The integral
(T )

∫ b

a

f dg exists for everyf ∈A and everyg ∈B.
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(ii) If the integral
(T )

∫ b

a

f dg exists for everyg ∈B, thenf ∈A.

(iii) If the integral
(T )

∫ b

a

f dg exists for everyf ∈A, theng ∈B.

Notice that in Definition8.3.1 the order of setsA and B is important as it
refers to the classes of integrands and integrators, respectively. Further, notice also
that if A andB are adjoint with respect to a given integralT, then neitherA nor
B can be enlarged so that the integrability condition (i) is preserved. Moreover,
conditions (ii) and (iii) mean that the integrability with respect to a given integral
can be regarded as a tool to characterize some particular properties of functions.

In light of the definition above, we can see that Theorems5.6.3, 5.8.3and5.8.5
imply that C([a, b]) andBV([a, b]) are adjoint classes of Riemann-Stieltjes inte-
grable functions. From this, we know that the existence of the Riemann-Stieltjes
integral with respect to every function of bounded variation ensures continuity.
Obviously, we cannot expect such a property to hold in the theory of Kurzweil-
Stieltjes integration. Indeed, the following result, based on a simple application
of the bounded convergence theorem, indicates a whole class of discontinuous
functions for which the Kurzweil-Stieltjes integral with respect to functions of
bounded variation always exists.

8.3.2 Proposition.Let D = {dk}⊂ [a, b], c∈R and letf : [a, b]→R be bounded
and such that

f(t) = c for t∈ [a, b] \D.

Then the integral
∫ b

a
f dg exists for allg ∈BV([a, b]).

Proof. If D is finite, the assertion of the corollary is obvious. So, letD be
infinite. For eachn∈N, put Dn = {d1, d2, . . . , dn} and define

fn(t) =





c if t∈ [a, b] \Dn,

f(t) if t∈Dn.

Sincefn is a finite step function, the integral
∫ b

a
fn dg exists for everyg ∈BV([a, b])

(cf. Corollary6.3.2). It is easy to see that the sequence{fn} is uniformly bounded
by K = max{‖f‖, |c|} andfn(t) tends tof(t) for every t∈ [a, b]. Hence the re-
sult follows from Theorem6.8.8(bounded convergence theorem). 2

Adjoint classes of integrable functions have been studied in connection to
a variety of integration theories in a handful of papers. Among those dealing
with some generalizations of the Riemann-Stieltjes integral we can mention, for
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instance, [19], [20] and [138]. In what follows we will address the question of
adjoint classes regarding the KS-integral. Having in mind Theorems6.3.8and
6.3.11, we investigate adjoint classes of KS-integrable functions in two directions.
First, we show that the class of regulated functions,G([a, b]), together with func-
tions of bounded variation,BV([a, b]), cannot be called adjoint with respect to
the KS-integral. Alternatively, the reverse order, that is,BV([a, b]) andG([a, b]),
yields a pair of adjoint classes of KS-integrable functions.

Next example shows that condition (ii) of Definition8.3.1fails to be true when
A= G([a, b]) andB= BV([a, b]).

8.3.3 Example.Let c∈R and consider a functionf : [0, 1]→R given by

f(t) = c for t∈ [a, b] \D,

whereD = {dk}⊂ [a, b] is infinite and such thatlimk→∞ dk = d 6∈D while f(dk)
does not converge toc. Thus, f is not regulated, but by Proposition8.3.2 the
integral

∫ b

a
f dg exists for allg ∈BV([a, b]).

The example above leads us to conclude thatG([a, b]) is not adjoint with
BV([a, b]) regarding the KS-integral. Yet, we might wonder whether condition
(iii) of Definition 8.3.1holds for these classes of functions. As we will see in the
following example, the answer is again negative.

8.3.4 Example.Let g : [0, 1]→R be given by

g(t) =





1
k

if t = 1
k

for somek ∈N such thatk≥ 2,

0 otherwise.
(8.3.1)

Claim 1. varbag =∞.

Note that∆−g( 1
k
) =−∆+g( 1

k
) =

1

k
for k ∈N and hence

∑
0≤t<1

|∆+g(t)|+
∑

0<t≤1

|∆−g(t)|= 2
∞∑

k=1

1

k
=∞.

On the other hand, if we hadg ∈BV([0, 1]), then by Corollary2.3.8we would
have

∑
0≤t<1

|∆+g(t)|+
∑

0<t≤1

|∆−g(t)| ≤ var10 g.

Therefore var10g =∞.

Claim 2.
∫ 1

0
f dg = 0 for every f : [0, 1]→R.
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Let f : [0, 1]→R and ε> 0 be given. PutD = {0}∪ { 1
k

: k∈N, k≥ 2} and
define

δ(t) =





dist(t,D) if t 6∈D,

dist(t,D \ {t}) if t = 1
k

for somek ∈N such thatk≥ 2,

η, if t = 0,

whereη > 0 is such that

|f(0)| |g(s)|<ε for s∈ (0, η) (8.3.2)

(such a number exits asg(0+) = g(0) = 0). Let P = (α, ξ) be aδ -fine partition
of [0, 1]. Due to the definition ofδ we haveξ1 = 0 and for eachj ∈{2, . . . , ν(α)}
the subinterval[αj−1, αj] contains at most one point ofD. Moreover, it is not
difficult to see that ifαj = ξj = 1

k
for somej ∈{2, . . . , ν(α)− 1} andk≥ 2, then

ξj+1 = ξj = 1
k
. Hence, in such case,

f(ξj) (g(αj)− g(αj−1)) + f(ξj+1) (g(αj+1)− g(αj))

= f( 1
k
) (g(αj+1)− g(αj−1)) = 0,

since none of the pointsαj−1 andαj+1 belong toD \ {0}. Let P̃ be the partition
obtained fromP by combining two adjacent subintervals whenever they have
a common tag. All subintervals determined byP̃ , except the first one, contribute
nothing toS(f, dg, P̃ ). Therefore

∣∣S(f, dg, P )
∣∣ =

∣∣S(f, dg, P̃ )
∣∣ = |f(0) g(α1)|<ε,

where the last inequality is due to (8.3.2). This proves Claim 2.

Concerning the functiong in (8.3.1), it is worth highlighting that, unlike what
we observed for the integration in the Kurzweil sense, the RS-integral fails to
exist even for all continuous functions. This is a direct consequence of the fact
that C([a, b]) and BV([a, b]) are adjoint with respect to the RS-integral. (See
Theorem5.8.3for details.)

The example above not only invalidates condition (iii) for the classesG([a, b])
andBV([a, b]), but also shows that there is no class of functionsA adjoint with
BV([a, b]) regarding the KS-integral. Nevertheless, as will see in the follow-
ing theorem, integrability with respect to functions of bounded variation ensures
boundedness of the integrator.

8.3.5 Theorem.If f : [a, b]→R is a function such that the integral
∫ b

a
f dg exists

for everyg ∈BV([a, b]), thenf is bounded.
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Proof. For contradiction, assume that there exists an unbounded functionf sat-
isfying the hypothesis. Without loss of generality, assume thatf is unbounded
from above (otherwise, consider the function−f ). Thus, there existc∈ [a, b] and
a sequence{tn} in [a, b] such that

lim
n→∞

tn = c and lim
n→∞

f(tn) = +∞.

Note that the intersection of{tn : n∈N} with at least one of the intervals[a, c),
(c, b] is an infinite set. Thus, we can assume that the sequence{tn} is monotone
and{f(tn)} is increasing, withf(tn) > 0 for all n∈N. Denote

y0 = 0, yn =
1

f(tn)
− 1

f(tn+1)
, sn =

n∑

k=0

yk, for n∈N.

If {tn} increases toc, defineg : [a, b]→R by

g(t) =





0, if t∈ [a, t1],

sn−1, if t∈ [tn, tn+1), n∈N,

limn→∞ sn, if t∈ [c, b].

