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Preface

This text is a very preliminary version of the monograph we would like to con
plete in a near future. Actually, it is a continuation®tiefan Schwabik’s mono-

graph [L25] written in Czech and dedicated to the theory of integral over one
dimensional intervals. In this textbook the author succeeded to explain not o
the classic concepts of the Newton and Riemann integrals but also the McSh
integral and above all, the Kurzweil integral, a non-absolutely convergent int
gral defined in a constructive way. This definition belongs to Jaroslav Kurzwe

Thomas Joannes Stieltjes Jaroslav Kurzweil Stefan Schwabik

and was introduced first in the seminal paper published in 1957 in Czechoslo
Mathematical Journal (se€d]). The new integral, which is today called Kurzweil

integral in the world’s mathematical literature, or rather Kurzweil-Henstock inte
gral (Ralph Henstock, a specialist in the theory of the integral from the Unite
Kingdom, published the definition of an analogous integral in 1960 independen
of J. Kurzweil), has since then turned out to be very inspiring not only for the th:
ory of integral (since it includes classic and well-known concepts of Riemat
and Newton integrals including their improper modifications and, even, harder
manage integrals of Lebesgue and Perron) but also for the theory of differen
and integral equations. From the methodical point of view the emphasis put
the Kurzweil integral made it possible & Schwabik to focus on non-absolutely
convergent integrals which were considered to be more difficult to explain in olo
methodology of integral theory. Kurzweil’'s concept of integral is in finite dimen
sional setting equivalent to Perron integral which is non-absolutely converge
His definition seemingly and almost mechanically ,,copies” Riemann’s definitic
which is with its illustrative nature and strong geometric interpretation the mo
reasonable one for a student. Nonetheless, just the comparison with Riema
definition shows how ingenious is its unobtrusive but at the same time very
fective Kurzweil modification. A great advantage of Kurzweil’s integral is als
the fact that it does not need generalization for improper integrals — that the H:
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theorem holds true here (i.e. the theorem concerning the limiting process w
respect to the upper and/or lower bounds of the integration domain).

In the integrals of Riemann, Newton, Lebesgue, Perron, Kurzweil a give
function is integrated with respect to the identity function. Some physical pro
lems have exacted the extension of concept of integral to integrals in which 1
given function is integrated with respect to a function which does not have
be the identity in general. The first time when such integral appeared was
a famous Stieltjes’ treatisd.B€] from, dedicated to the connection between the
convergence of chain fractions and the problem how to describe the distribut
of matter on a solid line segment when all moments of this line segment of natu
orders are known.

The integrals of this kind have been since then ca8édltjes integralsand
integrals of a functionf (integrand with respect to functiory (integrator) over
interval [a, b] are since then denoted byj f dg. To various modifications of the
definition, which with time arose, the names of the authors of these modificatic
are then usually added. Soon there were integrals of: Riemann-Stieltjes, Per
Stieltjes or Lebesgue-Stieltjes. Another significant impulse which turned attenti
to the Stieltjes integral was the fundamental Riesz’s result from 190918€p [
stating that every continuous linear functional in the space of continuous fur
tions can be expressed using the Stieltjes integral. Soon, in 1910, H. Lebes
(see B€]) proved that for a continuous functiofi and a functiong of bounded
variation Stieltjes integral can be, using suitable substitution, expressed as
Lebesgue integral in the form of

v(b)
/ F(w(®) () dt,

where v(x) is the variation of the functiory over the intervalla, z], w is the
generalized inverse function of, w(t)=inf{s € [a,b]:v(s) =t} for t € [a,?],
and

_ dg(uw(t))
dt

In this way, H. Lebesgue arrived at the concept of Lebesgue-Stieltjes integral
a function f with respect tog. Few years after Riesz’s result, in 1912, Stielt-
jes integral appeared also in the monogralbe] by O. Perron. During the next
roughly two decades the Stieltjes integral and its modifications were the subjec
investigation of many outstanding persons of the theory of functions: W. H. You
([157)), C.J. de la Vake Poussin ([49), E. B. Van Vleck ([L5Q), T.H. Hilde-
brandt (b2]), L.C. Young ([155 and [15€]), A.J. Ward ([L5]]) and others. In
1933 S. Saks dedicated a whole chapter in his famous monogitaghtp the
Lebesgue-Stieltjes integral and to functions of bounded variation. Up to now t

h(t) fora.e. t € [a,v(b)].
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integrals of Stieltjes kind have found wide use in many fields: e.g. in the theo
of curve integrals, the theory of probability, the theory of hysteresis, the theory
functional-differential, generalized differential equations etc. A range of mon
graphs are dedicated to the history of the theory of integral. However, we are
aware if any one of them is dedicated to the history of the Stieltjes integral mc
thoroughly. There exists a superb piece of work in Czedhaly prlivodce histoii
integralu” (in English: Little Guide Through the History of Integral) written by
S. Schwabik and Barmano@. Unfortunately, there was not space enough in it t
include also the Stieltjes integral. For the French speakers let us mention at |e
a brief historical essay b¥#] J. Mawhin.

Given the limited assigned extent of his monogravﬁtefan Schwabik could
not include the natural generalization of Kurzweil’s concept of integral to Stieltje
integrals there although at that time we already had ,,Kurzweil’s theory” of Stie
jes integral in our joint works (cf. e.g1B1]) dedicated to generalized differential
equations processed and prepared to a considerable extent. It is our ambitic
continue in his work and to complete his monograph with the theory of Stieltjs
integral with emphasis on Kurzweil’s definition and some of its applications.

Our book is divided into 8 chapters. In the introductory chapter there a
briefly described two of many motivations to study the Stieltjes integral: the pro
lems of moments and curve integrals. The next three chapters are preparatory
provide an overview of properties of the categories of functions with which th
book works most often: functions of bounded variation, absolutely continuo
functions and regulated functions. Chapter 5 provides a survey of the basic pr
erties of the classical notions of the Riemann-Stieltjes integral. The core of t
whole book is then Chapter 6 dedicated to the definition of the Stieltjes integral
Kurzweil’'s sense. There, the advantages of this definition are demonstrated:
width of the class of functions integrable in this sense, the broad range of pre
erties of this integral, in particular, the validity of very general convergence th
orems including Hake’s theorem. The final two chapters describe some selec
applications in functional analysis and in the theory of generalized differents
equations.

From the bibliography dealing with related topics, we can recommend tl
monograph$5] by T. H. Hildebrandt and also the unobtrusive but modernly ap
proached monograp®%] by R. M. McLeod from 1981 including even the Kurz-
weil-Stieltjes integral. Other stimuli can be found in monograpd, [[70],
[117], [115 or lecture notesd?2]. Two demanding monograph83] and [84] by
J. Kurzweil from 2000 and 2002 dedicated to topological problems related to in
grating do not directly concern the Stieltjes integration. Integrals and generaliz
differential equations studied in Kurzweil’s latest monogra®f fover both the
Kurzweil-Stieltjes integral and the linear generalized equations which we disct
in Chapters 6 and 8 of this book. An outstanding supplement of this publicati
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will be, besides already mentioned Schwabik’s monogrdpti[ also his other
monographl127] dedicated especially to generalized differential equations.
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Conventions and notation

()

(ii)

(iii)

(iv)

v)

N is the set of natural numbers (excluding zer@),is the set of rational
numbers, andR is the set of real numbersR™ is the m-dimensional
Euclidean space consisting of realvectors (n-tuples of real numbers). If
z € R™, then itsi-th component is denoted hy. We write z=(z;);", or,
unless a misunderstanding may occti (:ch) . ForaBanach spac&’, the
norm of its element: is denoted by|z|| x. If X =R™ for someme N and
v=(z;) €ER™, we write |z| instead off|z ||z and defingz|= Y"7" | |z;].

{re A:B(z)} stands for the set of all elemenis of the setA which
satisfy the conditionB(x).
For given setsP, (), the symbolP \ @ represents the set

P\Q={zxeP:x¢Q}.

As usual, P C @ means thatP is a subset of) (every element of seP

is also an element of s€p). Unless it may cause a misunderstanding, we
write {z,,} instead of {z,, e R:neN} or {z,eR:n=1,...,m}. A se-
quence{z,} is callednon-repeatingdf xj # x,, wheneverk #n.

For a givena € R, we setat =max{a,0} anda™ =max{—a,0}. (Let us
recall thata* + a~ =|a| anda™ — a~ = a for everya € R.) Furthermore,

1 if a>0,
sgn(a)=< —1 if a<0,
0 if a=0.

If —oco<a<b<oo,then[a,?b] istheclosedinterval {t ¢ R:a<t<b} and
(a,b) is theopeninterval {t c R:a <t <b}. The correspondingalf-clo-
sed or half-openintervals are denoted by, b) and (a, b]. In all cases, the
pointsa, b are called the endpoints of the intervalal=b € R, we say that
the interval|a, b| degenerate$o a one-point set, and we write, b| = [a].
If I is an interval (closed or open or half-open) with endpointg, then
|| =|b— a| stands for its length. Of courséga|| = 0.

A finite set of pointsac = {a, a1, . .., v, } Of the interval[a, b] is called
adivision of the interval[a, b] if a=ap<ay <---<a,, =b. The set of all
divisions of the intervala, b] is denoted byz [a, b].

If € 2]a,b], then, unless otherwise stated, its elements will be denote
by «;, || is the length of the largest subinterval,_,, o], and v(«) is

Xi
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CONVENTIONS AND NOTATION

(vi)

(vii)

(viii)

(ix)

the number of subintervals, i.e.,

ey =0b and |a|= lmax( )(Oéj —a;_1) forae 2]a,b|.
1=1,..., V(o
We will write alsoa = {«; }. If &’ D a, then we say thaty’ is arefinement
of a.

For a given setV/ C R the symboly,, denotes the characteristic function
of M, i.e.,

0 1 if teM,
WY 00 it rem

The supremum (or the infimum) of a sef C R is denoted bysup M (or
inf M). If m=sup M isanelementof\/ (or m=inf M is an element of
M), i.e., if m is a maximum (or a minimum) of/, we write m = max M
(or m=min M). If M is the set of all valued’(z) of a function F' over
the domainB (i.e., if M ={F(x):x € B}), we write sup,.z F(x), and
similarly for the infimum, maximum or minimum, respectively.

Let X be a Banach space. The notatign[a,b] — X means thatf is
a function from the intervala, ] into X . In such a case we say thgit
is avector-valued functionlf X =R, then f is said to be a real-valued
function. For functionsf : [a,b] — X andg: [a,b] — X and a real number
A, we define the functiong + g and A f by

(f+9)(@)=f(z)+g(z) for z€a,]
and
A f)(z)=Af(x) for x € a,b)].

For a given functionf :[a,b] — X, we set||f|lcc =supsefay [f()]. (Of
course, if f is unbounded otfa, b], then|| f||o = 00.)

If {z,} is an infinite sequence of real numbers which has a limit

Jilgoxn =zrx€eRU{—0o0}U {00},
we will write also shortlyz,, — z. Given a sequence of functiods,, } de-
fined on[a, b], the symbol f,, — f stands for the pointwise convergence,
i.e., it means thay,, (x) — f(x) for eachz € [a, b]. If {f,} converges uni-
formly to f on [a,b], i.e. lim, . ||fn — f]lcoc =0, We write alsof, = f
on [a, b].
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(x) If f:[a,b] >R, te€]a,b), s€ (a,b] and the one-sided limits

(xi)

(xii)

lim f(r) and lim f(7)

T—t+ T—S—

exist and are finite, we denote

f+)=Tim f(r), f(s—)= lim f(7),

ATf(E) = f{t+) = f(t), ATf(s)=f(s) = f(s—),
A f(t)=f(t+)— f(t—) for te(a,b).

Customarily, for function defined on the intenjal ], the following con-
vention is used:

fla=)=f(a), f+)=f(b), A fla)=ATf(b)=0.

C([a, b]) is the space of all continuous real functions on the intefwal|,
with a norm defined by

I711= mass 1£()] for f € Clfa,b]).

L!([a, b]) is the space of all real functions that are Lebesgue integrable
the interval[a, b], with the convention

f=geLl([a,b]) <= f(x)=g(z) for almost allx € [a, b,

and with the norm defined by

b
||f||1=/ @) de for feL'[a,b).

The space of all continuous vector-valued functions frib] to a Ba-
nach spaceX is denoted byC([a,b], X). Symbols such a&.!([a,b], X )
corresponding to other function spaces have a similar meaning.

If M is a subset of a Banach spaég, then c[M) stands for the closure
of M in X and Lin(M) denotes the linear span &f, i.e., the set of all
elementse € M of the form

m

T = E C; Xy,

=1

wheremeN, ¢, co,...,c, €Randxy, o, ..., 2, € M.
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(xiii) The set of all continuous linear mappings from a Banach spade a Ba-
nach space” is denoted by (X', Y'). Itis known that#(X,Y) is a Ba-
nach space when equipped with the operator norm

Al 2x3) = qup |Az|y for Ae z(X,Y).

S
|zl x <1

If Y=X orY =R, wewrite simply.#(X)=2(X,X) or X*=2(X,R),
respectively. In particulary (R™, R™) is the space ofn x n real matrices
and.#(R™ R) is the space of columm -vectors, which coincides with the
spaceR™. indexsymtsPACEd #( X, Y ), (R, R")

(xiv) Given a matrixA € #(R™,R™), the element in the-th line and;-th col-
umn is denoted by; ;. We write

For everyn € N, the symbol/ stands for the unit x n-matrix, i.e.,

1 ifi=y
I= (eij) i=1,...m, Whereeij = . Z j.7
i ’ 0 if i#j.

j=1,..n

The norm in.z(R™, R™) is defined by

’A| :jililaxmzl ‘ai7j| fOI’ A: (ai,j) i»il ..... m € X(Rma RTL>

----- Jj=1,...n

In particular, forz ¢ R™ = 2(R™, R), we have|z| =", |z;|, which ag-
rees with the definition in (i). Furthermore, forc #(R™ R™), we have

Al =sup {|Az|:[z| <1},

i.e., the norm of a matrix coincides with the operator norm®{R™, R")
(provided that the norm introduced in (i) is used&h).

(xv) To a certain extent, standard logic symbols are used. For example,
Ve>036>0:(A(0)AB(5)) = Cle)

means

“for every ¢ >0 there exists & > 0 such that if bothA(5) and B(§) are
true, thenC'(¢) holds, as well.”