Note thatg is continuous atc and has bounded variation, because it is monotone.
By hypothesis, the integral

∫ b

a
f dg exists; thus, using Hake’s Theorem6.5.5we

can write

∫ c

a

f dg = lim
n→∞

( ∫ tn

a

f dg + f(c)[g(c)− g(tn)]

)
= lim

n→∞

∫ tn

a

f dg. (8.3.3)

For eachk ∈N, calculating the integral we obtain

∫ tk+1

tk

f dg =

∫ tk+1

tk

f d
(
sk−1χ[tk,tk+1) + skχ[tk+1]

)
= f(tk+1)(sk− sk−1) = f(tk+1) yk

(see Examples6.3.1), and consequently

∫ tn

a

f dg =

∫ t1

a

f dg +
n−1∑

k=1

∫ tk+1

tk

f dg =
n−1∑

k=1

f(tk+1) yk. (8.3.4)

We claim that
∑∞

n=1 f(tn+1) yn diverges. Indeed, since the sequence{f(tn)}
is increasing and unbounded, for eachn∈N we can choosemn ∈N, such that

mn >n and
f(tn)

f(tmn+1)
<

1

2
.
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Therefore,
mn∑

k=n

f(tk+1) yk =
mn∑

k=n

f(tk+1)− f(tk)

f(tk)
≥ 1

f(tmn+1)

mn∑

k=n

[f(tk+1)− f(tk)] =

= 1− f(tn)

f(tmn+1)
>

1

2
.

This means that
∑∞

n=1 f(tn+1) yn does not satisfy the Cauchy condition of con-
vergence, and consequently the series diverges. Having this in mind, the equality
(8.3.4) together with (8.3.3) contradicts the existence of the integral

∫ c

a
f dg.

If, on the other hand,{tn} decreases toc, we redefineg accordingly and
using similar argument we get that

∫ b

c
f dg equals a divergent series; again a

contradiction. In summary, we conclude that a function satisfying the hypothesis
must be bounded. 2

Now we turn our attention to the following question: IsBV([a, b]) adjoint
with G([a, b]) regarding KS-integral? We know from Theorem6.3.11that condi-
tion (i) of Definition 8.3.1is satisfied for these classes of functions. The verifica-
tion of the remaining ones is contained in Propositions8.3.6and8.3.8.

8.3.6 Proposition. If f :[a, b]→R is a function such that the integral
∫ b

a
f dg

exists for everyg ∈G([a, b]), thenf ∈BV([a, b]).

Proof. For contradiction, assume that there exists a functionf such that varbaf =

∞, while the integral
∫ b

a
f dg exists for eachg ∈G([a, b]). Recall that a function

belongs toBV([a, b]) if and only if each point of[a, b] has a neighborhood on
which the variation is finite. Hence, asf 6∈BV([a, b]), there must exist a point
c which satisfies eitherc∈ (a, b] and varctf =∞ for every t∈ [a, c), or c∈ [a, b)
and vartcf =∞ for every t∈ (c, b]. By Lemma5.8.2(i), in the former case there
is an increasing sequence{tk} in (a, c) such that

lim
k→∞

tk = c and
∞∑

k=1

|f(tk+1)− f(tk)|=∞

and further, due to Lemma5.8.1, we can choose a sequence{yk} of positive
numbers in such a way that

lim
k→∞

yk = 0 and
∞∑

k=1

yk|f(tk+1)− f(tk)|=∞. (8.3.5)

Let λk = sgn
(
f(tk)− f(tk+1)

)
for k ∈N. Define

g(t) =

{
yk λk if t∈ (tk, tk+1) and k ∈N,

0 otherwise.
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Clearly, g ∈G([a, b]) and g(c−) = g(c) = 0. Since
∫ b

a
f dg exists, the integral

also exists in every subinterval of[a, b]. In particular,
∫ t1

a
f dg = 0 and for each

k ∈N, by Examples6.3.1(ii), we obtain

∫ tk+1

tk

f dg = yk λk

∫ tk+1

tk

f d
[
χ(tk,tk+1)

]
= yk λk

(
f(tk)− f(tk+1)

)
,

that is,

∫ tk+1

tk

f dg = yk |f(tk+1)− f(tk)|.

Due to the convergence of the sequence{tn} and Hake’s Theorem6.5.5, we can
write

∫ c

a

f dg = lim
n→∞

( ∫ tn

a

f dg + f(c) [g(c)− g(tn)]
)

=

∫ t1

a

f dg + lim
n→∞

n−1∑

k=1

∫ tk+1

tk

f dg = lim
n→∞

n−1∑

k=1

yk|f(tk+1)− f(tk)|.

Hence, in view of (8.3.5),
∫ c

a
f dg diverges, which is a contradiction. Therefore

we conclude that a function satisfying the hypothesis must have a bounded varia-
tion.

In the latter case, i.e., when there isc∈ [a, b) such that vartcf =∞ for every
t∈ (c, b], the proof is similar, but relies on part (ii) of Lemma5.8.2. 2

We remark that, in the proposition above,G([a, b]) cannot be replaced by
the classC([a, b]). In other words, the existence of the Kurzweil–Stieltjes inte-
gral with respect to continuous integrators does not ensure bounded variation. To
illustrate this fact we can again make use of the function given in (8.3.1).

8.3.7 Example.Let f : [0, 1]→R be given by

f(t) =





1
k

if t = 1
k

for somek ∈N such thatk≥ 2,

0 otherwise.

We know thatf 6∈BV([0, 1]) (see Example8.3.1). Let us prove that
∫ 1

0
f dg = 0

for every g ∈C[0, 1]. Consider an arbitraryε> 0. Sinceg is uniformly continu-
ous, for eachk ∈N there existsρk > 0 such that

ωQk
(g) <

ε

k
, Qk = ( 1

k
− ρk,

1
k

+ ρk)∩ [0, 1],
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where ωQk
(g) denotes the modulus of oscillation ofg on Qk. Put

D = {0}∪ {1

k
: k ∈N, k≥ 2}

and define a gaugeδ on [0, 1] by

δ(t) =





dist(t,D) if t 6∈D,

min
{
ρk , dist(t,D \ {t})} if t = 1

k
, k ∈N, k≥ 2,

1 if t = 0.

Let P = (α, ξ) be aδ -fine partition of [0, 1]. Then, for eachj ∈{2, . . . , ν(α)},
the subinterval[αj−1, αj] contains at most one point ofD. Let Λ be the set of all
indicesj ∈{1, . . . , ν(α)} such thatξj = 1

kj
for somekj ∈N. Clearly, [αj−1, αj]⊂

Qkj
for every j ∈Λ. Therefore,

|S(f, dg, P )|=
∣∣∣
∑
j∈Λ

f(ξj) (g(αj)− g(αj−1))
∣∣∣≤

∑
j∈Λ

1

kj

ωQkj
(g) <ε

∞∑
n=1

1

n2

wherefrom it follows that
∫ 1

0
f dg = 0.

To conclude thatBV([a, b]) and G([a, b]) are adjoint classes it remains to
verify also condition (iii). Such a characterization of a regulated function via the
integrability in the KS-sense has been already investigated in Proposition 2.60 of
[29]. Indeed, the result in [29] shows that we need not test the integrability of the
whole spaceBV([a, b]) but simply the finite step functions of the formχJ where
J is an arbitrary interval. Herein we present a slightly different proof for the result
in [29].

8.3.8 Proposition.Let g : [a, b]→R. If, for every intervalJ, the integral
∫ b

a
χJ dg

exists, theng ∈G([a, b]).

Proof. Given c∈ [a, b) we will prove thatg(c+) exists. To this aim, letf = χ(c,b]

and letε> 0 be given. Thus, we can choose a gaugeδ on [a, b] such that
∣∣∣∣S(f, dg, P )−

∫ b

a

f dg

∣∣∣∣ <
ε

2
for everyδ-fine partitionP of [a, b]. (8.3.6)

In view of Lemma6.1.12we can assume that the gaugeδ is such that everyδ -fine
partition containsc as the tag of some subinterval.

Fix an arbitraryδ -fine partitionP = (α, ξ) of [a, b] and let`∈{1, . . . , ν(α)}
be such thatξ` = c. For eacht∈ (c, α`), define the partition

P̃t = P−
t ∪Pt ∪Qt ∪P+

t ,
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whereP−
t = ({α0, . . . , α`−1}, {ξ1, . . . , ξ`−1}), Pt = ({α`−1, t}, {c}), Qk is an ar-

bitrary δ -fine partition of [t, α`] and P+
t = ({α`, . . . , αν(α)}, {ξ`+1, . . . , ξν(α)}).

Thus, P̃t is a δ -fine partition of[a, b] and a simple calculation shows that

S(f, dg, P̃t) = S(f, dg, Qt) + S(f, dg, P+
t ) = g(b)− g(t).

This together with (8.3.6) implies that for each pairu, v ∈ (c, α`) we get

|g(u)− g(v)|= |S(f, dg, P̃u)−S(f, dg, P̃v)|<ε,

showing that the Cauchy condition for the existence ofg(c+) is satisfied. Analo-
gously, we can show the existence ofg(c−) for everyc∈ (a, b]. 2

Propositions8.3.6and8.3.8lead to the following corollary.