Chapter 1

Introduction

1.1 Areas of planar regions and moments

It is well known that the value of the Riemann integral

/ab f(z) dz

of a nonnegative continuous functiof: [a,b] — R equals the area of the plane
region M bounded by the graph of and by the linegy=0, x=a, andx =5.
This conclusion is justified by the following consideration:

Let ag, o, ..., a,, be points of the intervale, b] such that

a=apg<ap<---<a,=>,

i.e., the seta = {ay, a4, ...,a,,} is adivision of the intervala, b]. Moreover,
foreveryje{1,...,m} letus choose a poir§; € [a;_1, a;], the so called tag of
the interval[a;_1, o], and denote by ={&;,...,&,,} the corresponding set of
tags. The area of the regiald can be approximated by the sum of the areas c
the rectangles created above the line segmgnts,, ;] with the heightf(¢;),
i.e., by

Sl €)=>_ (&) (o). (1.1.1)

As the following pictures indicate, finer divisions of the interyalb] lead to

il

ar G0 & 0 & 03 bp0q0 & os=h aso0éi 01 §026 03 64 04 &5 05 & 6 &7 07 & 0 &g Toéio T10=b

Riemann integral sums
higher accuracy of the approximation that we get. It can be expected that w

15
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a suitably defined limiting process based on refining the divisions of the inten
la,b], the sumsS(«, &) approach (independently of the choice of the tggs
a certain real numbef (M), which is equal to the area of the regiad. For
a moment, let us settle with the intuitive idea about such a limiting process. \
will describe it more accurately later. The result is the concept of the Riema
integral of a functionf over an intervalla, b] (that is, “from a to b"), which is

denoted byff f(x) dz and satisfies

S(M) _/:f@;) dr.

A similar problem is to determine thmoment(also known as the static mo-

ment) of a planar or spatial region. Let us restrict ourselves to a bounded |
segmenta, b] lying on the real axiR. The moment of a point masse [a, b] of
massu with respect to the origin is given bly|u. If the mass of the line seg-
ment is concentrated at a finite number of points [a,b], i=1,...,n, while
the mass of the point; is equal toy;, then the moment of the line segmeént ]
with respect to the origin is equal to the sum;", |z;| x;. In the general case
when the mass of the line segment is not concentrated at a finite number of poi
we can proceed as follows:
Let a division @ ={«p, a1, ...,a,} of the interval [a,b] be given and, for
je{l,...,m}, let & be the tag of the interval; = [a;_1, a;]. Further, for
eachz € [a, b], let u(x) be the mass of the line segment x]. Then, for every
J, the mass of the subinterva) is given by ;i(a;) — pu(oj—1). Assuming that the
mass of each subintervd) is concentrated at the tag, the moment of the line
segment/; with respect to the origin is approximately equal to

151 () = pla-a)),

and the moment of the whole line segméntb] can be approximated by the sum

S(a, &) = Z 151 (o) — pley1)). (1.1.2)

Again, we can expect thaf(a, &) will approach the actual value of the moment
if the division a becomes finer, i.e., if it contains more elements. Indeed, wit
a suitable definition of the limiting process, the suimsl(2 approach a certain
numberS, which equals the static moment of the line segmrjent] relative to the
origin. We denote

sz/ab|x| du(a).
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The expression on the right-hand side is called3heltjes integrabf the function
x— |z|, = € la,b], with respect tou over the intervala, b]. Of course, this very
special function can be replaced by any “reasonable” funcfiatefined on the
interval [a, b]. In such a way, we can determine the moment of inertia of the lin

segmenta, b] as fab z? du(z), and, in general, the moment of theth order as
Sy lal* du().

1.2 Line integrals

LINE INTEGRAL OF THE FIRST KIND

A continuous mapping : [a, b] — R? is called gpathin R3. Thelength of the
path ¢ will be denoted by the symbol (o, [a, ]).

Let ¢ be a path inR? having a finite length. Moreover, assume that the
mappingy is injective. Let us imagine thap describes the shape of a wire and
f(z) € R isits density at the point. The mass of the part of the wire correspond-
ing to an interval[c, d] C [a,b] is approximately given byf(¢(&)) A(e, [, d]),
where¢ is a point in the intervalc, d].

Let a ={ap, a1, ..., } be adivision of[a,b] and€ ={¢i, ..., &, } be the
setof its tags, i.e¢; € [a;_1, ;] for je{1,...,m}.

Setv(t) = Ap, [a, t]) for t € [a,b]. Then the sum

m

> fe() (v(ay) —v(az-1))

j=1

approximates the mass of the whole wire. Again, it is natural to expect that tl
approximation will be more precise when the division becomes finer. If su
a limiting process leads to a uniquely determined vaMe this value will be
equal to the mass of the whole wire and we write

b
M:/fds or also M:/ fopduv.
(%) a

The former expression is called thee integral of the first kinaf the function f
along the pathp, while the latter expression represents the equivalent concept
the Stieltjes integrabf a scalar functionf o ¢ with respect to the scalar function
V.

LINE INTEGRAL OF THE SECOND KIND

Consider a point mass travelling along a path[a, ] — R* under the influ-
ence of a force fieldf : R* — R3. Then f(¢(t)) € R? is the the force acting on
the mass at time.
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Now, let a={ag,,...,a,,} be a division of the intervala,b] and let
£E={&, ..., &} be acorresponding set of tags. The scalar product

F@(&) - (plag) —plajo1)) =Y frl@(&)) (wrlay) = prlaz))

approximates the work done by the for¢eas the mass moves from the point
¢(a;_1) to the pointy(a;). Hence, the sum

m

D Fe) - (play) —pla—1)) =D > frle(€)) (erlay) — erlaa))

j=1 k=1 j=1

approximates the total work done by the force fi¢lduring the whole motion of
the given mass. If the values of these sums approach a uniquely determined v
with respect to the refinements of the divisions of the inteffwab], this value
will be equal to the total work done by the force fiefdduring the motion of the
given point mass along the path It is usually denoted by

Lf or also /abfosﬁdsozkz: /abfk«o)dwk.

The former expression is called thee integral of the second kindf the vector
function f along the pathp, while the latter expression represents the equivaler
concept of théStieltjes integrabf the (composite) vector functiofoy: [a, b] —R?
with respect to the vector functiop: [a, b] — R3.



Chapter 2

Functions of bounded variation

In this chapter, we define the variation of a real function defined on a comp:
interval and derive some basic properties of functions having bounded variati
Such functions are useful in a whole range of physical and technical probler
in probability theory, in the theory of Fourier series, in differential equations ar
other areas of mathematics.

2.1 Definitions and basic properties

Let —0o <a <b<oo. Recall that by a division of the intervak, b|, we mean
a finite setae = {ap, a1, . . ., ay, } Of points of the intervala, b] such that

a=apg <o <---<a,=>,

while 2a, b] stands for the set of all divisions of the interyal b]. Furthermore,
the elements of the divisioax of [a, b] are usually denoted by; and

via)=m, a, =0 and |a|= max (a;—a;_1) foraecza,b].
je{1,...,v()}

If 3D «a, we say tha{3 is arefinemenbdf a.

2.1.1 Definition. For a given functionf : [a, b — R and a divisionac of the in-
terval [a, b], we define

v(ox)
V(f,e)=) |f(a;) = flay-1)| and vabf=sup V([ e).
j=1

ac [a,b]

For a = b, we define vat f =var® f =0. The quantity va} f is called thevaria-
tion of the functionf on the interval[a, b]. If var® f < oo, we say that the function
f hasbounded variatioron [a, b] (or is of bounded variation ora, b]). The set
of functions of bounded variation da, b] is denoted byBV ([a, b]).

The concept of variation is closely related to the problem of rectifiabilit
of curves. Let us recall the definition of the length of a parametric curv
c:la,b] = R" (wherec is a continuous mapping). For each division of the
interval [a, b], the sum

v(a)

AMe, o) = Je(ay) = e(aj-1)]

Jj=1

19
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equals the length of the polygonal path connecting the vertiges, . . ., c(a(q))-
The lengthA(c, [a, b]) of the curvec is then defined as

A(e,[a,b]) = sup A(c, ).
ac D a,b]

The next theorem provides a necessary and sufficient condition for the len:
of a curve to be finite. To distinguish it from the Jordan decomposition theorel
we call it JORDAN’'S SECOND THEOREM

2.1.2 Theorem(JORDAN'S SECOND THEOREN. Consider a parametric curve
c:la,b] = R" wherec(t) = (¢ (t), ..., c,(t)) for eacht € [a, b]. Then the length
of ¢ is finite if and only if each of the functions, . . ., ¢, has bounded variation
on the intervala, b].

Proof. If x4, ..., z,, are arbitrary real numbers, then
2 2 2 2 .
oy <zi+-- 4, < (| +- -+ |z, i€{l,...,n},

and therefore

2| <A fx2 4+ a2 <o+ + x|, i€{1,...,n}. (2.1.1)

Thus, for an arbitrary divisiomx of [¢,b] and each € {1,...,n}, we obtain

v(ax) v(
Z |ci(yy) — il |<Z Z cr(aj) —er(aj-1))?
j=1

7j=1 k=1

v() n

<ZZ|ck a;) —cp(aj_1)|

7j=1 k=1

n via)

=) ler(oy) = elaja)]-

k=1 j=1

This means that

3

Vie,a)<Ac,a) <Y Vig,a).
k=1

Passing to the supremum, we get

var’e; < A(e, [a, b)) <Zvar Ch,
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wherefrom the statement of our theorem follows immediately. O

In practice, one often deals with planar curves defined by an equati
y= f(z), where f : [a,b] — R is a continuous function. The corresponding para
metric curvec: [a,b] — R? is given by c(t) = (¢, f(t)), t €[a,b], and Theorem
2.1.2implies the following statement.

2.1.3 Corollary. The graph of a functionf : [a,b] — R has finite length if and
only if f has bounded variation on the intervii, b].

2.1.4 Example.Let f: [a, b] — R be continuous and such thigt (z)| < M for all
x € (a,b), where M € R is independent of. Then, by the mean value theorem,
the inequality

|f(y) = f(@)[ <M |y — |

holds for all =,y € [a, b]. Hence, for each divisiomx of the interval[a, b], we
have

v(o)

) <M Z —aj_1)=M(b—a).
We can see thatvery continuous and real valued function @nb] which has
bounded derivative in its interiofa, b) is of bounded variation

If |f’| is in addition Riemann integrable dn, b] (e.g., if f’ is continuous on
(a, b)), then the variation off on [a, b] can be calculated as follows.

2.1.5 Theorem.If f:[a,b] — R is such that| f’| is Riemann integrable, then
b
varf;f:/ |f'(z)| dz. (2.1.2)

Proof. Let £ >0 be given. The existence of the Riemann integﬁagl\f’(:c)] dzx
means that there existsia> 0 such that the inequality

v(a) b -
S Il @ - - [ 17 ] < 213)

holds for each divisiorx of [a, b] such thata| < § and for every choice of points
&, such that

§j€[aj_1,aj] for ]:1,,V(a) (214)
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On the other hand, by the definition of variation, there exists 2 [a, b] such that
la| <6 and

varb f >V (f, a)>var’;f—g. (2.1.5)
By the mean value theorem, there are poijtg =1, . . ., v(«), satisfying 2.1.4)

and such that

v(ox)
=D 1) (o — o).
j=1
This, together withZ.1.9 and £.1.5), implies that

vartf — | (@)l da]
v(a)

< lvartf = V()| 116 55 - [1reiad

<€+8—5
2 2
Sincee > 0 was arbitrary, it follows that4d.1.7) is true. O

2.1.6 ExercisesDetermine vaf f and estimate the length of the graph of the fol-
lowing functionsf:

a) f(z)=sin’z, a=0, b=,
b) f(x)=23-3x+4, a=0, b=2,
c) f(z)=cos x4z sinx, a=0, b=2r.

2.1.7 Remark. By Definition'2.1.], it is obvious that vd}f is nonnegative for
every functionf : [a, b] — R. Furthermore,

var’ f =sup V(f, a) (2.1.6)

adf

holds for any division3 € 2 [a, b]. This follows from several elementary observa-
tions: First, because

{V(f,a):a€2[a,b] and aDB}C{V(f,a):a€ 2][a,bl},
it follows that

sup V(f,a) <var® f.

adDf
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Moreover, by the triangle inequality, for arbitrary two divisions o’ of [a, b]
such thata’ O o and for any functionf : [a, b — R we have

V(f,e) SV(f. ).

Finally, if a € 2]a,b] is given anda’ = a U 3, thena’ D 3 and thus
V(f,a) <V(f ).

This means that for eveye {V(f, @) : a € 2[a, b]} there exists
d'e{V(f,a): € 2]a,b] and a D B}

such thatd < d'. Thus

var, f <sup V(f,a),
aDf

which implies €.1.6).

2.1.8 ExercisesProve the following properties of the variation and of functions
of bounded variation:
(i) If [¢,d] C[a,b], then

|f(d) = f(e)| <var! f <var, f

holds for every functionf : [a, b] — R.
(i) If feBV([a,b]), then

1f(2)| <|f(a)|+var’ f<oo foreveryz € [a, b]. (2.1.7)
(i) var’f=deR ifand only if for eache > 0 there isa. € Z[a, b] such that
d—e<V(f,a)<d

holds for all refinementsx of c..
(iv) var’f=oo if and only if for eachK >0 there is a divisionax e 7[a, b]
such thatV (f, ax) > K.
(v) var’ f=oo if and only if there exists a sequende} of divisions of [a, b]
such that

lim V(f, a")=oc.

n—oo

(vi) If, for a given functionf : [a,b] — R, there is anL € R such that

|f(x) = f(y)| < L]z —y| forall z,ycla,b],

then vaff<L(b—a). (In such a case, we say thdt satisfies the_ipschitz
conditionon [a, b], or that f is Lipschitz continuousn [a, ].)



24

2.1.9 Remark. The inequality [2.1.7) implies that every function with bounded
variation on|[a, b] is necessarily bounded dn, b]..

2.1.10 Example.Let

0 if £=0,
f(x):{ x sin (g) if z€(0,2].

: : . 1
Notice thatf(z) =0 ifand only if =0 or x = T for somek € N. Furthermore,
for x € (0, 2] we have

x ifandonlyifx:yk:—,keNU{O},
_ 4k
fo)= if and only if 2 k
—x ifand only i T=2 = eN.
Thus, for a givem € N and fora™ ={0, y,., 2, - - -, y1, 21, 2}, we have

V(™) =1£0) = flyn)| + Y 1 (e1) = Fr) + D 1 () —
:yn"i_Z(ykfl‘i‘Zk)‘i‘Z(yk‘i‘zk)
_yO-I-QZ yk+zk)_2+4216k2_1_ (1+Z )

k=1

Itis known that) "7,
var? f = oo.