8.3.9 Corollary. BV([a, b]) is adjoint withG([a, b]) regarding the KS-integral.

8.4 Distributions

In this section we outline some applications of the Kurzweil-Stieltjes integral in
the theory of distributions, which are understood in the sense of L. Schwartz [?].
Let us recall some of the basic notions and definitions.

8.4.1 Definition. The symbolD[a, b] stands for the set of functionsϕ :R→R,
which are infinitely differentiable and such thatϕ(k)(t) = 0 for all t∈R \ (a, b)
andk ∈N∪{0}. Functions fromD[a, b] are calledtest functionson [a, b].

The setD[a, b] is a linear space when equipped with the usual operations of
addition and scalar multiplication. We say that a sequenceϕn converges toϕ in
D[a, b] if and only if

lim
n→∞

‖ϕ(k)
n −ϕ(k)‖= 0 for any k ∈N∪{0}.

With the topology induced by the notion of convergence above,D[a, b] is a topo-
logical vector space.

Typical examples of test functions on[a, b] are given by:

ϕc,d(t) =





exp
(

1
c−t

+ 1
t−d

)
for t∈ (c, d),

0 for t∈R \ (c, d),
(8.4.1)

where[c, d] is an arbitrary closed subinterval of[a, b].
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8.4.2 Definition. Continuous linear functionals on the topological vector space
D[a, b] are calleddistributionson [a, b], and the set of all distributions on[a, b] is
denoted by the symbolD∗[a, b].

In other words, the setD∗[a, b] is the dual space toD[a, b].

For a given distributionf ∈D∗[a, b] and a test functionϕ∈D[a, b], the value
f(ϕ) is traditionally denoted by〈f, ϕ〉.
8.4.3 Remark. Let f ∈L1([a, b]) be given and let

〈f, ϕ〉=
∫ b

a

f(t) ϕ(t) dt for ϕ∈D[a, b]

(where the integral is understood as the Lebesgue integral). The mappingϕ 7→
〈f, ϕ〉 defines a distribution on[a, b], which will be also denoted by the symbol
f. We say that the distributionf is determined by the functionf.

The null element of the spaceD∗[a, b] is the distribution that maps each test
function to zero. Notice that this distribution is determined by an arbitrary mea-
surable functionf which vanishes almost everywhere in[a, b]. In particular,
if f ∈G([a, b]), then f = 0∈D∗[a, b] if and only if f(t−) = f(s+) = 0 for t∈
(a, b ], s∈ [a, b). Likewise, if f ∈Greg([a, b]), thenf = 0∈D∗[a, b] if and only if
f(t) = 0 for all t∈ [a, b]. Consequently, ifg ∈L1([a, b]), then there is at most
one functionf ∈Greg([a, b]) such thatf = g a.e. on [a, b]. Furthermore, for
f, g ∈L1([a, b]), the equalityf = g holds in the sense ofD∗[a, b] if and only if
f = g a.e. on[a, b].

8.4.4 Definition. For a given distributionf ∈D∗[a, b], its distributional deriva-
tive f ′ is defined by〈f ′, ϕ〉=−〈f, ϕ′〉 for ϕ∈D[a, b].

Similarly, for eachk ∈N, we define

〈f (k), ϕ〉= (−1)k〈f, ϕ(k)〉 for ϕ∈D[a, b].

Note that distributional derivatives of absolutely continuous functions are de-
termined by their classical derivatives.

8.4.5 Example. Given an arbitraryτ ∈ (a, b), by δτ we denote theDirac δ-
distribution(concentrated inτ) defined by

〈δτ , ϕ〉= ϕ(τ) for every ϕ∈D[a, b].

One can show thatδτ corresponds to the distributional derivative of theHeaviside
functiongiven byhτ (t) = H(t− τ), t∈ [a, b], where

H(t) =





0 for t< 0,
1
2

for t = 0,

1 for t> 0.
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Indeed, by Theorems6.4.2and6.6.1, as well as relations (6.3.1) and (6.3.5), we
get

〈h′τ , ϕ〉=−〈hτ , ϕ
′〉=−

∫ b

a

hτ (t) ϕ′(t) dt

=−
∫ b

a

hτ (t) d
[ ∫ t

a

ϕ′(s)ds
]
=−

∫ b

a

hτ dϕ =

∫ b

a

ϕ dhτ = ϕ(τ),

which shows thatδτ = h′τ in the sense of distributions.

8.4.6 Theorem.Let f ∈L1([a, b]). Then its distributional derivativef ′ is the
zero distribution if and only if there is a constantc∈R such thatf(t) = c for
almost all t∈ [a, b].

Proof. Let f(t) = c for almost allt∈ [a, b] andϕ∈D[a, b], then

〈f ′, ϕ〉=−〈c, ϕ′〉=−c

∫ b

a

ϕ′(s) ds =−c (ϕ(b)−ϕ(a)) = 0.

Conversely, assume that distributional derivativef ′ is the zero distribution.1

Given an arbitrary test functionϕ∈D[a, b], let

ρ(t) =





∫ t

a

(
ϕ(s)− a0 Θ(s)

)
ds for t∈ [a, b],

0 for t∈R \ [a, b],

where

a0 =

∫ b

a

ϕ(s) ds, Θ(t) =
ϕa,b(t)∫ b

a

ϕa,b(s) ds

,

andϕa,b is the function given by (8.4.1). Then
∫ b

a

Θ(s) ds = 1

wherefrom it follows easily thatρ(a) = ρ(b) = 0, i.e., ρ∈D[a, b]. Furthermore,

ρ′(t) = ϕ(t)− a0 Θ(t) for t∈ [a, b].

Hence0 = 〈f, ρ′〉= 〈f, ϕ〉−
( ∫ b

a
ϕ(s) ds

)
〈f, Θ〉. Therefore, by lettingc = 〈f, Θ〉,

we get

〈f, ϕ〉=
( ∫ b

a

ϕ(s) ds
)
〈f, Θ〉=

∫ b

a

c ϕ(s) ds

for any ϕ∈D[a, b]. Thus,f = c in the sense of distributions. 2

1Originally we had the following: “On the other hand, assume that〈f, ϕ′〉=0 for any ϕ∈
D[a, b]. ”



320

8.4.7 Exercise.For f ∈L1([a, b]) andk ∈N∪{0} show thatf (k) = 0∈D∗[a, b]
if and only if there arec0, c1, . . . , ck−1 ∈R such that

f(t) = c0 + c1 t + · · ·+ ck−1 tk−1 for almost all t∈ [a, b].

An important problem of the theory of distributions is a proper definition of
the product of two distributions. The following classical definitions apply only to
very special kinds of distributions.

8.4.8 Definition. (i) If f, g ∈L1([a, b]) are such thatf g ∈L1([a, b]), then

〈f g, ϕ〉=
∫ b

a

f(t) g(t) ϕ(t) dt for ϕ∈D[a, b].

(ii) If f ∈D∗[a, b] and g : [a, b]→R is infinitely differentiable on[a, b], then
〈fg, ϕ〉= 〈f, gϕ〉.

To deal with differential equations with distributional coefficients, it is use-
ful to have a reasonable definition of the distributionsf g′ and f ′ g, wheref ∈
G([a, b]) and g ∈BV([a, b]). Obviously, Definition8.4.8 does not cover such
cases. To formulate proper definitions for such couples, the Kurzweil-Stieltjes
integral turns to be very helpful.

8.4.9 Definition. If f ∈G([a, b]) and g ∈BV([a, b]), then we define

〈f ′ g, ϕ〉=
∫ b

a

ϕg df and 〈f g′, ϕ〉=
∫ b

a

ϕf dg for ϕ∈D[a, b].

8.4.10 Theorem.Let f ∈G([a, b]) andg ∈BV([a, b]) be such that

∆+f(t) ∆+g(t) = ∆−f(t) ∆−g(t) for every t∈ (a, b). (8.4.2)

Then

(f g)′ = f g′ + f ′ g.

Proof. Using Definition8.4.4together with Integration by parts Theorem (Theo-
rem6.4.2) and Substitution Theorem (Theorem6.6.1), for ϕ∈D[a, b] we obtain

〈(f g)′, ϕ〉=−〈f g, ϕ′〉

=−
∫ b

a

f(t) g(t) ϕ′(t)dt =−
∫ b

a

f(t) g(t) dϕ(t)

=

∫ b

a

ϕ(t) d
[
f(t) g(t)− f(a) g(a)

]

=

∫ b

a

ϕ(t) d
[ ∫ t

a

g df+

∫ t

a

f dg
]

=

∫ b

a

ϕg df +

∫ b

a

ϕf dg = 〈f ′ g, ϕ〉+ 〈f g′, ϕ〉. 2
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8.4.11 Remark.Let f ∈G([a, b]) andg ∈BV([a, b]). Then the condition (8.4.2)
is obviously satisfied e.g. if

• both functions are regular (see Remark4.2.5),

• at least one of them is continuous on(a, b),

• one of them is left-continuous on(a, b) and the other is right-continuous on
(a, b).