+ =o00. Hence lim, ., V(f, a™) = 0o and, consequently,

We can easily determine the variation of a monotone function.

2.1.11 Theorem.If f is monotone orja, b], then
var, f =|f(b) = f(a)l.

Proof. If f is nonincreasing oifu, b] anda € 2]a, b], then
V(fie)=) [flaj-1) = flay)]

= [f(a) = flan)] + [floa) = fa2)] +---
+ [f(am—2) = fam-1)] + [f(am—2) — f(b)]
= f(a) = f(b),
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i.e., vat f = f(a) =|f(b) - f(a)|.

In a similar way, one can show thatff is nondecreasing ofu, b], then

var, f = f(b) = f(a) =[f(0) = f(a)].

O

2.1.12 Exercises.(i) Prove that the functiory : [a,b] — R has a bounded varia-
tion if and only if there exists a nondecreasing functiot{a, b] — R such that

[f(y) = f(@)[ <h(y) —h(z) forz,yela,b],z<y.
(i) Prove that the inequality

v(a)

<A+f aj1)|+|f(a;—) — f(aj—1+)|+|A_f(aj)|> gvar’;f

J=1

holds for each functiory : [a,b] — R and each divisionx = {ag, a1, ..., @y }
of [a, b].
Hint: Consider expressions

R

v(e)
(17 (@51+0)=F (s 2)| + 1 =8) = Fla1+6) | + | fewy)— Fla; =)

1

j
and lety — 0.

2.1.13 Examples. (i) A simple example of a bounded variation function which
does not have bounded derivative (and hence the statement from Exafnp(@

is not applicable) isf (x) = /z, x € [0, 1]. Indeed, sincef is increasing oro, 1],

by Theoren®?.1.11we have vaf f =1.

(i) An example of a discontinuous function with a bounded variation is

0 if =0
fley=41 .
z if z€(0,1] and x € (57, ] for somek e N.

This function is nondecreasing on the interl@|1], and therefore vdrf =1 by
Theorenm2.1.11

2.1.14 Theorem.For everyc € [a, b] and every functiory : [a,b] — R, we have

var’ f =vart f +var’f.
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Proof. Let f:[a,b] =R andc€ [a,b] be given. Ifc=a or ¢c=b, the statement
of the theorem is trivial. Thus, assume that (a, b).

Let @ ={a,c,b} and leta € 2[a,b] be an arbitrary refinement ak. Then
necessarilyc € a and we can split the divisiomx in two parts: the divisiom’
of the interval[a, ¢| and the divisiona” of the interval[c, 0], i.e., a=a'Ua”,
wherea’ € 7[a,c] anda” € 2|c, b]. Obviously, we have

V(f,a)=V(f, ) +V(f,a"), (2.1.8)
wherefrom, by Remark.1.7 we deduce
var® f=sup V(f, a) <var¢ f +var’ f. (2.1.9)
aD&

On the other hand, for every two divisiors € Z[a,c] and &” € 2[c, b], their
uniona =’ U a” is a division of the intervala, b| and £.1.8 holds again. This
implies

vartf +var’f= sup V(f,a')+ sup V(f,a")<var’f,
o’'€D [a,d] o"€D [e,b]

which completes the proof 02(1.9. O
2.1.15 Example.Let n € N. Consider the functiory,, : [0,2] — R given by

0 if0<z<i,
fnl®) = T sin (z) if %<x <2.
T
Its derivative
0 if O§x<%,
fvll(l’): . (T T Y 1
sm(;)—;cos(;) if =~ <x<2

is bounded or{0, 1) and on(<, 2). Evidently, vat/" f,=0. By Example2.1.4i),
var},,, f, <oo. Thus, Theorer®.1.14yields varg f,, < oo for everyn € N.

The following evident statement implies that the B&t([q, b]) is closed under
pointwise addition of functions and multiplication by scalars (see Conventions a
Notation, item (viii)).

2.1.16 Lemma.For given functionsf, g: [a,b] — R and a real number, the
relations

vart(f +g) <var’f +var’ f (2.1.10)
and
var’ (c f) =|c|var® f (2.1.112)

are true. Furthermoreyar® f =0 if and only if f is constant or{a, b].
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Proof. It suffices to notice that
V(f+9,a)<V(f,a)+V(g,a) and V(cf,a)=|c|V(f, o)

holds for every division of [a,b], and that va f =0 implies | f(x)—f(a)| =0
for eachz € [a, b]. O

2.1.17 Example.Show that the inequality
var® (f +g) > |vart f —var® g| (2.1.12)

holds for any couple of functiong, g € BV([a, b]).
Hint: Notice thatf = (f +g) —g andg=(f + g) — f and make use oP(1.10).

2.1.18 Remark.A trivial example
f(x)=cos z, g(x) = —cos z, with Varg/2 f :var§/2 g=1and f+¢g=0,

shows that in general, the inequality ih.1.10) cannot be replaced by equality.
On the other hand, it is possible to formulate conditions sufficient to ensure tl
(2.1.10 holds with equality. This is done by the following lemma.

2.1.19 Lemma.Let f € BV([a,b]) andg € BV (]a, b]) be such that for each> 0
there aren e N and a;, b; € [a, b], j €{1,...,n}, such that

agalgblg"'gangbngba (2113)
> vark f>varh f—e, (2.1.14)
=1
> vary g<e. (2.1.15)
j=1

Then
var, (f+g)=var, f +var; g. (2.1.16)

Proof. Let £ >0 be given and let{a;,b,;} C [a,b] with je{1,...,n} be such
that relationsZ.1.13-(2.1.159 are true.
Putby=a anda, 1 =5b. Then

var, f =Y "vary f+» var’t f
j=1 §=0
This together with2.1.14 means that

> varyt f <e. (2.1.17)
j=0
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Similarly, by (2.1.19,
ZVaijH g>vartg— . (2.1.18)
4=0

Now, using 2.1.19), (2.1.19, (2.1.19), (2.1.19 and Exampl&.1.17 we deduce
that

varl (f +g)=Y_varh (f +g)+_ var (f +g)
j=1 J=0

n n
b, b; a; a;
Z Z(Varan f - Varajj g) + Z(Varb;+1 g— Varb;+1 f)
=1 =0
>var? f—2e+vark g—2e=var f+var’ g —4e,

var® (f+g)>var® f +var g —4e
holds for every:s > 0. Consequently,
var, (f +g) > var, f +var, g
wherefrom, by2.1.1() the desired equality2(1.16) follows. O

2.1.20 Remark. Some important examples of functiorfsg satisfying the as-
sumptions of Lemm&.1.19will be provided later, cf. Propositiori8.5.7 and
3.3.9

2.1.21 Theorem.A functionf : [a, b] — R has bounded variation ofw, b] if and
only if there exist nondecreasing functiofis f> : [a, b] — R such thatf = f;— f.

Proof. If f; and f, are nondecreasing dn, b| and f = f; — f», then, by Theo-
rem2.1.1J both f; and f, have bounded variation o, b|. Hence, by/2.1.10),
we have va} f < cc.

Conversely, assume thgtc BV ([a, b]), and define

fi(z)=var; f and fy(x)=fi(x)— f(x) for x€]a,b.

Let z,y € [a,b] andy > x. Then, by Theorerd.1.14 f,(y) = fi(x) + vary f, and
since the variation is always nonnegative, it follows tliatis nondecreasing on
la, b]. Furthermore, by Theore1.14we have

fo(y) = fi(z) +varl f — f(y)

and



KURZWEIL-STIELTJES INTEGRAL 29

foly) — falz) =vary f = (f(y) — f(z)) =0

(see Exercis@.1.8(i)). This means that the functiof is also nondecreasing and
the proof is complete. O

2.1.22 ExerciseLet f € BV([a,b]). Prove that the functions

(

0 if r=a,
p ()= =
sup > (flay) = Flag)) " iz € (a,0]
Ko¢€ la,z] j=1
and
(0 if z=a,
n(z)= v(@) _
Sél%) | > (fley) = flaj) " if ze(a,b]
kaé a,z| j—1

are nondecreasing and nonnegativdarb|, and that the relations

f(x)=f(a)+p(x) —n(z) and vaff=p(z)+n(z)
hold for all z € [a, b].

2.1.23 Corollary. For any functionf € BV ([a, b]) and all t € [a, b) and s € (a, b]
there exist finite limits
f(t+)= lirgf(T) and f(s—)= lim f(7).

T—5—

Proof. By Theoren®.1.2], we can assume thégtis nondecreasing ofa, b]. Then
fla) < f(z) < f(b) for everyx € [a, b]. Consequently,
fla) < sup f(z) < f(b) for se(a,b]
z€la,s)
and
fla)< inf f(x)< f(b) for te(a,b).

T ze(t,b]

Next, we will show that
ft+)= iI(lfb] f(z) if tea,b). (2.1.19)
re(t,

Let d =inf,cp f(z) and choose an arbitrary> 0. Then, by the definition of
the infimum, there is & € (¢, b] such thatd < f(¢') < d + . By the monotonicity
of the functionf, it follows thatd < f(z) < d + ¢ for everyx € (¢,t'], wherefrom
the relation?.1.19 follows immediately.
In a similar way, one can show that
f(s=)= sup f(z) if s€(a,b]. (2.1.20)
O

z€[a,s)
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2.2 Space of functions of bounded variation

By LemmaZ2.1.16 every linear combination of functions of bounded variation ha
a bounded variation, too. It follows that the &Y ([a, b]) is a linear space whose
zero element is given by the identically zero function. We will show that, witl
suitably chosen normBV([a, b]) becomes a normed linear space.

2.2.1 Theorem.BV([a,b]) is a normed linear space with respect to the nornr
defined by

| fllev = |f(a)| +var’f for f€BV([a,b]). (2.2.1)

Proof. BV([a,b]) is a linear space by Lemnial.16 By the same lemma, the
relations

If +gllsv < fllsv +1lgllsv and |[c fllsv =c| [ fllsv (2.2.2)

hold for all f, g € BV([a, b]) and everyc € R. Finally, if || f||gv =0, then f(a) =
0 and vaf f =0. Hence, by Lemm2.1.16 f(x)— f(a)=0 on [a,b], i.e., f is
the zero element 0BV ([a, b]). Consequently, the relatio®.¢.1) defines a norm
on BV([a, b)). O

Next, we prove thaBV([a,b]) is a Banach space with respect to the norn
given by £.2.1). This fact will enable us to use the results of functional analysi
in the study of the bounded variation functions.

2.2.2 Theorem.BV(]a, b]) is a Banach space.

Proof. Itis sufficient to prove thaBV([a, b]) is complete, i.e., that every Cauchy
sequence iBV ([a, b]) has alimitinBV([a, b]). To thisaim, let{ f,,} € BV ([a, ])
be a Cauchy sequence, i.e.,

for eache > 0 there isn. € N such that (2.2.3)
| () = f@)| < || fro = fllBy <€ fOr € [a,b] andn,m >n.. o

a) By (2.2.9, the sequencég f,,(x)} is a Cauchy sequence of real numbers fo
everyz € [a, b]. Hence, for anyr € [a, b] it has a finite limit

lim fy(x) = f(x).

b) Let an arbitrarye >0 be given and let:. € N be determined by22.3. Then
for every x € [a, b] we have

F(2) = fau@)| = T (@) = fo ()] <,
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and hence the inequalities
[f (@) = fu(@)| < [f(2) = fr (@) + [ e (@) = fu(z)| <2
hold for everyn > n. and everyz € [a, b]. This means that
Tim | = fulle =0.

In other words, the sequendd,,} tends tof uniformly on [a, b].

c) By (2.2.9 and R.2.9), there isn; € N such that
Varz fn < an”BV < anl”BV+ 1 fornan-

Consequently, the sequendear’ f,} of real numbers is bounded by a certain
d€[0,00). As aresult, we have

V(f,a)=lim V(f,,a)<d foralac2]a,b,

which implies

vartf= sup V(f,a)<d.
acP [a,b]

In particular, f € BV([a, b]).
d) It remains to show that
Tim £ = fullsy =0. (2.2.4)
Let an arbitrarys > 0 be given. By2.2.9, there exists am. € N such that
V(fo— fm, ) <var’ (f, — fm) <cforal n,m>n. and a € 2[a,b],
wherefrom, by lettingn — oo, we deduce that

V(fn—fyo)=lim V(f,— fm,a)<e foralln>n. anda € 2|a, bl
and consequently
lim var® (f, — f)=0.

n—oo

This fact together with part a) of the proof implies tHat4.9) is true. O
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2.3 Bounded variation and continuity

2.3.1 Definition. Let a functionf : [a,b] — R be given. We say that € (a, b) is
its point of discontinuity of the first kinidl both the one-sided limits

fl=)=Jim f(t) and f(a+)= lim_ f(t)

exist and are finite, while eithef(z—) #f(x) and/or f(x+)# f(x). Analo-
gously, a is the point of discontinuity of the first kind of if the limit

fla+) = Jim f(1)
is finite and f (a+) # f(a), andb is the point of discontinuity of the first kind of
f if the limit

F(b=)= lim £

t—b—
is finite and f (b—) # f(b).

By Corollary2.1.23 functions of bounded variation can only have discontinu
ities of the first kind. Now, let us have a closer look on the properties of bound
variation functions related to continuity.