8.4.12 Exercises.

• Let τ ∈ (a, b), κ ∈R and

g(t) =





0 if t< τ,

κ if t = τ,

1 if t> τ.

Prove that
∫ b

a
ϕg dg = ϕ(τ)κ for any ϕ∈BV([a, b]).

Hint: Using Exercise6.3.3, determine the values of the integrals
∫ τ

a
ϕg dg

and
∫ b

τ
ϕg dg.

• If hτ and δτ are the Heaviside and Dirac distributions concentrated at
a pointτ ∈ (a, b), show thathτ δτ = δτ/2.

8.5 Integration on time scales

The time scale calculus, which originated in the work of S. Hilger [57], is a pop-
ular tool that provides a unification of the continuous and discrete calculus. It is
concerned with functionsf :T→R , whereT is a time scale– an arbitrary non-
empty closed setT⊂R . As we will see, the choiceT=R leads to the classical
continuous calculus, whileT=Z corresponds to the discrete calculus. Another
frequently studied time scale isT= qZ= {qn : n∈Z} , where q > 1 ; this leads
to the quantum calculus. The basic operations of the time scale calculus are the
∆-derivative,∇-derivative,∆-integral, and∇-integral. The main goal of this
section is show that both types of integrals on time scales are special cases of the
Kurzweil-Stieltjes integral.

Let us start by introducing some basic notation. Ift∈T and t < supT , we
denote

σ(t) = inf{s∈T : s> t}, µ(t) = σ(t)− t.
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Moreover, if t = supT<∞ , we define σ(t) = t , µ(t) = 0 . The functions
σ :T→T and µ :T→ [0,∞) are referred to as theforward jump operatorand
forward graininess, respectively. Ift∈T satisfiesσ(t) > t , we say thatt is right-
scattered; otherwise, ifσ(t) = t and t< supT , thent is calledright-dense.

Similarly, if t∈T and t> inf T , let

ρ(t) = sup{s∈T : s< t}, ν(t) = t− ρ(t).

Moreover, if t = inf T>−∞ , we define ρ(t) = t , ν(t) = 0 . The functions
ρ :T→T and ν :T→ [0,∞) are called thebackward jump operatorandback-
ward graininess, respectively. Ift∈T satisfiesρ(t) <t , we say thatt is left-
scattered; otherwise, ifρ(t) = t and t> inf T , thent is calledleft-dense.

For an arbitrary pair of real numbersa< b , we use the following notation:

[a, b]T= [a, b]∩T, [a, b)T= [a, b)∩T, (a, b]T= (a, b]∩T, (a, b)T= (a, b)∩T.

These sets are referred to as the time scale intervals, and the subscriptT helps to
distinguish them from ordinary intervals.

A function f :T→R is calledrd-continuous, if it is continuous at all right-
dense points and regulated onT . Similarly, f is called ld-continuous, if it is
continuous at all left-dense points and regulated onT .

Given a functionf :T→R , we can introduce the∆-derivative and the
∇-derivative off at a pointt∈T . Although our main interest lies in integration
theory, we include the definitions of both derivatives and some of their properties
(for more details, see [14, 15]).

8.5.1 Definition. Consider a functionf :T→R and a pointt∈T .

• Suppose thatt< supT , or t = supT and ρ(t) = t . We say that the
∆-derivative f∆(t) exists and equalsD∈R , if for every ε> 0 , there is
a δ > 0 such that

|f(σ(t))− f(s)−D(σ(t)− s)|<ε|σ(t)− s|

for all s∈ (t− δ, t + δ)T .

• Suppose thatt> inf T , or t = inf T and σ(t) = t . We say that the
∇-derivative f∇(t) exists and equalsD∈R , if for every ε> 0 , there is
a δ > 0 such that

|f(ρ(t))− f(s)−D(ρ(t)− s)|<ε|ρ(t)− s|

for all s∈ (t− δ, t + δ)T .
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The following remarks should help to clarify the meaning of both derivatives,
as well as the difference between them:

• If T=R , then f∆(t) = f∇(t) = f ′(t) , i.e., both derivatives coincide with
the classical derivative.

• If T=Z , then f∆(t) = f(t + 1)− f(t) and f∇(t) = f(t)− f(t− 1) , i.e.,
the ∆- and∇-derivative reduce to the forward difference and backward
difference, respectively.

• More generally, ift∈T satisfiesσ(t) > t , then

f∆(t) =
f(σ(t))− f(t)

σ(t)− t
=

f(σ(t))− f(t)

µ(t)
.

Similarly, if t∈T satisfiesρ(t) <t , then

f∇(t) =
f(t)− f(ρ(t))

t− ρ(t)
=

f(t)− f(ρ(t))

ν(t)
.

We now proceed to∆- and∇-integrals of a functionf : [a, b]T→R , which
are in a certain sense inverse operations to the∆- and ∇-derivatives. As in
the classical calculus, there exist definitions in the spirit of Newton, Riemann,
Lebesgue, and Kurzweil. Moreover, these integrals also have their Stieltjes-type
counterparts. We are primarily interested in Kurzweil integrals, but it is instructive
to begin with Riemann integrals.

In the rest of this section, we always assume thata , b∈T . A partition of
[a, b]T is a partitionP = (α, ξ) of [a, b] such that bothα andξ are subsets ofT .
We keep the notation used earlier in this book and write

S(P ) =

ν(α)∑
j=1

f(ξj)(αj −αj−1).

(Throughout this section, the symbolν has two different meanings:ν(α) denotes
the number of subintervals in a divisionα , while ν(t) is the backward graininess
at a pointt∈T . The meaning ofν will be always clear from the context.)

The definition of the classical Riemann integral relies on partitions of[a, b]
such that the distance of each two successive division points does not exceed a
certain δ > 0 . However, if we replace[a, b] by the time scale interval[a, b]T ,
such a partition need not exist. For this reason, the Riemann∆- and∇-integrals
involve a modified type of partitions that are described in the next definition.

8.5.2 Definition. Given a δ > 0 , the symbolPδ([a, b]T) will denote all parti-
tions P = (α, ξ) of [a, b]T such that for eachi∈{1, . . . , ν(α)} we have either
αi−αi−1≤ δ , or σ(αi−1) = αi .
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We are now able to define the Riemann∆- and∇-integrals.

8.5.3 Definition. Consider a functionf : [a, b]T→R .

• We say that the Riemann∆-integral
∫ b

a
f(t)∆t exists and equalsI ∈R , if

for every ε> 0 , there is aδ > 0 such that|S(P )− I|<ε for all partitions
P ∈Pδ([a, b]T) satisfyingξi ∈ [αi−1, ρ(αi)]T for eachi∈{1, . . . , ν(α)} .

• We say that the Riemann∇-integral
∫ b

a
f(t)∇t exists and equalsI ∈R , if

for every ε> 0 , there is aδ > 0 such that|S(P )− I|<ε for all partitions
P ∈Pδ([a, b]T) satisfyingξi ∈ [σ(αi−1), αi]T for eachi∈{1, . . . , ν(α)} .

A complete theory of Riemann∆- and∇-integrals can be found in [15]; here
we limit ourselves to several remarks:

• If T=R , then
∫ b

a
f(t)∆t =

∫ b

a
f(t)∇t =

∫ b

a
f(t) dt , i.e., both integrals co-

incide with the classical Riemann integral.

• The requirementξi ∈ [αi−1, ρ(αi)]T in the definition of the∆-integral means
that if αi is left-scattered, then it cannot serve as a tag for[αi−1, αi]T . Thus,
if t∈T satisfiesσ(t) >t , then the only possible partitionP = (α, ξ) that
is taken into account in the definition of

∫ σ(t)

t
f(t)∆t is t = α0 = ξ1 <α1 =

σ(t) . Therefore,
∫ σ(t)

t
f(t)∆t = f(t)(σ(t)− t) = f(t)µ(t) .

Similarly, the requirementξi ∈ [σ(αi−1), αi]T in the definition of the∇-
integral ensures that ifαi−1 is right-scattered, then it cannot serve as a tag
for [αi−1, αi]T . Hence, ift∈T satisfiesρ(t) <t , the only possible partition
P = (α, ξ) appearing in the definition of

∫ t

ρ(t)
f(t)∇t is ρ(t) = α0 <ξ1 =

α1 = t . Therefore,
∫ t

ρ(t)
f(t)∇t = f(t)(t− ρ(t)) = f(t)ν(t) .