2.3.2 Theorem.Every functionf € BV([a, b]) has at most countably many dis-
continuities in the intervala, b].

Proof. By virtue of Theoren.1.2], it is enough to prove the statement for the
case whenf is a nondecreasing function. Lé2 be the set of all discontinuity
points of f. For eachx € D, choose an arbitrary rationagl(x) in the interval
(f(x—), f(x+)). Since f is nondecreasing, it follows tha{z) # ¢(y) whenever
x,y € D andx #y. Hence, the mapping provides a one-to-one correspondence
betweenD and a subset of rational numbers. This proves thats at most
countable. O

Let f € BV([a,b]) and
v(x)=var:f for x€]a,b. (2.3.1)
From the proof of Theorerd.1.27, we know that the functions andv — f are

nondecreasing ofu, b]. We now will show that the functiom inherits the conti-
nuity properties of the functiorf.
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2.3.3 Lemma. Let f€BV([a,b]) and letv:[a,b] =R be defined by2.3.]).
Then

A~ v(z)=|A" f(z)| for z € (a,b] (2.3.2)
and
Ato(z)=|ATf(x)] for z€la,b). (2.3.3)

Proof. a) If x € (a, b], then
v(z)—v(s)=varif>|f(z)— f(s)| holds for everys € [a, z].
For s — x—, we get the inequality
A~v(z) > |A™ f(z)] for x € (a,b)]. (2.3.4)

Let £ >0 be given. Choose &> 0 such that

[flz—)— £(3)] <§ for s € (z—6,x). (2.3.5)
Furthermore, choose a divisian= {ag, a1, . . ., a,,, } Of [a, z] such that
amo1>2—2 and v(z) -V (f,a)< %. (2.3.6)

Then, by £.3.6 and 2.3.5, we have

m—1 m—1

=1 Jj=1

F@) = flam-0)l+ 5 < 1A @) +1f@@=) = fam-1)|+ 5

Moreover, since

| f(a) = floy—1)| < v(am—1)

1

J

andv(t) > v(a,—1) for everyt € (a,,—1, x), it follows that
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holds for everyt € (a,,,_1, ) and everye > 0. Letting t — x— and recalling that
e >0 can be arbitrary, we get the inequality v(x) < |A~ f(z)|, which together
with (2.3.9 proves the equalityX.3.2).

b) The second relatior?(3.9 can be proved by a symmetry argument based o
reflecting the graph of about the vertical axis: Lef:[—b, —a] — R be given
by f(z) = f(—z), = € [-b, —a]. Observe that virf:varjgf wheneverc, d| C
[a,b], and AT f(z) = —A~ f(—x) for eachz € [a, b). Therefore,

Ato(z)= lim (vari™®f—var?f) = lim var®to f
—0+

- 6—0+

1 —x rEERT —x ~_ —x—9

- 613(?4- var_, sf = 513& (Var’bf var_y f)
=|A7f(—2)[=]|AT f(2)],

where the first equality on the last line follows from part (a) applied to the functic
f atthe point—z. O

The following statement is an immediate consequence of Lethfé

2.3.4 Corollary. Let f € BV([a, b]) and let the function : [a, b] — R be defined
by the relation(2.3.7). Thenf is right-continuous at a point: € [a, b) if and only

if the functionv is right-continuous at this point. Similarly; is left-continuous
at the pointz € (a, b] if and only if the functiorv is left-continuous at this point.

From the next theorem it will follow that the sum of absolute values of th
jumps of a bounded variation function is always finite. For its proof, we need tl
following statement.

2.3.5 Lemma.lIf f:[a,b] — R has bounded variation and the functiopmsand n
are defined as in Exercise1.22, then

A p(x)=(Af(x))", A n(x)=(Af(x))” for x€(a,b], (2.3.7)

and
Atp(x)= (AT f(x)T, ATn(x)= (A" f(x))” for x€a,b). (2.3.8)

The proof can be carried out analogously as the proof of LetArid it
suffices to work with

(fley) = flaj—1))" or (f(a;) = flay-1))”

instead of | f(«;) — f(a;_1)|. The detailed proof is left as an exercise for the
reader.
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2.3.6 Theorem.Let f € BV([a,b]) and letD = {s;} be a non-repeating sequen-
ce (i.e.,sx # s, wheneverk £ () of points from the open intervah, b). Then

A" f(a y+z (1A% Fls0)l+ 1A F(50)]) + A F ()] <var, . (2:3.9)
Proof. a) First, assume that is nondecreasing. Then

A (a) r+2 (1% F(sm) | +1A™F ()] ) + 187 £0)]

=A*f(a) +ZAfsk )+ A f(b).

Choose an arbitrary: € N. Denote oy =a, a,=s; for ke{l,...,n}, and
ane1=0. Then

A* f(a +ZAfsk )+ A~ f(b)
=A"f(ap +Z< a+) f(ak—))+A*f(an+1)

=—f( +Z< ap+) — Oék+1—)>+f(04n+1)
< — f(ao) + f(ans1) = f(b) — f(a) =var, f,

where the last inequality follows from the fact thAtis nondecreasing. Passing
to the limit n — oo, we obtain [2.3.9).

b) Now, let f be an arbitrary function of bounded variation pnb] and let the
functionsp andn be defined as in Exercizel.22 We know thatf = f(a)+p—n
on [a, b]. Obviously,

AT F(t)=ATp(t) — ATn(t) and A™f(s)=A"p(s) — A n(s)

for t € [a,b) ands € (a, b]. Finally, using Lemm&.3.5 we can easily deduce that
the relations

IATf()|=ATp(t)+ATn(t) and |A™f(s)|=A"p(s)+An(s) (2.3.10)
hold for t € [a, ), s € (a, b].
By the first part of the proof we have

Atpla)+ Y (Ap(se) +A7p(s)) + A7p(b) <p(b)

and
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Atn(a)+Y (Nn(sk) n A’n(sk)) + A n(b) <n(b).
k=1
By adding these two inequalities, we obtain

A*(a |+Z (1A% Fs)I+A F(si)]) +1A7 £0)]

<p(b) + n(b) =var,f. O

2.3.7 Remark. Let f:[a,b] — R have a bounded variation and let the g&tof
its discontinuity points ina, b) be infinite. By Theorer.3.2, the elements oD
can be arranged into a sequericg }. (Naturally, there is an infinite number of
such sequences.) By Theor2n3.6 the series

S (18% F(s0)l+ 1A~ (50

is absolutely convergent and its sum does not depend on the ordering of point
D. Since forz € (a,b), the expressionA* f(z)|+ |A~ f(x)| is nonzero if and
only if z € D, it makes sense to define

> (18T f@a7f@)) =D (187 f@)+1a"f@)])

a<zr<b zeD

> (1A% A (5.

k=1

where{s,} is an arbitrary non-repeating sequence of points ffan) such that
D ={si}. The symbols

)SND D SRS DHD DI DI

a<z<b a<z<b a<z<b z€la,b) xz€(ab] z€[a,b]
should be understood in an analogous way.

Theoren2.3.6implies the following result.

2.3.8 Corollary. Each functionf € BV({[a, b]) satisfies the inequality

> ATf(@)]+ Z A~ f(z)| < var’ f. (2.3.11)

z€la,b) z€(a,b]
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2.4 Derivatives of bounded variation functions

In this section we will consider the properties of functions of bounded variatic
related to differentiation. To this aim, let us first recall the concept of the Lebesg
outer measure.

For an arbitrary sef/ C R, we define itd.ebesgue outer measure
;L* (M) :=inf Z(bk — ak),
k

where the infimum is taken over all at most countable collectiffas, by)} of
open intervals iR such that

M C U(ak, bk)

The Lebesgue outer measure is either a nonnegative real number, Burther-
more, p* (M) < pu*(Ms) wheneverM; C Ms.

Obviously, for any finite collectiod{ I,} of disjoint open intervals iR, the
equality

()3

k

holds.

We say that a certain property holdenost everywheréa.e.) on the interval
la, b] if there exists a selV C [a,b] whose Lebesgue outer measure is zero an
such that the property holds for all€ [a,b] \ N. Equivalently, we say that the
property holds for almost alt € [a, b].

If not stated otherwise, in what follows lyuter measurave always under-
stand the Lebesgue outer measure.

2.4.1 ExercisesProve the following assertions:

(i) Every countable set C R has outer measure equal to zero.
(i) If I is aninterval, then.*(7) equals its length/]|.

(i) If {M,} is a countable collection of subsets®f then

I (U Mk> <> (My).
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(iv) The union of countably many sets whose outer measure is zero has ol
measure equal to zero.

2.4.2 Theorem(LEBESGUEDIFFERENTIATION THEOREM). Every monotone
function f : [a,b] — R has a finite derivativef’(x) for almost allz € [a, b].

The proof of Theorer@2.4.2can be found in many real analysis textbooks (se
e.g. Appendix E inl11], Theorem 7.9 in[16], Theorem 4.9 inl43] or Theorem
6.2.1in [L17].

2.4.3 Remark. In particular, by Theorer2.1.2], each functionf € BV([a, b))
has a bounded derivative almost everywhere on the intéryvél Itis even known
(see Theoren3.2.]) that the derivatives of functions of bounded variation are
Lebesgue integrable. However, the seemingly natural equation

f(x)—f(a):/xf'(t) dt for z€a,?]

is not true for every functiorf € BV ([a, b]). For example, there exist functions
f €BV([a, b]) which are non-constant dn, b| and such thaf’ =0 a.e. on[a, b].

2.4.4 Definition. A function f € BV([a, b]) is calledsingularif f'(z)=0 for
almost allz € [a, b].

2.5 Step functions

The simplest example of non-constant singular functions are functions of the fo
J = Xa,q» Wherec e (a,b). Their natural generalizations are tfieite step func-
tions sometimes called alsomple functions

2.5.1 Definition. A function f : [a, b] — R is a finite step function ofu, 0] if there
exists a divisiona = {«, a1, . . ., ., } Of [a, b] such thatf is constant on each
of the open interval§a;_1,a;), j=1,...,m. The set of finite step functions on
the interval[a, b] is denoted by5([a, b]).

By definition, the functionf : [a,b] — R is a finite step function if and only
if there exists amm €N, sets{c;: j=0,1,...,m}CR, {d;:5=1,...,m}CR
and a division{a = sy < s1 <--- < s, =b} 0f [a,b] such that

f(s;)=¢; for j=0,1,...,m,
and

f(x):c@ for ze€(sj_1,s;) and j=1,...,m,
i.e.,
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ZC X[S] )+ZJJ'X(SJ'—LSJ')(I)
j=1

Jj=0

= o (X[t (T) = X(an) (7)) + Z Ci (X[, = X(s,.0 ()

+dn, (X(Smflvb} (SC) — X[ (l‘))

j=1
Equivalently,
r)=c+ Z ¢ X(s;.0 (1) + Z dj Xis;,0 (%) + d Xy (@) 2.5.)
" "~ for x € [a, b],
where
c=2Co, ¢j=dj—¢ forj=0,1,...,m—1,
and

di=c¢;—d; forj=1,....m—1, d=¢,—dn.
Obviously, f(a) =c,

fla=)=f(z)forze(a, 0] \{sr}, f(z)=f(z+)forzela, b) \{s:}

AT f(s)) = ]H ¢;=c¢; forj=0,1,...,m—1,
A~ f(Sj):Cj—dj:dj forjzl,...,m
A generalization of a finite step function is provideddigp functionssome-
times called alsgump functions

2.5.2 Definition. A function f:[a,b] — R is a step function orla, t] if either
f is a finite step function or there existcy, d € R, a non-repeating sequence
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{sx} C (a,b), and sequenceg:,} C R and {d,} C R such that

> (el + |dil) < (2.5.2)

k=1
and

f(x)=c+coX@ap(T +Z<CkXSkb] +de[s’f’b}(x)) (2.5.3)

+dX[b]( x) forzx€]a,b].
The set of all step functions on the interyal ] is denoted byB([a, b]).
If feB([a,b]) is not a finite step function, then the sequeResg} from De-

finition 2.5.2is infinite and, in general, it is not possible to reorder it into ar
increasing sequence. However, thanks to condit?of.?) we have

Z }Cszkb )+ di Xs 0 (T Z |lcx| + !dk (2.5.4)
k=1

This means that the series on the right-hand sid&.6{J) is absolutely convergent
for eachzx € [a, b]. Hence, the valueg(z) do not depend on the particular order-
ing of the sequencés;}. Consequently, for each € [a, b] the relation 2.5.9
can be equivalently rewritten as

;

c if r=a,
c+co+ Z Cr + Z dy if € (a,b),
f(l’) = a<sp< T a<sp<z (255)
c+co+ ch+ Zd;ﬁ—d if =0,
a<sp<b a<sip<b
where the sunEKSkq ¢ runs over all indicesc € N such thatsy € (a, z), the

sum >, . ., cx runs over all indicesk € N such thats; € (a, x|, and analo-
gously inthe case o} _,_, _, d;.

From 2.5.5 we see that the functioli € B([a, b]) defined by2.5.3 satisfies
f(a)=c. From (2.5.5 we see that if there is&> 0 such that(a, a+d)N{sx} =0,
then

fla+)=c+ co. (2.5.6)
In the general case, one has to take into account that since

tE%i( Z cr + Z dk>

a<sp<t a<sp<t
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is in fact the limit of the remainder of an absolutely convergent series, it must
zero. Hence4.5.6) holds also in the case whenis a limit point of the sef{s;}.
Similar argument can be used to prove the following formulas:

fla=)=c+co+ ch—i— de if x€(a,b,

a<sp<x a<sp<zw
and (2.5.7)
flz+)=c+co+ ch—i- de if z€la,b).
a<sp<zx a<sp<z

Subtracting/2.5.5) from (2.5.7) leads to

Flam) = f(x) = f(r4) forze (ab)\{s:} (25.8)
and
Atf(sg)=cx forkeN, Atf(a)=

0 } (2.5.9)
A=fls))=dy forken, A—f(b):d

Thus, the relation4.5.3 from Definition2.5.2can be reformulated in further two
equivalent ways:

( .
c if r=a,

c+ AT fla)+ ) ATf(sk)+ D> AT f(sk)

a<sp<T a<sp<zx

fla)= tzeab) o510

cHATf(a)+ ) AT f(se)+ Y AT f(se) + AT (D)

a<sp<b a<sp<b

if x=0,

or

(a)+ > [A*f(d) Xy (x) + A7 F(d) X(ap(x)]
2 (2.5.11)

+ AT f(a) X(ap (@) + A7 f(b) X (x) for z € [a, b],

where D = {s;}. Recall that we assume th&l C (a,b). Hence, with respect to
(2.5.9 we can see thab is the set of points of discontinuity of in the open

interval (a, b), while the set of points of discontinuity of on the closed interval
la, ] is contained in the seD U {a} U {b}. (The pointsa, b do not necessarily
have to be discontinuity points gf.)
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2.5.3 Theorem. S([a, b]) C B([a, b]) € BV([a, b]) and the inequality
varl f =A% f(a)| + 3 (IA*f(@)| + A F(@)]) + A~ F () <00 (25.12)
z€(a,b)

holds for each step functiofi € B([a, b]).
Proof. By Definition2.5.], we have
S([a, b]) € B([a, b]) and S([a, b]) < BV([a, b)).