• If T=Z , then
∫ b

a
f(t)∆t =

∑b−1
t=a f(t) and

∫ b

a
f(t)∇t =

∑b
t=a+1 f(t) (see

the previous remark; forδ≤ 1 , there is only one possible choice for the
partition of [a, b]T appearing in Definition8.5.3).

• If f : [a, b]T→R is regulated, then it is Riemann∆- and∇-integrable, and
the indefinite integrals

F1(t) =

∫ t

a

f(s)∆s and F2(t) =

∫ t

a

f(s)∇s, t∈ [a, b]T,

are continuous. Moreover, iff is rd-continuous, thenF∆
1 (t) = f(t) for all

t∈ [a, b)T ; if f is ld-continuous, thenF∇
2 (t) = f(t) for all t∈ (a, b]T .

• If F is continuous, F∆ = f on [a, b)T and f is ∆-integrable, then∫ b

a
f(t)∆t = F (b)−F (a) . Similarly, if F is continuous,F∇ = f on (a, b]T

andf is ∇-integrable, then
∫ b

a
f(t)∇t = F (b)−F (a) .
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We now turn our attention to Kurzweil∆- and∇-integrals. As in the classical
case, they have several advantages over the Riemann (or Lebesgue) integrals: the
class of integrable functions is larger, and the assumptions of the fundamental the-
orem of calculus are less restrictive (each function which is a∆- or ∇-derivative
is Kurzweil ∆- or ∇-integrable). In time scale calculus, the concepts of a gauge
on [a, b]T and aδ -fine partition of[a, b]T take the following form:

8.5.4 Definition. Consider a pair of functionsδL, δR : [a, b]T→ (0,∞) . Thenδ =
(δL, δR) is called a∆-gauge on[a, b]T if δR(t)≥µ(t) for all t∈ [a, b)T , and a
∇-gauge on[a, b]T if δL(t)≥ ν(t) for all t∈ (a, b]T . If δ = (δL, δR) is either a
∆-gauge or a∇-gauge on[a, b]T , a partitionP = (α, ξ) of [a, b]T is calledδ -fine
if

[αj−1, αj]⊂ [ξj − δL(ξj), ξj + δR(ξj)] for all j = 1, . . . , ν(α). (8.5.1)

8.5.5 Remark.We emphasize that the interval on the right-hand side of (8.5.1) is
closed and cannot be replaced by an open interval. This is in contrast to Definition
6.1.1, where it does not matter whether we choose an open or closed interval (see
Remark6.1.5) – both choices lead to the same definition of the Kurzweil-Stieltjes
integral.

Instead of introducing the Kurzweil∆- and∇-integrals, we choose a more
general approach in the spirit of this book, and define the Kurzweil-Stieltjes
∆- and ∇-integrals of a functionf : [a, b]T→R with respect to a function
g : [a, b]T→R . As in the rest of the book, ifP = (α, ξ) is a tagged partition
of [a, b]T , we write

S(f, dg, P ) =

ν(α)∑
j=1

f(ξj)(g(αj)− g(αj−1)).

8.5.6 Definition. Consider a pair of functionsf, g : [a, b]T→R .

• We say that the Kurzweil-Stieltjes∆-integral
∫ b

a
f(t)∆g(t) exists and equals

I ∈R , if for every ε> 0 , there is a∆-gaugeδ on [a, b]T such that

|S(f, dg, P )− I|<ε

for all δ -fine partitionsP of [a, b]T .

• We say that the Kurzweil-Stieltjes∇-integral
∫ b

a
f(t)∇g(t) exists and equals

I ∈R , if for every ε> 0 , there is a∇-gaugeδ on [a, b]T such that

|S(f, dg, P )− I|<ε

for all δ -fine partitionsP of [a, b]T .
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If g(t) = t for all t∈ [a, b]T , the two integrals are referred to as the Kurzweil
∆-integral and∇-integral, and they are denoted by

∫ b

a
f(t)∆t and

∫ b

a
f(t)∇t ,

respectively. Let us show that Riemann integrability implies Kurzweil integrabil-
ity.

8.5.7 Theorem.Consider a functionf : [a, b]T→R .

• If the Riemann∆-integral
∫ b

a
f(t)∆t exists, then the Kurzweil∆-integral∫ b

a
f(t)∆t also exists and has the same value.

• If the Riemann∇-integral
∫ b

a
f(t)∇t exists, then the Kurzweil∇-integral∫ b

a
f(t)∇t also exists and has the same value.

Proof. We prove the first statement, and leave the second up to the reader. Sup-
pose that the Riemann∆-integral I =

∫ b

a
f(t)∆t exists, and choose an arbitrary

ε> 0 . By definition, there is aδ > 0 such that|S(P )− I|<ε for all partitions
P ∈Pδ([a, b]T) satisfyingξi ∈ [αi−1, ρ(αi)]T for eachi∈{1, . . . , ν(α)} . We de-
fine a∆-gaugeδ̃ = (δ̃L, δ̃R) on [a, b]T as follows:

δ̃L(t) =

{
ν(t)/2 if t∈ (a, b]T andρ(t) <t,

δ otherwise,

δ̃R(t) =

{
µ(t) if t∈ [a, b)T andσ(t) >t,

δ otherwise.

Now, consider an arbitrarỹδ -fine partition P = (α, ξ) of [a, b]T . By splitting
each interval-point pair([αi−1, αi], ξi) into ([αi−1, ξi], ξi) and ([ξi, αi], ξi) , we
get a partitionP ′ = (α′, ξ′) which is still δ̃ -fine and satisfiesS(P ) = S(P ′) . By
the definition aδ̃ -fine partition, we have

[α′j−1, α
′
j]⊂ [ξ′j − δ̃L(ξ′j), ξ

′
j + δ̃R(ξ′j)] for all j = 1, . . . , ν(α′).

It follows from the construction ofP ′ that for eachj = 1, . . . , ν(α′) , eitherξ′j =

α′j−1 , or ξ′j = α′j . In the latter case, we haveα′j−1 ∈ [ξ′j − δ̃L(ξ′j), ξ
′
j)T . Observe

that if ρ(ξ′j) <ξ′j , then the interval[ξ′j − δ̃L(ξ′j), ξ
′
j)T is empty (by the definition

of δ̃L ). This shows that the tagξ′j cannot coincide with the right endpointα′j if it
is left-scattered, i.e., we always haveξ′j ∈ [αj−1, ρ(αj)]T .

Finally, observe that the inequalityα′j −α′j−1 >δ can be true only ifξ′j = α′j−1

andα′j = σ(α′j−1) ; this shows thatP ′ ∈Pδ([a, b]T) . Consequently,

|S(P )− I|= |S(P ′)− I|<ε,

i.e., the Kurzweil∆-integral exists and equals the Riemann∆-integral. 2
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Instead of developing a theory of Kurzweil-Stieltjes∆- and∇-integrals, we
show that they are in fact special cases of the Kurzweil-Stieltjes integral from
Definition6.1.2. This means that all basic properties of the Kurzweil-Stieltjes∆-
and∇-integrals can be obtained as corollaries of the results from Chapter 6.

First of all, we describe two possible ways of extending a function defined on
the time scale interval[a, b]T to the full interval[a, b] . For eacht∈ [a, b] , let

t∗ = inf{s∈ [a, b]T : s≥ t},
t∗ = sup{s∈ [a, b]T : s≤ t}.

Note that if t∈ [a, b]T , then t∗ = t∗ = t ; otherwise, t∗ and t∗ are elements of
[a, b]T satisfying t∗ <t < t∗ . Now, for an arbitrary functiong : [a, b]T→R , we
define the extensiong∗ : [a, b]→R by

g∗(t) = g(t∗) for all t∈ [a, b], (8.5.2)

and the extensiong∗ : [a, b]→R by

g∗(t) = g(t∗) for all t∈ [a, b]. (8.5.3)

These two extensions appear in the statement of the next result.

8.5.8 Theorem.Consider a pair of functionsf, g : [a, b]T→R . Let f̃ : [a, b]→
R be an arbitrary function such that̃f(t) = f(t) for all t∈ [a, b]T . Then the
following statements hold:

1. The integral
∫ b

a
f(t)∆g(t) exists if and only if the integral

∫ b

a
f̃(t)dg∗(t)

exists; in this case, both integrals have the same value.

2. The integral
∫ b

a
f(t)∇g(t) exists if and only if the integral

∫ b

a
f̃(t)dg∗(t)

exists; in this case, both integrals have the same value.

Proof. We prove only the first statement; the proof of the second one is similar,
and is left to the reader. We will repeatedly use the fact that ifP = (α, ξ) is
a partition of[a, b]T , thenα, ξ⊂T , and therefore

S(f̃ , dg∗, P ) =

ν(α)∑
j=1

f̃(ξj)(g
∗(αj)− g∗(αj−1))

=

ν(α)∑
j=1

f(ξj)(g(αj)− g(αj−1)) = S(f, dg, P ).

Suppose first that
∫ b

a
f̃(t)dg∗(t) exists. Given an arbitraryε> 0 , there is

a gaugeδ̃ : [a, b]→ (0,∞) such that|S(f̃ , dg∗, P )− ∫ b

a
f̃(t)dg∗(t)|<ε for each
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δ̃ -fine partitionP of [a, b] . Now, let δ = (δL, δR) be a∆-gauge on[a, b]T given
by δL(t) = δ̃(t)/2 and δR(t) = max(δ̃(t)/2, µ(t)) for all t∈ [a, b]T . Let P =
(α, ξ) be an arbitraryδ -fine partition of [a, b]T . Note that P need not be
δ̃ -fine: there might existi∈{1, . . . , ν(α)} such thatαi≥ ξi + δ̃(ξi) . In this case,
we necessarily haveδR(ξi) = µ(ξi) > 0 , αi = σ(ξi) , and thereforeg∗(t) = αi for
all t∈ (ξi, αi] . After replacing each such interval-point pair([αi−1, αi], ξi) by
the interval-point pair([αi−1, ξi + δ̃(ξi)/2], ξi) and an arbitrarỹδ -fine partition
of [ξi + δ̃(ξi)/2, αi] , we get a partitionP ′ of [a, b] , which is δ̃ -fine and satisfies
S(f̃ , dg∗, P ′) = S(f̃ , dg∗, P ) . Hence, we have

∣∣∣∣S(f, dg, P )−
∫ b

a

f̃(t)dg∗(t)

∣∣∣∣ =

∣∣∣∣S(f̃ , dg∗, P ′)−
∫ b

a

f̃(t)dg∗(t)

∣∣∣∣ <ε,

which proves that
∫ b

a
f(t)∆g(t) exists and equals

∫ b

a
f̃(t)dg∗(t) .

Conversely, assume that
∫ b

a
f(t)∆g(t) exists. Given an arbitraryε> 0 , there

is a ∆-gaugeδ = (δL, δR) on [a, b]T such that|S(f, dg, P )− ∫ b

a
f(t)∆g(t)|<ε

for each δ -fine partition P of [a, b]T . Now, let δ̃ : [a, b]→ (0,∞) be a gauge
given by

δ̃(t) =





min(δL(t), sup[t, t + δR(t)]T− t) if t∈ (a, b)T,

sup[a, a + δR(a)]T− a if t = a,

δL(b) if t = b,

dist(t, [a, b]T) if t∈ [a, b]\T.

Let P = (α, ξ) be an arbitrarỹδ -fine partition of[a, b] . Note thatP need not be
a partition of[a, b]T (i.e., the division points and tags need not be elements ofT).
However, if we show that there exists aδ -fine partition P ′ of [a, b]T such that
S(f, dg, P ′) = S(f̃ , dg∗, P ) , then

∣∣∣∣S(f̃ , dg∗, P )−
∫ b

a

f(t)∆g(t)

∣∣∣∣ =

∣∣∣∣S(f, dg, P )−
∫ b

a

f(t)∆g(t)

∣∣∣∣<ε,

and the proof will be complete.
Thus, suppose thatP is not a partition of[a, b]T (otherwise takeP ′ = P ).

Sinceα0 = a∈T , there exists the smallesti∈{1, . . . , ν(α)} such thatαi−1 ∈T ,
and at least one ofαi , ξi is not an element ofT . However, since the defini-
tion of δ̃ guarantees that we have eitherξi ∈T , or ξi /∈T and [αi−1, αi]∩T= ∅ ,
we necessarily haveξi ∈ [a, b)T and αi /∈T . We now modify the partitionP as
follows:

• Replace the interval-point pair([αi−1, αi], ξi) by ([αi−1, α
∗
i ], ξi) .
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• Remove all interval-point pairs([αj−1, αj], ξj) such that[αj−1, αj]⊂ [αi, α
∗
i ] .

• If there is an interval-point pair([αj−1, αj], ξj) such thatαi≤αj−1 <α∗i <
αj , replace it by([α∗i , αj], ξj) .

Denote the partition obtained in this way bỹP . Becauseg∗ is constant on
[αi, α

∗
i ] , it is clear thatS(f̃ , dg∗, P ′) = S(f̃ , dg∗, P ) . Since

αi <ξi + δ̃(ξi)≤ sup[ξi, ξi + δR(ξi)]T,

it follows from the definition ofα∗i that α∗i ≤ sup[ξi, ξi + δR(ξi)]T , and conse-
quently

[αi−1, α
∗
i ]⊂ [ξi− δL(ξi), ξi + δR(ξi)].

If necessary, we can repeat the procedure we have just described withP re-
placed byP̃ . The procedure does not increase the total number of division points,
and decreases the number of division points that are not elements ofT . Thus, af-
ter finitely many steps, we obtain the desiredδ -fine partitionP ′ of [a, b]T such
that S(f, dg, P ′) = S(f̃ , dg∗, P ′) = S(f̃ , dg∗, P ) , and the proof is complete. 2

8.5.9 Corollary. Consider a functionf : [a, b]T→R . Let f̃ : [a, b]→R be an
arbitrary function such that̃f(t) = f(t) for all t∈ [a, b]T . Also, letg(t) = t∗ and
h(t) = t∗ for all t∈ [a, b] . Then the following statements hold:

1. The integral
∫ b

a
f(t)∆t exists if and only if the integral

∫ b

a
f̃(t)dg(t) exists;

in this case, both integrals have the same value.

2. The integral
∫ b

a
f(t)∇t exists if and only if the integral

∫ b

a
f̃(t)dh(t) exists;

in this case, both integrals have the same value.

Bibliographic remarks. More information about the time scale calculus can be
found e.g. in [14, 57]. The basic reference on Riemann∆- and∇-integrals (as
well as Lebesgue integrals on time scales) is [15]. The definition presented there is
slighly different from our Definition8.5.3: The conditionsξi ∈ [αi−1, ρ(αi)]T and
ξi ∈ [σ(αi−1), αi]T are replaced byξi ∈ [αi−1, αi)T and ξi ∈ (αi−1, αi]T , respec-
tively. Nevertheless, the two definitions are equivalent; see [15, Remark 5.17].

Kurzweil ∆- and ∇-integrals were introduced in [108], and subsequently
discussed in [141]. In [108], the definition of a∆-gauge and a∇-gauge is slightly
less restrictive as it allows the possibility thatδL(a) = 0 andδR(b) = 0 . However,
one can easily see that this modification has no influence on the definition of aδ -
fine partition of[a, b]T .

Riemann-Stieltjes∆- and ∇-integrals are treated in [105]. As far as we
are aware, there is no literature dealing with the Kurzweil-Stieltjes∆- and∇-
integrals. Special cases of Corollary8.5.9 with f̃(t) = f ∗(t) were obtained in
[38, 134].



330

8.6 Dynamic equations on time scales

The time scale calculus introduced in the previous section makes it possible to
unify the theories of differential and difference equation by considering the so-
called dynamic equations, where classical derivatives or differences are replaced
by ∆- or ∇-derivatives. The general form of a∆-dynamic equation is

x∆(t) = f(x(t), t), (8.6.1)

while ∇-dynamic equations have the form

x∇(t) = f(x(t), t), (8.6.2)

where in both casesx :T→Rn and f :Rn×T→Rn . Integration leads to the
equations

x(t) = x(t0) +

∫ t

t0

f(x(s), s)∆s, (8.6.3)

x(t) = x(t0) +

∫ t

t0

f(x(s), s)∇s, (8.6.4)

wheret0, t∈T , and the integrals on the right-hand sides are the Kurzweil∆- and
∇-integrals introduced in the previous section.

Equations (8.6.3) and (8.6.4) are the main subject of this section. Since the
indefinite Kurzweil integrals are always continuous, each solutionx of (8.6.3)
or (8.6.4) necessarily has the same property. Moreover, ifs 7→ f(x(s), s) is rd-
continuous, then the integral on the right-hand side of (8.6.3) exists as a Riemann
integral, it is ∆-differentiable, and the equation reduces back to (8.6.1); simi-
larly, if s 7→ f(x(s), s) is ld-continuous, then the integral on the right-hand side
of (8.6.4) is ∇-differentiable, and we get (8.6.2). Nevertheless, we focus on the
more general integral equations (8.6.3) and (8.6.4) without imposing any continu-
ity conditions onf .