Obviously, £.5.12) holds for all finite step functiong € S([a, b]). Thus, we can
restrict ourselves to the case thfat B([a, b]) \ S([a, b]), i.e., we may assume that
fisgiven by £.5.5, and £.5.9) is true. Using'2.5.9 we have

A+ (1A f@)+1A7f@)]) + A7 F0)

o (2.5.13)
o+ (le] +1da]) + Id] < oo.
k=1

Notice that
1f(y) )| < Z |cx| + Z |d|
<5<y <5<y
holds for arbitraryx, y € (a,b) such thatr <y. Furthermore,

@)= f@l<leol + D e+ D ldil ifa<y<b,

a<sp<y a<sp<y
and

FO) = f@)I< D e+ Y ldil +1d]  ifa<z<b.

r<sp<b r<sp<b

Hence, for any divisiorx of [a, b] with v(«) > 3 we can deduce

v(a)
:Zwa»— (a1 |<rcO\+< SRCEEDS ,dk>

a<sp<ai a<sp<ai
u(a
E E x| + § ||
aj-1<sp<ay aj—1<sk<ay

+< S olal+ ) dk)+d

au(a)71§5k<b ar/(a)71<sk<b

<ol —I—Z (|ex] + |de]) + |d].

k=1
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Consequently, byA.5.2 we have

var) f <|col + Y _ (Jeil +|dil) + |d| < oo, (2.5.14)
k=1

i.e., f€BV([a,b]) and B([a,b]) C BV([a,b]). Finally, using Theorer?.3.6 we
get

AT fa)l+ > (Nf |+|A‘f(x)|>+|A—f(b)|§vargf. (2.5.15)

z€(a,b)

Now, using 2.5.13, (2.5.19 and R.5.15, we obtain the relatior2(5.17). O

Obviously, if f is a finite step function ona, b, then f'=0 on [a,b] \ M
where M C [a, b] is a finite (possibly empty) set. Finite step functions [enb]
are thus singular oifu, b]. We will show that every step function dn, ] is also
singular on[a, b]. For this purpose, we need the following statement known as tt
little Fubini theorem

2.5.4 Theorem("L ITTLE” FUBINI). Let {fi} be a sequence of nondecreasing
functions ona, b] such that the serieg(z) =3, fix(z) converges for every
z€la,b]. Thenf'(x)=>"7", fi(x) €R for almost allz € [a, b].

Proof. a) Denote

g(x)=f(x) = fla), gi(x)=fi(z) = frla) forkeN,zela,b],
x):igk(aﬁ) forneN, z € [a,b].

Then the functionsy, g,, k€N, are nonnegative and nondecreasing [orb),
while

= Z gr(x) = nlggo sp(x) for z€la,b).
By Theoreni2.4.2, for everyk € N there exists a seb, C ab of zero outer mea-
sure such that the functiap, has a finite derivative, (x) for everyze [a, b] \ Dy.
Similarly, there exists a finite derivative’(z) for every xz€ [a,b] \ D where
D C [a,b] has zero outer measure. Thus, if we let= DU | J°, D, we can
summarize that there exist finite derivativgér), g;.(x) for each eaclt € N and
eachz € [a, b] \f). By Exercise?.4.1(iv) the setD also has zero outer measure.
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Foranyz € [a,b]\ D and ¢ € [a, b] such thatt # z, we have

— k(&) —gr(z)  g(&) —g(x)
Z -z f-z

Since every term in the sum on the left-hand side is nhonnegative (begause
nondecreasing), it follows that

sn(§) — sn(x) g€ 9(5) —g(z)
-3 =

holds for anyz € [a, b], £ €[a,b]\ {x} andn € N. Letting { — = we get

x):ig,;(x)gg/(x) for z€[a,b)\ D and neN.

Since g},(z) >0 for z € [a,b]\ D and k €N, the sequencd s, (z)} is bounded
and nondecreasing for eacete [a,b] \ D. Thus, for everyz € [a,b] \ D there ex-
ists a finite limit

lim s, (x) =3 gh(x) < g'(x), (2.5.16)

n—oo

i.e., the serie$ "~ | g.(z) converges for almost alt € [a, b].
b) On the other hand, for evele N there exists:, such that
1

?.

Since bothg and s,,, are nondecreasing dn, b], it follows that

0 <g(b) = 5n,(b) <

1
2!

0<g(@) —sn (@)= > grlx)< Y gu(d)=g(b) — s, (b) <
and hence also
0< Z (9(z) = s, (2)) < Z % =1 for x€la,bl.
(=1 (=1

Repeating the considerations from part a) with} replaced by{ g(z) — s,,(z)}
we deduce that the seri€s.,”, (¢'(z)—s),(x)) is convergent for almost all
x € [a, b]. In particular,

Jim (¢'(x) — s, (x))) =0 foralmostall z € [a, b).
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Naturally, this could not be true if the inequality i6.5.16 was strict. Conse-
quently,

F@)=(f(2) = f(@) =¢'(x)=)_ gi()

> (fulx) —f(a))’:Zf,g(x) for almost all z € [a, b).

k=1

This completes the proof. O
2.5.5 Theorem.Every step function ofu, b] is singular on[a, b].

Proof. Let f be a step function offa, b]. If f € S([a,b]), the statement of the
theorem is obvious. Otherwis¢, has the formZ.5.3 and £.5.2) holds. Define

0 if r=a, 0 if z<b,
va(x) = al () =
Co

if 2>a, ld| if z=0b,

and
0 if x<sy,

vg(z) = |di| if x=sy, and ke N.
|Ck|+|dk| if T > Sk

All these functions are nondecreasing and],
vl (x)=0 for x#a, wv(x)=0 for x#0,
v, () =0 for keN and z # s.

Moreover, by 2.5.2) we have
Z!vk Z |ck| +]di]) < oo forz € a, b).
k=1 k=1

Thus, the seried "~ vi(z) is absolutely convergent for eache [a,b] and the
function

+ka —I—Ub

is well defined for eacl: € [a, b]. In view of Theoren?.5.4 we have

+ka z)+uvy(x)=0 for almost allz € [a, b].
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Now, since

f@) = fy)| _ o) —v(y)
| < |
r—y o r—y

holds for all z, y € [a, b] such thatz # y, it follows easily thatf’(z) =0 for al-
most allz € [a, b]. O

2.5.6 Remark. A well-known example of a continuous, nondecreasing and sir
gular function is the so-called Cantor function; see ¢1g], [pages 14-15.

Next two assertions are interesting in the context of ReratKl.8and Lem-
ma2.1.19

2.5.7 Proposition. Let f be a step function oifu, b] and let g € BV([a,b]) be
continuous ora, b]. Thenvar’(f + g) =var® f +var® g.

Proof. We will verify that the assumptions of Lemr2zal.19%are satisfied.
Let f be given as in Definitio2.5.2 where K =N and D = {s;} is the set
of discontinuity points off in (a,b). By Theoreni2.5.3 we have

AT @)+ (1A F(s0)| + AT f(sk)]) + |A™ f(b)] =var, f < .

Let ¢ >0 be given and let» € N be such that
" 3
AFF(@)] D (1A F(se)+ AT F(su)]) + A7 F ()] > var, |~ o
k=1

Let zg, x1,...,2,, x,1 De such that
{sitrei={xr}iey, anda=xo <z <- - <z, <Tpy1 =0
Further, choose points;, b;, k€{0,1,...,n,n+ 1}, in such a way that

a=xp=ayg<by<a;<x1<b<---<a,<T,<b,<api1<Tpy1=0bn11=0,

7(0) = flon) | = 1A flan) | = o= forke {0,100 n}
and

|f(zr) — flar)| > |A™ f(zg)] — forke{l,...,n,n+1}.

4(n+2)

Furthermore, as,(x) =var? g is continuous orja, b] by Corollary2.3.4 we can
also assume that

£
Ug(bk)—Ug(ak)<m for a"k’E{O,,TL—}—l}
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To summarize, we have

n+1
D varkg<e
k=0
and
n+1 n+1

Zvarb’“f>z |f(br) = fxi)| + | f(zx) — flax)])

n+1

>3 (18 ol +187 )] - o5y ) > vart £

Thus, the assumptions of Lemifidl.19and the proof is complete. O

2.6 Jordan decomposition of a function of bounded
variation

2.6.1 Theorem.For each f € BV([a,b]) there are f; € BV([a,b]) N C([a,b])

and f, € B([a, b]) such thatf = f, + f, on [a, b].

If f=fi+ f, is another decomposition Wltjﬁl € C([a, b)) NBV([a,b]) and
f>€B([a, b)), then the functiong; — f; and f, — f» are constant orja, b].

Proof. a) Let D be the set of all discontinuity points gf in the open interval
(a,b). The setD contains at most countably many points, i.e.,

D={spe(a,b): ke K}, whereK ={1,...,m} forsomemeNor K =N.
Define
fa(x) = f(a) + AT f(a) X(ap ()
+ 3 (AT F(58) Xst) () + A7 F(58) X[t (2)) (2.6.1)

keK

+ATF(b) xp(x) for z€a,b).
By Corollary2.3.8we have

AT F(@)] 4+ (IAT ()| +1A7 f(sk)]) + A7 f(b) < var) f < oo

keK

and thusf, € B([a, b]). Further, usingZ.5.9 we get

A* fo(t) = AT f(t) and A fo(s) = A" f(s) }
(2.6.2)
for t€la,b) and s € (a,b].
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Hence

(ftH)=fo(t4)) = (f(O) = fot)) = AT f(£)=AT f2(t) =0 for t € [a, b)

and

(f(s)=fa(s)) = (f(s=)=fa(s—)) = A7 f(5)=AT fa(s) =0 for s € (a, b].
Thus, the functionf,; = f — f» is continuous ona, b] and f = f; + f> on [a, b].
b) Let f=f,+ f, where f; € C([a,b]) NBV([a,b]) and f, € B([a,b]). Then

the relations

0=A*fi(t) = (f(t+H)—falt+)) = (f(£)—fal1)) = AT f (1) = AT fo(t)

and
0=A"fi(s) = (f(5)=fa(s)) = (f(s=)=fa(s)) = A7 [(s)=A" fa(s)
hold for all ¢ € [a,b) and s € (a, b]. Using 2.6.2), we see that
At fo(t)=ATfo()=ATf(t)  fortea,b)
and (2.6.3)
A fo(s)=Afo(s)=A"f(s)  forse(a,b].

Since f2 is a step function whose discontinuities are containedinthere
exist real numbers, ¢, d and sequenceg;,}, {d)} such that

Fol) = 42 X(aar(@) + Y (3 X1s0.1(2) + i Xt () )+ d i ()
keK
for all x € [a, b], where

Z(’Ek’ + |gk’) <00

keK
AT fy(sp)=¢ forkeN, A*fy(a)=2¢
A~ fy(sp)=dy, forkeN, A~ f(b)=

Using 2.6.9, we have
Fa(@) =T+ AT f(a) X(ap () + A7 F(b) x5 (@)
(AT F58) X (@) + A F(51) Xise1 ()

kekK

=(c— f(a)) + fa(x) for z€la,bl.
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It follows that on the whole intervala, 0], f;—fQ is equal to the constant
»:=c— f(a). Hence also

fil@) = filz) = (f(z) = fo(2)) = (f (@) = folx))

= fo(z) — fo(x) =35 forzela,b]. 0

2.6.2 Remark. By Theorem2.6.1 every function of bounded variation can be
decomposed into the sum of a continuous function and a step function. St
a decomposition is called th#ordan decompositiolof a function of bounded
variation.

2.6.3 Definition. Every functionf, assigned tof by Theoren?.6.1is called the
jump partof the function f. The differencef — f; is called thecontinuous part
of the function f. The jump part and the continuous part of the functibrare
usually denoted by B and f €, respectively.

2.6.4 ExercisesLet {f,,} be a sequence of functions with bounded variations o
[a,b] and let{f°} and {fB} be the sequences of continuous and jump parts
{fn}, respectively.

(i) Showthat vaff,=var’fC+var’fB foreachneN.

(i) Prove thatlim var’ f, =0 if and only if

lim (var’ £°) = lim (var’ fB)=0.

For dealing with step functions, it is useful to know that every step functio
may be approximated in the norm of the sp&3é([a, b]) by finite step functions.
This is the content of the following lemma, which will be particularly useful in
Chapter 6.

2.6.5 Lemma. For each step functionf € B([a,b]) there is a sequence
{fn} CS([a,b]) of finite step functions such that

nh_{go If = fallBv = 0. (2.6.4)

Proof. Let f € B([a,b]). Ifthe setD of its discontinuity points in(a, b) is finite,
then f € S([a, b]) and the assertion of the lemma is obvious. Therefore assur
that D = {s;} is a non-repeating infinite sequence. By Theotef6an Corol-
lary2.3.§ the series

o0

Z <A+f(3k) X (5,8 () + A7 f(Sk) X[se .t (96)) (2.6.5)

k=1
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is absolutely convergent far € [a, b]. Therefore (cf.2.5.9 and £.5.9))
f(@) = fla) + AT f(a) X(ap (2)
+y (A+f(3k) X(s,01 (€) + A7 f(s) X[sk,b}(l“)> (2.6.6)

k=1
+ A7 f(b) xp(z) forzela,b].
Define

fu(@) = f(a) + AT f(a) X (@) (7)
+) (A+f(5k> X(sit () + A7 f(sn) X[sk,b}(fﬁ)) (2.6.7)
k=1

+ A7 f(b) xp(x) forzela,b] andneN.

Then f,, € S([a, b]) for eachn € N. Moreover, for eachn € N we have

f(a) = fu(a), (2.6.8)
and
f(x)=fulz) :Z (A+f(3k) X(Skyb}(x) + A7 f(sk) X[Sk,b](x)) forz e [av b]'
k=n+1
Now, by Theoren®.5.3we have
varh(f = f) =Y (1A f(se)l + AT f(si)])- (2.6.9)
k=n+1

Since the right hand side c2.6.9 is the remainder of an absolutely convergen
series, it converges to asn — oco. This means thatlim,, .., var’(f — f,) =0
and hence4.6.9 holds due t02.6.§. This completes the proof. O

2.7 Pointwise convergence

2.7.1 Example.Consider again the functions

0 if0<z<i,
for neN

fo(z)= - sin <§> if L<o<2

and

0 if =0,
fw)= { 2 sin <E> if x>0.
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From Examplé.1.15we know that vag f,, < oo for eachn € N. It can be easily
verified that{ f,,} converges tof uniformly on [0, 2], while by Example2.1.1()
f has unbounded variation df, 2].

The previous example shows that the limit of bounded variation functions ne
not have bounded variation even if the convergence is uniform. On the other ha
the following theorem shows that uniform boundedness of variationf, db-
gether with the pointwise convergenge — f already guarantee that the limit
function f has bounded variation. (Notice that, using the argument from Exar
ple2.1.1Q it is possible to show that the sequengcg,} from Examples2.1.15
and2.7.1satisfieslim,, ., varg f, = oo, and thereforeup,,. var? f,, = 0c.)

2.7.2 Theorem.Let f:[a,b] — R be given and lef{ f,,} be a sequence of func-
tions such that

var’f, <x<oo for n€N, and lim f,(z)=f(z) forz¢ca,b].

n—oo

Thenvar® f < .

Proof. Given an arbitrary € 2 a, b], we have

V(f,a) = lim V(f, o) <.

n—oo

Consequently, varf < . O
2.7.3 Exercise.Let

-k _ 1
2 if z = ;=7 for somek € N,

fz)=

0 otherwise

Prove thatf € BV ([0, 1]).

We now formulate and prove Helly's Choice Theorem, which will be use
ful e.g. in the proof of compactness of certain operators defined on the sp;
BV([a,b]). The theorem states that every sequence of functions with uniform
bounded variations has a subsequence which is pointwise convergent to a func
of bounded variation.

2.7.4 Theorem(HELLY’S CHOICE THEOREM). Let {f,} C BV([a,b]), »¥€R,
|fn(a)| < 3¢ andvar® f,, < » forall n e N.

Then there exist a functiofic BV ([a, b]) and a subsequende;.} of N such
that

|f(a)] <3, var’f<s and klim fo, ()= f(x) for xz€]la,b].
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To prove Theorer.7.Zwe need the following two assertions.

Assertion 1. Let |f,(z)|<M < oo for all x€[a,b] and all n € N. Then for
any countable subseP of [a,b], there is a subsequendg:,} of N such that
klim fn, (p) exists and is finite for alp € P.

Proof. Let P ={p:}. We have|f,, (pr)| < M < oo forall n, k € N. Hence, by the
Bolzano-Weierstrass theorem, there is a sequgmge : k € N} and a number
¢1 € R such that

Jim fo (p1) = a1
Similarly, there are{f,, , : k € N} C{f,,, : k €N} andg, € R such that
Jim fo,,(p2) =2 €R, and lim f,, ,(p1) =g €R.
In this way, for eachj € {2,3,...} we can find a sequence
{fun, : kEN}C{fn,, . kEN}
and a numbet; € R such that
’}erolo S (Pe)=qeeR foralle{l,... j}.
Put f,,, = fn,, for k€ N. Then
Jim fo (pj) =¢; €R - forjeN. m

Assertion 2. Let functions f,,, n€N, be nondecreasing ofja,b] and let
M €10, 00) be such that|f,||.. < M for all n € N. Then there is a subsequence
{n)} of N and a nondecreasing functiofi: [a, b] — R such that

klim fn ()= f(x) for x€]la,b].

Proof. Let P=(QnN (a,b)) U{a}U{b} be the set of all rational numbers from
the open intervala, b) together with the pointa, . Then P is countable and
la,b] \ P C (a,b). By Assertion 1 there is a subsequereg } C N and a function
¢: P— R such that

lim f,, (p)=w(p) for peP.

k—o0

Obviously, p(p') < @(p") if p/, p” € P andp’ <p”. Furthermore, define

p(x)= sup @(p) forze (a,b)\P.

pePNa,x)
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The functiony is nondecreasing ofu, b| and

p(z)= lim ¢(p) forze€(a,b)\ P.
"per

We will show that

lim f,, (o) = ¢ (o) (2.7.1)

k—o0

wheneverz, € (a, b) andyp is continuous aty. Indeed, assume that € (a,b) is
a continuity point ofp and let an arbitrary > 0 be given. Then thereis@ >0
such that

o) —e<p(x) <p(zg)+e forallx e (xg— e, x0+0c).

Further, let us choose € PN (zg — 4, o) andr” € PN (xg, zo + d-) arbitrarily.
Then

p(x0) —e < p(r') < (o) <op(r") < (o) +e.
Moreover, there is &. such that
o(r')—e< fu, (r) <o) +e

and
o(r")—e< fu, (r") < (") +e

for all £ > k.. Hence, for eactt > k. we have
p(r0) —2e <p(r') — e < fu, (r') < fu, (20)
< [ () <o(r") +e < p(xg) + 2€.

Thus, €.7.7) is true.
To summarize, we have proved that/if is the set of all discontinuity points
of the functiony in (a,b), then

lim f,, (z)=¢(z) for x€la,b]\D.

k—o0

By Theorem?2.3.2, the setD is countable. Thus, we can use once more Asse
tion 1 to prove that there is a subsequence

{fnkz leN}yC{f,, keN}
of {f.,} which has a limity’(z) € R for eachz € D. Now, define

o(x), if z€la,b]\D,
f(x):{ P(x), if xeD.



lim f,, (v)=f(x) forzela,b,

and f is nondecreasing oja, b] because it is the pointwise limit of a sequence o
nondecreasing functions. The proof of Assertion 2 is complete. O
Proof of Theorem2.7.4

For givenn e N andx € [a, ], let

gn(x)=varg f, and h,(r)=gn(z) = fu(z).

For eachn € N we have f,, = g,—h,, and the functions;,,, h, with neN are
nondecreasing ofu, b] (see Exercis@.1.27). Furthermore,

lgnlloc <varg fo<s¢ and |hulloc <[ fulloo + | gnlloc <3¢ forneN.

By Assertion 2, there exist functions h € BV([a, b]) and a sequencén,} C N
such that

Glloo < 52, ||Bllse <222, vartg < s, var’h <2 s,
a a

klim gn,(x)=g(x) and klim b, (x)=h(x) forall z€la,b].
Denotef =g —h. Then

lin fo, (2) = i (g (2) = b, (1)) = g() — () = f(2)

k—o0

for all x € [a,b]. Obviously, |f(a)| <. Finally, Theorem2.7.2 implies that
var® f < ». This completes the proof. o

2.8 Variation on elementary sets

First, motivated by Definition 6.1 fron#H], we introduce the definition of the va-
riation over arbitrary intervals.

2.8.1 Definition. Let J be a bounded interval iiR. We say that a finite set
a={ag,a1,..., 0} CJ

is ageneralized division of if ap<a; < - <ay(q).
The set of all generalized divisions of the intervals denoted byz*(.J).
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Let f:[a,b] — R and letJ be an arbitrary subinterval d, b]. Then we de-
fine the variation off on J by

v(a)
var(f, J) = sup { S 1f(ay) = flag)l sae 7 () } .

We say thatf is of bounded variation o if var (f, J) < co. In such a case, we
write f € BV(J). We also set va(f, ) =0 and varf, [c]) =0 for c € [a, D].

2.8.2 Remark. It is easy to see that Definitic¢h8.1coincides with the definition
of the variation in the sense of Definiticghl.1if J is a compact interval; that
is, for f:[a,b] =R and J =|c, d] C [a,b], we have vaff, J)=vardf. For this
reason, in the case of a compact intervalwe may always restrict ourselves to
divisions containing the endpoints df

Moreover, it is easy to see that.ifis a bounded interval anfie BV(.J), then
f is bounded on/.

The next proposition follows immediately from Definiti@ns. 1.

2.8.3 Proposition. Let f:[a,b] — R and let.J; and J, be subintervals ofa, b]
such thatJ, C J;. Then var(f, J;) <var(f, J;).

In particular, if J is a subinterval ofla, ] and f € BV(J), then f e BV([)
for every intervall C J.

The next theorem presents formulas for the variation over half-open and oy
intervals.

2.8.4 Theorem.Let f:[a,b] =R andc, d € [a, b], with c < d.
(i) If feBV([c,d)), then

var(f, e, d)) = Jim, var;™f = s var f.
€le,

(i) If feBV((c,d]), then

var(f, (c,d]) = 51—igl+ vard ;f = tSl(lIZl] varlf.
€(c,

(iii) If feBV((c,d)), then

d—0

var(f,(c,d)) = al_i)r& var, § f.
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Proof. We prove only the assertion (i); the other ones follow in a similar way.
For a fixedd >0, consider a divisiono = {og, a1, ..., )} Of [c,d—0].
Of course,a is also a generalized division ¢f, d) and hence

v(e)
Z () = flag) < var(f, [e,d)).

Thus, taking the supremum over all divisions|efd — J], we get
vard= f <var(f, [c,d)).
Since this inequality holds for every> 0, it follows that

M := sup var' f = lim var?°f <var(f, [c,d)).
tele,d) 6—0+
Now, assume thad/ < var(f, [c,d)). Then, fore =var(f, [c,d)) — M, there ex-
ists a generalized divisioor = {a, a1, . . ., (o } Of [c,d) such that

v(ax)
M =var(f,[e,d) —e <Y [ f(a;) = flaj1)| <vare f <M,
j=1

a contradiction. This completes the proof of (i). O

Dealing with functions taking values in a metric space, Chistyakov presents
[21] an extensive study of the properties of the variation over subsets of the r
line. Here, we call the reader’s attention to a particular result Z§eCorollary
4.7) connecting the variation over arbitrary intervals and the usual variation o\
a compact interval. This will be the content of Theorérf.6 whose proof is
included for the sake of completeness. To this aim, the next lemma will be usef

2.8.5 Lemma.Let f:[a,b] =R, a<c<d<b and f € BV((c¢,d)). Then both
the limits f(c+) and f(d—) exist.

Proof. Let ¢ >0 and an increasing sequengg, } C (¢, d) tending tod be given.
By Theorem2.8.4(iii) there is > 0 such that

0<var(f,(c,d) —var:if <e.

Chooseny €N in such a way that,, >d — ¢ for every n >nqy. Therefore, for
n>m >ng, we have

|f(tn) = ftm)| <vary f=varr,f —var, f

<var(f, (c,d)) —var: S f <e,

wherefrom the existence of the limjt(d—) follows immediately.
The existence of the limif (c+) can be proved analogously. O
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2.8.6 Theorem.Let f:[a,b] =R anda<c<d<b.
(i) If f€BV([c,d)), then f(d—) exists and
var’f =var(f,[c,d)) +|A f(d)].

(i) If feBV((c,d]), then f(c+) exists and
varf =var(f, (c,d]) + A" f(c)].

(ii) If f€BV((c,d)), then both the limitsf(c+) and f(d—) exist and
vary f=var(f, (c,d)) +[A" f(c)| + A7 f(d)].

Proof. The existence of all the limits follows from Lemn2a8.5
Assume thatf eBV([c,d)). Let >0 and

a={ap,a1,...,an1} €D, d]
be given. We can choosgc [c, d] in such a way that
am<&<d and |f(d—)— f(&)] <e.

Consequently,

m+1

Z [flay) = flaj)]

<D (ey) = flag-)| +1£(€) = flam)]

+[f(d=) = F(OI+ AT f(d)]
<varéf+e+|Af(d)| <var(f, [c,d)) +e+|Af(d)].

<.
Il
-

As a € D[c,d] ande > 0 were chosen arbitrarily, we conclude that
vard f <var(f,[c,d)) + |A™ f(d)|. (2.8.1)
On the other hand, for any> 0 we have
1f(d) — f(d—¢)| <vard ;f=varlf —vari=f.
Hence, letting) — 0+ we get

A”F(d)] S vartf — Jim vart=f =varlf —var(f,[c,d),
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wherefrom we conclude that
vard f > var(f, ¢, d)) + |A™ f(d)].
This completes the proof of ().
Similarly, we can prove the assertions (ii) and (iii). O

2.8.7 Corollary. Let f:[a,b] =R and ¢, d € [a, b], with ¢ < d. Then the follow-
ing assertions are equivalent:

(i) feBV(led]),
(i) feBV((c,d]),
(i) feBV([e,d)),
(iv) feBV((c,d)).
2.8.8 Remark. In view of Theorem?2.8.6 we can also observe that for every
f:la,b] =R andce€ [a, b] we have

Jim varZtif = |A” f(e) + AT f(o)]

provided the one-sided limits exist at the poin{see Proposition 1.2.8 irbE)).
Furthermore, by Theore® 8.6 if f € BV([a,b]) N C([a,b]), then

var(f, [e,d)) = var(f, (c.d)) =var(f, (c,d]) =var!f
for ¢, d € [a,b] such thatc < d.

We now extend the notion of the variation on intervals to elementary sets.

2.8.9 Definition. Let £ C R be bounded. We say thdi is anelementary sei
it is a finite union of intervals.

A collection of intervals{J;: k=1,..., N} is called aminimal decomposi-
tionof £ if £ = Ufle Ji and the union/J, U J, is not an interval whenever# (.

If SCR, then&(S) stands for the set of all elementary subsets of

Note that the minimal decomposition of an elementary set is uniquely d
termined. Moreover, the intervals of such decomposition are pairwise disjoil
Having this in mind, we define the variation over elementary sets as follows.

2.8.10 Definition. Given a functionf : [a, b] — R and an elementary subsgtof
la, b], the variation off over E is

N
var(f, E) = Zvar(f, Jr),
k=1

where{J,:k=1,..., N} is the minimal decomposition of.
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It is worth highlighting that if f € BV ([a, b]) N C(]a, b]), then va(f, -) de-
fines a finitely additive measure d@{|a, b]). More precisely, we have

var(f, E)<var’f forany Ec&([a,b])

and
var(f, By U Ey) =var(f, Ey) +var(f, Es)

wheneverE;, E; € E([a,b]) and E; N By =1).

2.8.11 Remark.Let us note that e.g. id[3] Definition 2.8.1is applied also to
arbitrary subset# of [a, b]. Unfortunately, such a definition is not convenient for
our purposes, as the variation would lose the additivity property even for cont
uous functions. Indeed, let<c<d<b and £ =[a,c]U|[d,b]. Then, according
to such a definition we would have

var(f, E) >vare f +-var’f + | f(d) — f(c)| > var(f, [a,c]) +var(f,[d,b])

wheneverf(d) # f(c). This is why for elementary subsets fof, b] we define the
variation in a way different from Gordon'’s i@ §].
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Chapter 3

Absolutely continuous functions

A special case of functions of bounded variation are absolutely continuous fut
tions, which are closely related to the Lebesgue integration theory and which
well-known from CaratBodory’s theory of ordinary differential equations. The
integrals contained in this chapter are the Lebesgue ones.