Since we know that Kurzweil∆- and∇-integrals can be rewritten as Kurzweil-
Stieltjes integrals, it comes as no surprise that equations (8.6.3) and (8.6.4) are
equivalent to certain Kurzweil-Stieltjes integral equations. This relation is de-
scribed in the next theorem, where we use the notation (8.5.2) and (8.5.3) from
the previous section.

8.6.1 Theorem.Suppose thata, b, t0 ∈T , a≤ t0≤ b , and consider a function
f : B× [a, b]T→Rn , where B⊂Rn . Let f̃ : B× [a, b]→Rn be an arbitrary
function such thatf̃(x, t) = f(x, t) for all x∈B , t∈ [a, b]T . Also, letg(t) = t∗

and h(t) = t∗ for all t∈ [a, b] . Then the following statements hold:
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1. If a functionx : [a, b]T→B satisfies

x(t) = x(t0) +

∫ t

t0

f(x(s), s)∆s, t∈ [a, b]T, (8.6.5)

then the functiony : [a, b]→B given byy = x∗ satisfies

y(t) = y(t0) +

∫ t

t0

f̃(y(s), s) dg(s), t∈ [a, b]. (8.6.6)

Conversely, each functiony : [a, b]→B satisfying(8.6.6) has the formy =
x∗ , wherex : [a, b]T→B satisfies(8.6.5).

2. If a functionx : [a, b]T→B satisfies

x(t) = x(t0) +

∫ t

t0

f(x(s), s)∇s, t∈ [a, b]T, (8.6.7)

then the functiony : [a, b]→B given byy = x∗ satisfies

y(t) = y(t0) +

∫ t

t0

f̃(y(s), s) dh(s), t∈ [a, b]. (8.6.8)

Conversely, each functiony : [a, b]→B satisfying(8.6.8) has the formy =
x∗ , wherex : [a, b]T→B satisfies(8.6.7).

Proof. Suppose thatx : [a, b]T→B satisfies (8.6.5) and y = x∗ . For eacht∈
[a, b] , Corollary8.5.9implies

y(t) = x(t∗) = x(t0) +

∫ t∗

t0

f(x(s), s)∆s

= x∗(t0) +

∫ t∗

t0

f̃(x∗(s), s) dg(s)

= y(t0) +

∫ t∗

t0

f̃(y(s), s) dg(s).

Since the functiong is constant on[t, t∗] , we have
∫ t∗

t
f̃(y(s), s) dg(s) = 0 , and

therefore (8.6.6) holds.
Conversely, assume thaty : [a, b]→B satisfies (8.6.6). Since the functiong

is constant on each interval[t, t∗] with t∈ [a, b] , it follows that y has the same
property. Hence,y = x∗ , wherex : [a, b]T→B is the restriction ofy to [a, b]T .
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For eacht∈ [a, b]T , Corollary8.5.9implies

x(t) = y(t) = y(t0) +

∫ t

t0

f̃(y(s), s) dg(s)

= x∗(t0) +

∫ t

t0

f̃(x∗(s), s) dg(s)

= x(t0) +

∫ t

t0

f(x(s), s)∆s.

The proof of the second statement is similar and is left to the reader. 2

A consequence of the previous theorem is that all results on generalized dif-
ferential equations are directly applicable to dynamic equations on time scales.
We illustrate this fact in the context of linear equations, and show how the theory
developed in Chapter 7 leads to results on dynamic equations.

Let a : [α, β]T→L (Rn) , b : [α, β]T→Rn be arbitrary functions. If we let
f(x, t) = a(t)x + b(t) for all x∈Rn andt∈ [α, β]T , equations (8.6.5) and (8.6.7)
become

x(t) = x(t0) +

∫ t

t0

(a(s)x(s) + b(s))∆s, t∈ [α, β]T (8.6.9)

x(t) = x(t0) +

∫ t

t0

(a(s)x(s) + b(s))∇s, t∈ [α, β]T, (8.6.10)

Thus, if ã : [α, β]→L (Rn) and b̃ : [α, β]→Rn are arbitrary functions such that
ã(t) = a(t) and b̃(t) = b(t) for all t∈ [α, β]T , Theorem8.6.1implies that equa-
tions (8.6.9), (8.6.10) are equivalent to the Kurzweil-Stieltjes integral equations

y(t) = y(t0) +

∫ t

t0

(ã(s)y(s) + b̃(s))dg(s), t∈ [α, β], (8.6.11)

y(t) = y(t0) +

∫ t

t0

(ã(s)y(s) + b̃(s))dh(s), t∈ [α, β], (8.6.12)

with g(t) = t∗ andh(t) = t∗ for all t∈ [α, β] . Using Theorem6.6.1(substitution
theorem), we see that the last two equations can be rewritten as generalized linear
differential equations

y(t) = y(t0) +

∫ t

t0

d[A1(s)]y(s) + B1(t)−B1(t0), t∈ [α, β], (8.6.13)

y(t) = y(t0) +

∫ t

t0

d[A2(s)]y(s) + B2(t)−B2(t0), t∈ [α, β], (8.6.14)
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whereA1, A2 : [α, β]→L (Rn) andB1, B2 : [α, β]→Rn are given by

A1(t) =

∫ t

t0

ã(s) dg(s), B1(t) =

∫ t

t0

b̃(s) dg(s), (8.6.15)

A2(t) =

∫ t

t0

ã(s) dh(s), B2(t) =

∫ t

t0

b̃(s) dh(s) (8.6.16)

for all t∈ [α, β] .
These considerations lead to the following existence and uniqueness theorem

for linear dynamic equations.

8.6.2 Theorem.The following statements hold:

1. Suppose thata : [α, β]T→L (Rn) , b : [α, β]T→Rn are Kurzweil ∆-inte-
grable, I + a(t)µ(t) is invertible for eacht∈ [α, t0)T , and there exists a
Kurzweil ∆-integrable functionm : [α, β]T→R such that

∣∣∣∣
∫ v

u

a(s)∆s

∣∣∣∣≤
∫ v

u

m(s)∆s wheneveru, v ∈ [α, β]T, u≤ v. (8.6.17)

Then equation(8.6.9) has a unique solutionx : [α, β]T→Rn .

2. Suppose thata : [α, β]T→L (Rn) , b : [α, β]T→Rn are Kurzweil∇-inte-
grable, I − a(t)ν(t) is invertible for eacht∈ (t0, β]T , and there exists a
Kurzweil∇-integrable functionm : [α, β]T→R such that

∣∣∣∣
∫ v

u

a(s)∇s

∣∣∣∣≤
∫ v

u

m(s)∇s wheneveru, v ∈ [α, β]T, u≤ v. (8.6.18)

Then equation(8.6.10) has a unique solutionx : [α, β]T→Rn .

Proof. We prove the first statement; the proof of the second one is similar and is
left to the reader.

Let A1 : [α, β]→L (Rn) , B1 : [α, β]→Rn be given by (8.6.15). Note that the
function g(t) = t∗ is regulated (because it is nondecreasing) and left-continuous.
According to Corollary6.5.4, A1 and B1 are regulated on[α, β] . For all t∈
(t0, β] , the matrixI −∆−A1(t) = I − ã(t)∆−g(t) = I is invertible. If t∈ [α, t0)T ,
then I + ∆+A1(t) = I + ã(t)∆+g(t) = I + a(t)µ(t) . On the other hand, ift∈
[α, t0) \T , then I + ∆+A1(t) = I + ã(t)∆+g(t) = I . Thus, I + ∆+A1(t) is in-
vertible for all t∈ [α, t0) .
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Note thatA1(t
∗) = A1(t) for each t∈ [α, β] , since g is constant on[t, t∗] .

Hence, ifα is an arbitrary division of[α, β] , we get

V (A1, α) =

ν(α)∑
j=1

|A1(αj)−A1(αj−1)|=
ν(α)∑
j=1

|A1(α
∗
j )−A1(α

∗
j−1)|

=

ν(α)∑
j=1

∣∣∣∣∣
∫ α∗j

α∗j−1

ã(s) dg(s)

∣∣∣∣∣ =

ν(α)∑
j=1

∣∣∣∣∣
∫ α∗j

α∗j−1

a(s)∆s

∣∣∣∣∣

≤
ν(α)∑
j=1

∫ α∗j

α∗j−1

m(s)∆s =

∫ β

α

m(s)∆s,

which shows thatA1 has bounded variation on[α, β] .