3.1 Definition and basic properties

3.1.1 Definition. A function f: [a,b] — R is absolutely continuousn the inter-
val [a, b] if for every £ > 0 there exists) > 0 such that

m

B = floy)| <e (3.1.1)
j=1
holds for every finite set of interval§c;, 5;]: j =1,2,, ..., m} satisfying

a<o <fi1<ay<Bo< < B <y, <G < b
and

m
26~ y)

The set of functions which are absolutely continuous[erb] is denoted by
AC([a, b]).

(3.1.2)

3.1.2 Exercise.Prove the statement:

Every Lipschitz function on the intervak, b (see Exercis@.1.8 (iv)) is ab-
solutely continuous on this interval. In particular, if the derivatiyé of the
function f is continuous orja, b] %, then f is absolutely continuous ofa, b].

3.1.3 Theorem.If f is absolutely continuous oja, b] and [c, d] C [a, b], then f
is absolutely continuous ofe, d], too.

If a<c<b and f is absolutely continuous ofu, c] and [c,b], then f is
absolutely continuous ofa, b|.

1 More precisely,f’ is continuous on(a, b) and there are finite Iimits”(a+):flim+f’(t),

f1(o=)= lim f'(t) and f'(a)=f"(a+), f'(b)=F"(b=).

61
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Proof. The first statement is evident.

So, assume € (a,b), f € ACla,c] and f € AC|c,b] and lete >0 be given.
We can choosé > 0 such that

D11 (8) = flag)l <

holds for every system of intervalga;, 3;]: j=1,2,,...,m} such that

a<on <[ <ap<fo..<BniLap<Bn<c
and

>

j=1

(3.1.3)

Simultaneously

p
g
D_1F0) = Fl)l <5
7=1
holds for every system of intervalgy;,0,]: j=1,...,p} such that

p
C< <0< <Oy <O <7<, <b and Y (d;—7;) <4 (3.1.4)
j=1

Now, consider a system of interva{$a;, d;]: j=1,2,,...,n} such that
o< <di1<ay<dy...<dp_1<a,<d,<b and Z(d]—a])<(5 (315)
j=1

We may assume thatdoes not belong to any of the intervdls;, d;), j=1,...,n

(If we had c € (ax,dy) for somek e {1,...,n}, we would divide the interval
lak, di] into the union|ay, ] U|c, di] and the new system would again satisfy
(3.1.9.) Therefore we can divide the given systefju;, d;]:j=1,2,,...,n}
into the systems

{loy, 8;]:5=1,2,,....,m} and {[v;,0;]:j=1,2,,...,p}

satisfying 8.1.9 and 8.1.9. Thus, the sunp _7_, [ f(d;) — f(a;)| can be divided
into two sums which are both less th@nAs aresult,

Z’f flag)| <e.

This completes the proof. O
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3.1.4 Example.By Exercise3.1.2every function which has a continuous deriv-
ative on(a, b) is absolutely continuous ofa, b]. A simple example of absolutely
continuous function orja, b] which does not have a continuous derivative or
(a, b) is the function

+0b

r—a for z € [a,

fz)=
b—x forxe[aT—i_b,b},

]7

which is obviously absolutely continuous on the intervials®®] and [4£2,b].
By Theorem3.1.3this means thayf is absolutely continuous also da, b].

3.1.5 Remark.If f:[a,b] — R, KCN and if for everys > 0 there exists) > 0
such that

> IFB) — flay) <e (3.1.6)

jeK
holds for every (not necessarily finite) system of intervals
{loy, Bl Cla, b:j €K}
satisfying
(i, B)) N (a, Be) =0 for j#k and > (8, —a;) <3, (3.1.7)
JjeEK
then the functionf : [a,b] — R is, of course, absolutely continuous @nb|.

The following lemma shows that also the converse implication holds.

3.1.6 Lemma.lf f e AC(]a,b]), then for every > 0 there exists) > 0 such that
the inequality(3.1.6 holds for any (possibly infinite) system

{[O‘jvﬁj] - [avb] :J EK}
of subintervals of the intervdk, b] satisfying(3.1.7).

Proof. Assume f € AC([a, b]). Obviously, it is sufficient to prove the statement
of the lemma for the case whéf=N. Let ¢ > 0 be given and leb > 0 be deter-
mined by Definitiori3.1.1for /2 instead ofec. Let {[«;, 5;] : j € N} be a system
of subintervals ina, b] satisfying 8.1.7). Then for everym € N we have

m

> (8;—a;) <4, andthus ; [£(6) = fleg) < g

J=1
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Hence
S 13~ (o)1= Jim 315~ (ol <5 <=

This completes the proof. O

3.1.7 Theorem.Every function which is absolutely continuous on an interva
la, b] has bounded variation on this interval.

Proof. Let f € AC([a, b]). Choosed >0 such that

m

> 1f(dy) = flay)l <1

j=1

holds for every finite system of interval§a;,d;]:j=1,2,,...,m} satisfying

(3.1.9). Next, choose a divisiofzg, x1, . .., zx} Of [a,b] such that
0<£Ci—l'i,1<5 foreveryizl,...,k’.

Then for everyi=1,..., k and every divisiomx' = {aj, af,...,al, } of the in-

terval [z;_1, x;], we have

m;

Z(aé —al_y)=x;— w1 <6,

j=1
and consequently (by Theoreiml.14)

k k:
var, f=> var’ f=Y" sup V(fa')<k<oo.
i=1 i—1 @ €D [ri1,2i] O

3.1.8 Theorem.If f, g€ AC([a,b]), then
[fl, f+g, [g, max{f, g}, min{f, g} € AC([a,b]).

If, in addition, | £(z)] > 0 on [a, b], then% € AC([a, B)).
Proof. Let f, g € AC([a, b)).

a) |f(x) < |f(x) - ()] + | /()] holds for anyz, y € [a, . Hence

[f(@) = fWI = [1f (@) =] forall z,yé€a,b]

and consequently



KURZWEIL-STIELTJES INTEGRAL 65

D 7B =17 @)l < D2 1F(5) = Flag)]

This shows thatf| € AC([a, b]).
b) The statementg + g € AC([a,b]) and f g € AC([a,b]) follow from the in-
equalities

[(f(z)+g(x) = (f(y) + g < |f(z) = fF(y)|+]g(x) — g(y)]

and

|f(z) g(x) = f(y) 9| <N f I g(x) — g()| + gl | f(2) = f(y)l-

c) Foranyz € [a,b] we have

max{/(2), ()} = 5 (1) + o(2) + 1/ (2) — (2)])

2
and
min{f(x),0(x)} = 5 (F(2) + g(a) ~ 1 /(x) g()]).
Therefore

max{f,g} € AC([a,b]) and min{f, g} € AC([a,b])

holds as a consequence of a) and b).

d) Finally, if, in addition, |f| >0 on [a,b], then there existg.>0 such that
|f(z)| > p holds forx € [a, b]. Hence

L1 @)= 1)
flx)  fly)!l— 11

. . 1
is true for allz, y € [a, b]. Now, it is easy to show tha} € AC([a, b)). O

We will close this section by stating and proving two further interesting proy
erties of absolutely continuous functions.

3.1.9 Lemma. Let f € AC([a,b]) and v(xz)=var? f for x €a,b]. Thenwv is
also absolutely continuous dn, b].

Proof. Assume that > 0 is given and let > 0 be such that
“ g
D1 = fay)] <5
j=1

is true for every system of intervalga;, d;]: j=1,2,,...,m} satisfying 3.1.2).
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Let [oj, 3;], j=1,...,n, be an arbitrary system of intervals satisfyiig1(.3
in which m=n. Foranyje{1,...,m}, let &/ ={ag,aq,...,0/,_} be an arbi-
trary division of the intervalc;, ;). Then

n

ii (oz{ _04571) :Z [ﬁ] _Oéj:| <0,

j=1 i=1 J=1

and hence

n

ZV(f,aj)ZZZ‘f(af)—f(al?;l” <§'

j=1 i=1
This implies that

n

Z( (Bj) —v Oé] Zvarﬂﬂf_z< sup V(f,aj)>§g<g,

j=1 j=1 d€Da;,B]
This completes the proof of the lemma. O

3.1.10 Corollary. A function f : [a,b] —R is absolutely continuous on the inter-
val [a,b] if and only if there exist functiong; and f, which are nondecreas-
ing and absolutely continuous dn, b] and such thatf = f; — f, on the interval
a, b].

Proof. a) Let f = f; — f2 on [a,b], where f;, f, are absolutely continuous and
nondecreasing oifu, b]. Then by Theoren8.1.8 f is absolutely continuous on
[a, ], toO.

b) Let f € AC([a,b]). By Theorems3.1.7and2.1.21there exist such func-
tions fi, fo nondecreasing ora,b| that f = f; — f4. By the proof of Theo-
rem2.1.21we can set

fi(z)=varg f and fa(x) = fi(x) — f(x) forx€a,b].

By Theorem3.1.§ it is sufficient to prove thatf; is absolutely continuous on
[a, b]. But that follows from Lemma.1.9 O

3.2 Absolutely continuous functions and Lebesgue
integral

Let us recall that by Theorer®.4.2 every function of bounded variation on an
interval [a, b] has a bounded derivativé(x) fora.e.z € [a, b|. By TheorenB3.1.7
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every function which is absolutely continuous fand] thus has the same property.
In the remaining part of this chapter, we will recall some other basic properti
of the derivatives of absolutely continuous functions and the connection betwe
absolute continuity and indefinite Lebesgue integral. In the cases when the prc
or their parts are based on the theory of measure in the extent beyond this text
proofs (or their parts) are not included and we only refer to accessible literatu
The integral in this section is supposed to be the Lebesgue one.

By the next theorem the derivatives of the functions of bounded variation (a
thus all the more so of absolutely continuous functions) are Lebesgue integra
Its proof substantially uses a range of knowledge from the theory of measure :
Lebesgue integration which will not fit in this text. The full proof can be found ir
relevant literature (see e.g. Theorem 4.1(Vig or Theorem 6.2.9 in111]).

3.2.1 Theorem.If a function f:[a,b] — R has a bounded variation ofu, b],
then its derivativef’ is Lebesgue integrable d, b].
If f is also nondecreasing ofa, b|, then

0< / f(x) dw < £(5) — F(a). (3:2.1)

The next statement concerns the differentiation of indefinite integrals of int
grable functions. For the proof see, e.g. Theorem 4.123hdqr Theorem 6.3.1
in [111]. Let us recall (cf. Conventions and Notation (xi)) tHat([a, b]) stands
for the space of all real functions that are Lebesgue integrable,éh

3.2.2 Theorem.lf geL'([a,b]) and

f(x):/mg(t) dt for z€|a,b],

then f is absolutely continuous ofa, ] and f'(z) = g(x) for a.e. z € [a, b].

Let a functiong € L'([a, b]) be given. By Theorerfi.2.2its indefinite Lebes-
gue integralf is absolutely continuous dja, b] and f'= g a.e. on|a, b]. We want
to show thatf is absolutely continuous ofa, b] if and only if f is the indefinite
integral of some Lebesgue integrable function. The following lemma known
Riesz’s lemma is essential for the proof of such a statement. For the proof see
Lemma 7.5 in/Lq].

3.2.3 Lemma(RIESZ RISING SUN LEMMA). Let f € Cla, b] and
E={z€(a,b):thereis ¢ € (z,b] such thatf (&) > f(xz)}.

Then the sefr is open and it is a union of at most countable system of disjoir
open intervals(ay, di) while f(ax) < f(dy) holds for any of them.



68

3.2.4 Lemma.lf f € AC([a,b]) is nondecreasing ofu, b] and f’(x) =0 for a.e.
x € [a,b], then f is constant ona, b].

Proof. Due to its monotonicity, the functiorf maps the intervala,b] on the
interval [f(a), f(b)]. We will prove thatf(a) = f(b).

Let e >0 be given and lety >0 be as in Lemm&.1.6 Let Z be the set
of all x € [a,b] for which f'(x)=0 holds. Its complementa,b]\ Z has zero
measure (([a,b] \ Z) =0) by assumption. This means that there exists a finite c
countable systenf(a;, 3;) : j € K} satisfying 8.1.7) and

[a,b]\ Z C U(@j,ﬁj)-

The imagef([a,b] \ Z) of the set|a, b] \ Z is thus contained in the union of open
intervals {(f(«;), f(53;)): 7 €K}. Since 3.1.6 holds by LemmaB.1.6 the set
f([a,b]\ Z) has zero measure, i.e.

u(f([a.b)\ 2)) =0. (3.2.2)
Now, letz € Z. Then f'(x) =0 and thus there ig\ > 0 such that
M <e foreveryt suchthatO < |t —z|<A.
— X
This implies

cex—f(x)<et— f(t) foreveryte (z,xz+A).

By Riesz’s lemmé3.2.3 which we apply to the functiom z — f(x) instead of
f(x), the setZ is thus contained in the union of a finite or countable system c
disjoint intervals{ (ax, dy)C[a, b] : k € K}, while

gag — f(ak) S 15 dk — f(dk), Z@f(dk) — f(ak) S 15 (dk — Cbk)

holds for everyk € K. Hence

Z [f(dy) = flar)] <e Z [di — ax] <e(b—a).

keK keK

Now we can already deduce that the ge¥) has also zero measure, i.e.

u(f(2))=0. (3.2.3)

By (3.2.2) and B.2.9) the interval|[f(a), f(b)]= f(Z)U (f([a,b] \ Z)) has zero
length, i.e., thanks to the monotonicity of, f(a)= f(x)= f(b) for every
z€ (a,b). O
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3.2.5 Theorem.A functionf : [a,b] — R is absolutely continuous dja, ] if and
only if

f(x)—f(a)—/xg(t) & for z€la,b) (3.2.4)

for some functiory € L' ([a, b]). Thenf’ =g a.e. on[a, b].

Proof. a) Letge L!([a,b]) and

f(x):f(a)+/xg(t) dt for x€la,b).

Then f is absolutely continuous ofa, b] and by Theorer3.2.2, f'=g¢ a.e. on
la, b].

b) First, assume the functiofic AC([a, b]) is nondecreasing ofu, b]. By The-
orems3.1.7and3.2.7, f' € L([a, b]). Set

h(x) :/I f'(t)dt and g(z)= f(x)—h(z) for x€la,b.

We will show that the functiorny is nondecreasing offu, b], too. By Theo-
rem3.2.1we have

9(y) —g(z)= (f(y) — h(y)) — (f(z) — h(z))
:(f(y)—f(x))—/ F(t)dt >0

for all pointsz, y € [a, b] such thatz <.