Thus, all assumptions of Theorem7.6.2are satisfied, and equation (8.6.13)
has a unique solutiony : [α, β]→Rn . By Theorem8.6.1, equation (8.6.9) has
a unique solutionx : [α, β]T→Rn , which is obtained as the restriction ofy to
[α, β]T . 2

8.6.3 Remark. In the theory of dynamic equations, the requirement that
I + a(t)µ(t) is invertible for eacht∈ [α, t0)T is known asµ-regressivity (or
simply regressivity), while the condition thatI − a(t)ν(t) is invertible for each
t∈ (t0, β]T is calledν -regressivity. For∆-dynamic equations, it is usually sup-
posed (see [14, Chapter 5]) thata and b are rd-continuous functions, while the
common assumption for∇-equations is ld-continuity ofa and b (see [3]). Un-
der these assumptions, both (8.6.17) and (8.6.18) hold, becausea is bounded.
Moreover, equations (8.6.9) and (8.6.10) reduce tox∆(t) = a(t)x(t) + b(t) and
x∇(t) = a(t)x(t) + b(t) , respectively. Our Theorem8.6.2 is more general – no
continuity or boundedness ofa or b is assumed.

The next result is a continuous dependence theorem for solutions of linear
∆-dynamic equations.

8.6.4 Theorem.Let a : [α, β]T→L (Rn) , b : [α, β]T→Rn , ak : [α, β]T→L (Rn) ,
bk : [α, β]T→Rn , k ∈N , be Kurzweil∆-integrable. Suppose thatI + a(t)µ(t) is
invertible for eacht∈ [a, t0)T , and there exists a Kurzweil∆-integrable function
m : [α, β]T→R such that

∣∣∣∣
∫ v

u

ak(s)∆s

∣∣∣∣≤
∫ v

u

m(s)∆s for u, v ∈ [α, β]T, u≤ v, k ∈N. (8.6.19)
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Furthermore, assume that

lim
k→∞

sup
t∈[α,β]T

∣∣∣∣
∫ t

α

ak(s)∆s−
∫ t

α

a(s)∆s

∣∣∣∣ = 0, (8.6.20)

lim
k→∞

sup
t∈[α,β]T

∣∣∣∣
∫ t

α

bk(s)∆s−
∫ t

α

b(s)∆s

∣∣∣∣ = 0. (8.6.21)

Finally, let x0
k ∈Rn , k ∈N , be a sequence satisfying

lim
k→∞

x0
k = x0.

Then there exists ak0 ∈N such that the equations

xk(t) = x0
k +

∫ t

t0

(ak(s)xk(s) + bk(s))∆s, t∈ [α, β]T, k≥ k0, (8.6.22)

have unique solutionsxk : [α, β]T→Rn . Moreover,xk ⇒ x , wherex : [α, β]T→
Rn is the unique solution of the equation

x(t) = x0 +

∫ t

α

(a(s)x(s) + b(s))∆s, t∈ [α, β]T. (8.6.23)

Proof. Consider the functions

A(t) =

∫ t

t0

ã(s) dg(s), B(t) =

∫ t

t0

b̃(s) dg(s),

Ak(t) =

∫ t

t0

ãk(s) dg(s), Bk(t) =

∫ t

t0

b̃k(s) dg(s), k ∈N,

whereã : [α, β]→L (Rn) , b̃ : [α, β]→L (Rn) , ãk : [α, β]→L (Rn) , b̃k : [α, β]→
Rn , k ∈N , are arbitrary functions satisfying̃a(t) = a(t) , b̃(t) = b(t) , ãk(t) =
ak(t) , b̃k(t) = bk(t) for all t∈ [α, β]T . As in the proof of Theorem8.6.2, one can
show thatA , Ak , B , Bk are regulated, left-continuous,I + ∆+A(t) is invertible
for eacht∈ [a, t0)T , and

varβαAk≤
∫ β

α

m(s)∆s, k ∈N.

Corollary8.5.9and the assumptions (8.6.20) and (8.6.21) imply that Ak ⇒ A and
Bk ⇒ B on [α, β]T . SinceA , Ak , B , Bk are constant on each interval[t, t∗]
with t∈ [α, β] , we conclude thatAk ⇒ A andBk ⇒ B on [α, β] .

Thus, by Theorem7.6.6, there exists ak0 ∈N such that for everyk≥ k0 , the
equation

yk(t) = x0
k +

∫ t

t0

d[Ak(s)]yk(s) + Bk(t)−Bk(t0), t∈ [α, β], (8.6.24)
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has a unique solutionyk : [a, b]→Rn . Moreover,yk ⇒ y , wherey : [α, β]→Rn

is the unique solution of the equation

y(t) = x0 +

∫ t

t0

d[A(s)]y(s) + B(t)−B(t0), t∈ [α, β].

By Theorem8.6.1, the restrictions ofy andyk to [α, β]T are the unique solutions
of the equations (8.6.23) and (8.6.22), respectively; this completes the proof.2

8.6.5 Exercise.Formulate and verify the counterpart of Theorem8.6.4for linear
∇-dynamic equations.

Bibliographic remarks. A special case of the relation between dynamic equa-
tions on time scales and Kurzweil-Stieltjes integral equations was described in
[134]. Kurzweil-Stieltjes integral equations having the form

y(t) = y(t0) +

∫ t

t0

f(y(s), s) dg(s),

where g is a nondecreasing functions, are sometimes calledmeasure differen-
tial equations. They include not only dynamic equations on time scales, but also
differential equations with impulses; see e.g. [38, 101]. Basic results concern-
ing the existence, uniqueness and continuous dependence of solutions to nonlin-
ear measure differential equations are available in [101, 135]. The applicability
of the theory of linear generalized differential equations in the context of linear
dynamic equations was demonstrated in [103], which contains a special case of
Theorem8.6.4. The concept ofStieltjes differential equationsis closely related
to measure differential equations, and is based on Stieltjes derivatives instead of
Stieltjes integrals; more details can be found in [40].
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Scales, Birkhäuser, Boston, 2003, 117–163.

[16] D. M. BRESSOUD. A radical approach to Lebesgue’s theory of integration.
Cambridge University Press, 2008.
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and sequential solutions of generalized linear differential equations.Mem.
Differential Equations Math. Phys.54 (2011), 27–49.

[47] I. HALPERIN. Introduction to the Theory of Distributions. University of
Toronto Press, Toronto, 1952.

[48] U. M. HANUNG, G. A. MONTEIRO AND M. TVRDÝ. Bounded conver-
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[71] P. KREJČÍ. The Kurzweil integral with exclusion of negligible sets.Math-
ematica Bohemica128(2003) 277-292.

[72] P. KREJČÍ. The Kurzweil integral and hysteresis. In:Proceedings of the
International Workshop on Multi-Rate Processes and Hysteresis(Cork,
3.4.2006–8.4.2006, eds: M. Mortell, R. O’Malley, A. Pokrovskii, V. So-
bolev).Journal of Physics: Conference Series55, (2006) 144–154.
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[89] R. LEŚNIEWICZ AND W. ORLICZ. On generalized variations II.Stu-
dia Math.45.1(1973), 71–109
[ http://matwbn.icm.edu.pl/ksiazki/sm/sm45/sm4518.pdf ].

[90] J. W. LEWIN. A Truly Elementary Approach to the Bounded Convergence
Theorem.Amer. Math. Monthly93 (1986), 395–397.

[91] S. ŁOJASIEWICZ. Sur un effet asymptotique dans leséquations diff́eren-
tielles dont les seconds membres contiennent des termes périodiques de
pulsation et d’amplitude tendant a l’infini.Ann. Pol. Math.1 (1955), 388–
413.
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70 (2001) (4-5-6) 345–364.

[95] R. M. MCLEOD. The generalized Riemann integral. Carus Monograph,
No.2, Mathematical Association of America, Washington, 1980.

[96] J. S. MACNERNEY. An integration by parts formula.Bull. Amer. Math.
Soc.69 (1963) 803–805.

[97] G. A. MONTEIRO. On functions of bounded semivariation.Real Anal. Ex-
change40 (2), 2015, 233-276.

[98] G. A. MONTEIRO. Adjoint classes of Kurzweil-Stieltjes in-
tegrable functions. Monatshefte f̈ur Mathematik (2017) [
https://doi.org/10.1007/s00605-017-1071-9].

[99] G. A. MONTEIRO AND B. SATCO. Distributional, differential and integral
problems: equivalence and existence results. EJQTDE, 2017 (7) 1-–26; [
http://www.math.u-szeged.hu/ejqtde/]
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