Moreover, by Theoreri.2.2the functionh is absolutely continuous ofa, b
andh’ = f" a.e. on[a, b]. Hence,y’=(f — h)' =0 a.e. onja, b]. By Lemma&3.2.24
the functiong is therefore constant ofa, b]. Thus we get

g(x) = f(x) ~ h(x) = f(a) ~ h(a) = f(a) for z&[a,b)],

f(x):f(a)+h(w):f(a)+/xf’(t) dt for z€a,b].

This means that3( 2.4 holds for every functionf € AC([a, b]) nondecreasing on
[a, b].
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In the general case of € AC([a, b]), by Corollary3.1.1() there exist func-
tions fi, f» absolutely continuous ofa, b], nondecreasing ofu, b] and such that
f=fi— fa on|a,b]. We thus have

o) = @)= o) = (Aila)+ [ fi )=+ [ i)
+/ f'(t)dt for x€la,bl
The proof has been completed. O

Next result is an extension of Theoréhl.5
3.2.6 Theorem.If f e AC([a,b]), then var® f = f |f/(t)] dt.

Proof. Putv(a) =0 andv(x)=var® f for x € [a,b]. Then, using Lemm#&.1.9
and Theoren3.2.5 we get

ve€ AC([a,b]) and v(z)= /w V'(t)dt for x € a,b].
In particular,

var’ f =v(b) = /b v'(t) dt.
Furthermore, by the proof of Theoreinl.2], we know thatv — f is nondecreas-
ing on [a,b]. Similarly, we can verify that» + f is nondecreasing ofu, b|, as

well. Sincev’ — f'>0 and v+ f' >0 almost everywhere inja, b], it follows
that | f/(¢)| <v/(t) for almost allt € [a, b] and thus

b
varzfz/ |f(t)] dt. (3.2.5)

On the other hand, for an arbitrary divisien of [a, b] we have

Z|/a F1(t) di| < Z/ ydt_/|f )| dt,

b
var, £ < [ I o),
which together withi3.2.5 completes the proof. O

3.2.7 Exercise.Prove the following assertion:
Let f € AC([a,b]) and letv be given as in the proof of Theoredn?.6& Then
v'(t)=|f'(t)| for almost allt € [a, b].
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3.3 Lebesgue decomposition of functions of boun-
ded variation

We know (see Theorerfd.6.1 and Remark2.6.2) that every function of boun-
ded variation ona, b] can be decomposed into a sum of a continuous functic
and a step function or into a difference of two functions nondecreasirig,oh
(see Theorer@.1.2]). Another option of decomposition of functions of bounded
variation is offered by the following theorem.

3.3.1 Theorem(LEBESGUEDECOMPOSITIONTHEOREM). For every function
1 €BV([a,b]), there exist an absolutely continuous functipff-, a singular con-
tinuous functionf S¢ and a step functiorf  such that

f=1"+F%€+f® onfa,b.

If f=/fi+ fo+ f3, where the functiory; is absolutely continuous ofa, b], the
function f, is singular and continuous ofa, b] and the functionf; is a step func-
tion on [a, b], then the functionsf*© — f,, f5¢— f, and f® — f; are constant
on [a, b].

Proof. a) By Theoren®.6.1there exists a step functiof® such that the function
f€=f— fB is continuous ona, b]. Furthermore,f’ € L!([a, b]) due to Theo-
rem3.2.1. Set

fAC(x):/xf’(t) dt and f5%z)=fC(z) - fA°(x) forx € la,b).

By Theorems2.5.5and3.2.2we have(f®)'=0 a.e. on[a,b] and (f#°)' = f’
a.e. on|a, b|, respectively. This means that

(FSO = —(f*) - (f®)'=0 ae.onla,b].

b) Let f = f1 + fo+ f3, where f; € AC([a,b]), f> is singular and continuous on
la,b] and f; € Bla, b]. By Theoreni2.6.1the differences

(fAC+fSC)—(f1+f2) and f®— f;

are constant offu, b]. Since

R4 4 fB=fit fot fo,

it means that there exists suelE R that

(FR+ 30— (it f)=fs—fB=c
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Hence

(fAC—fl):C—(fSC—f2) and (fAC—f1)/=O a.e. onfa, bl.

As both the functiong”© and f; are absolutely continuous on the inter{@lb),
it follows by Theoren8.2.5that the differencef A — £, is constant ora, b]. This
completes the proof. O

3.3.2 Definition. If f e BV([a,b]), then the functionf#<, or f5€ or fB from
Theoreni3.3.1is called theabsolutely continuous parbr thecontinuous singular
part, or thejump partof the function f, respectively. In addition, the surhSC¢ +
fB is called thesingular partof f and denoted by S'N®.

3.3.3 Exercise.Prove the following statement:
fAC fAC / f
holds for every functionf € BV([q, b]) and everyz € [a, b].

Next assertion is a useful addition to Theor&ra.1.

3.3.4 Theorem.If f € BV([a,b]) is nondecreasing offu, b], then the functions
A€, £5¢ and fB from Theoren®.3.1 are nondecreasing ofu, b], too.

Proof. Let f € BV([a,b]) be nondecreasing o, b] and let the functionsf A<,
13€ fB be assigned to the functiof by Theoreni3.3.1. Furthermore, lefs;.}
be the set of the points of discontinuity of the functiprand =, y be any pair of
points from|a, b] such thatr <y.

Since f is nondecreasing ofu, b|, we have

AT f(t)>0 and A™f(s)>0for t€[a,b), s€ (a,b],

and therefore

Ry = fBa)= > AT f(si)+ Y, ATf(s)>0

<8<y T<sp<y

The jump partf ® of the functionf is thus nondecreasing dn, b].

Let g be the continuous part of, i.e. g=f — fB. By Corollary2.3.8we
have

FPly) = fB(@) <varlf=f(y) - f(@),

and hence
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The continuous part of the functiofiis thus nondecreasing dn, b].

For a.e.t € [a, b] we have

P (OE0

s—t s—t

eR.

Since f is nondecreasing ofu, b], the inequality f'(¢) >0 holds for a.e.te€
[a, b]. By the proof of Theorer.3.1we thus get

R y) — fC(x) :/y f'(t)dt >0 whenever:, y € [a,b] and z <y.

This means thaf *° is nondecreasing ofu, b].
By Theoreni2.5.5 (fB)'=0 a.e. ona, b, and hence

Jd=f—(f®=f ae. ona,bl.
Using (3.2.7) and the proof of Theorer®.3.1we can deduce that
Y Y AC AC
o) ~9(0)= [(gOe= [ rd= - 1w
is true, i.e.

F35(y) = f5(2)

(9(w) = F5(W)) = (9(z) = f*())
= (9(y) —9(x)) = (F*(y) = [*°(x)) 2 0.

The continuous singular parfS© of the function f is thus nondecreasing on
[a, b], too. This completes the proof. O

We can now state the following assertion, which is in some sense complem
tary to Propositioi?.5.7

3.3.5 Proposition.Let f be singular on[a, b] and letg be absolutely continuous
on [a,b]. Thenvar® (f +g)=var’ f +var’ g.

For the proof we will need the Vitali Covering Theorem, which is based o
the notion of avitali cover.

3.3.6 Definition. Let £ be a subset oR and let) be a collection of nondegen-
erate” closed subintervals ofz, b]. We say that) is a Vitali cover of E, if for
eache >0 and anyx € E, there is an intervala, 3] € V containingz and such
thatf —a<e.

2 It means that no singletons (i.e. one-point sets) are allowed.



74

3.3.7 Theorem(Vitali Covering Theorem) Let E be a subset ofa, b] and let
VY be a Vitali cover of E. Then, for everye >0, there is a finite collection
{I1,...,In} of disjoint intervals from) such that

u*(E\UIj)<€,

where ;* stands for the outer Lebesgue meassee(sectio.4).

Proof of Proposition/3.3.5

We will verify that the assumptions of Lemrial.1%are satisfied.

Let e > 0 be given. By Lemm&.1.9the functionv,(x) = var? g is absolutely
continuous. Hence, we can choase 0 in such a way that

m

> var = "|v,(8;) —vy(ey)| <c  whenever Y (8 —a;) <d. (3.3.1)
7=1 j=1

j=1
Further, choose a divisioar of [a,b] in such a way that
V(f,o)>var’f — % (3.3.2)
As f is singular, there is a séY C [a, b] such that
f'(x)=0 forall z€a,b]\ N and u(N)=0.

Let V be the set of all nondegenerate intervidsy| C [a,b] \ o such that the
inequality

—¢
b—a

3

|f(n) = f(E)] < (3.3.3)

Do ™

holds. Obviously,V is a Vitali cover of the sett:=[a,b] \ (N Uo). Hence,
by Theoreni3.3.7 there is a finite systerd[¢;,7;]: j€{1,...,r}} of disjoint
intervals such that

a<&<m<--<&G<n<b and p(E\|Jg ) <6
j=1

Now, let a be the division of[a, b] consisting of all elements of the s{:fj, n;:
je{l,...,r}} U o. Let # be the set of all indices € {1, ..., v(a)} for which
the intersection(cy,_1, au) N[5, n;] is empty for eachy € {1,...,7}. Then

U (@r-an) < BN 6m5).

ke X j=1
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Hence
> (o= agmr) =p* (| (anr, aw)) < pr (BN I, mi)) < 6.
ket ket Jj=1
Consequently, we can app!$.8.J) to get
D varg: g<e. (3.3.4)
ket

On the other hand, by3(3.2 and sincex is a refinement otr, we have
var’ f—— <V(f,0) =Y [flaw)=flan-1)|+>_ |f(ax)—f(ax-1)l, (3.3.5)
ket ket
where#’ ={1,...,v(a)}\ 7. Of course,

D 1 lew) = Flaw-)| = 1F(m) = f(&)
ket J=1
and, due t03.3.9),

r

Z |flow) — flaw—1)| < ﬁ;(w —&)< g

ket

Moreover,
Z | f(a)—fan-1)| < Z vargr |
ket ke X

To summarize, by3.3.5 we have

Sovarst f= 3 [ f(an) — flaw-)]
ke X ke X
= > If(aw) = fla)]

ke’
9
>V(f,a)—§>vargf—a,

i.e.
Y varg  f>varh f—e. (3.3.6)
ket

Now, if we relabel the pointsy;, in such a way that it will be
{lan-r,au] sk e} ={[a;,b;]: 5 €{1,...,n}},

we can check that, thanks 18.8.4 and 3.3.€), the conditions/Z.1.19-(2.1.159
of LemmaZ2.1.1%are satisfied. This completes the proof. a
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3.3.8 ExercisesUse Proposition 3.3.5 to prove the following statements:

e Let {f,} be asequence of functions with bounded variations«oh| and
let {£/A€} and { fS'N¢} be the sequences of absolutely continuous and sit
gular parts of{ f,,}, respectively. Then

lim (var® f,,) =0 ifand only if lim (var® fA°) = lim (var® f3N¢) =0.

n
n—oo n—oo

o If €BV([a,b]), then var’ f> [ |f/(t)| dt.

By TheorenB.1.§ AC([a, b)) is alinear subspace &V ([a, b]). We will close
this chapter by a further corollary of PropositiBr3.5 which shows that, when
equipped with the norm oBV ([a, b]), the spaceAC([a,b]) becomes a Banach
space.

3.3.9 Proposition. AC([a, b]) is a Banach space when equipped with the norm

Ifllac =l £llsv =1f(a)l +varg ffor fe AC([a,b]).

Proof. We will show thatAC([a, b]) is a closed subspace &V ([a, b]). To this
aim assume thaff,} is a sequence of absolutely continuous functions which i
convergent in the BV norm to a functiofi: [a,b] — R, i.e.,

T}E{j@’\fn—f”szo- (3.3.7)

Clearly, f €BV([a,b]) and f= fA¢+ fS'NG on [a,b], where f#¢ is the ab-
solutely continuous part of and fS"NC is the singular part of . Without any loss
of generality we may assume thaf(a) = f(a) =0 for all n € N. Then, thanks to
Proposition3.3.5 relation (3.3.7) can be rewritten as

Oznh_{{.lo "f—fn’\BVIT}Lrgovarg (f = f2)

— Jim var, (£°° 4+ FNG— f,) — Tim vark (£%° - f,) +var) fSNC,

n—oo

which is possible only if vdf fSN¢=0, i.e., if fSN6=0 on [a,b]. In other
words, f = fA¢ € AC([a, b]), wherefrom the proof immediately follows. O

More details about absolutely continuous functions can be found e.g. in monogsaphs
[43], [7Q], or in the lecture notep].



Chapter 4

Regulated functions

The analysis of functions of bounded variation is one of the crucial keys for tl
development of Stieltjes integration theory. Of similar importance is the cla
of regulated functions, which represent a very natural generalization of both 1
continuous functions and the functions of bounded variation. This chapter is fu
devoted to the study of regulated functions.

Throughout the chapter, we assume that < a < b < co. For a given func-
tion f:la,b] — R, we set

[flloe = sup, [F ()]

t€fa,b

4.1 Introduction

4.1.1 Definition. A function f : [a,b] — R is said to be regulated ofa, b] if the
left limit f(t+) exists and is finite for every< [a, b), and the right limit f (t—)
exists and is finite for everye< (a, b]. The set of all regulated functions da, b]
will be denoted byG([a, b]). Recall that

AT f(t)=f(t+)— f(t) and A™ f(s)=f(s) — f(s—) fort€a,b),s € (a,b].
4.1.2 Remark. Evidently, the following relations hold:
BV (la, b]) U C([a, b]) C G([a, b]),
G([a, b)) \ C([a,0]) # 0 and G([a, b]) \ BV ([a,b]) # 0

For an example of a regulated function which does not have bounded variati
see Exampl2.1.10

4.1.3 Theorem.If a sequence{ f,,} of regulated functions converges uniformly
on the interval[a, b] to a function f : [a, b] — R, then this function is also regu-
lated on{a, b].

Proof. Lett € [a,b) and let{t;} C (¢, b] be an arbitrary decreasing sequence suc
thatt, — ¢ for k£ — oo. Given an arbitrary > 0, chooseny € N and ky € N such
that
g g
Hf - fno”oo < g and |fno(tk) - fno(t€)| < g for all kng k0~

77
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Then

[f (@) = f ()] S 1F (k) = fao (ti)| + [ frg (1) = frno (L)
+|f(t€)_fno<t€)|
S2||f_fno||oo_‘_|fno<tk)_fm)(tf” <e for k’agzk’o

Consequently, there exists a limit
ft+)= klim f(te) €R.

Similarly, we would show that for everye (a, b] there exists a limitf (t—) € R.
O

4.1.4 Exercises.(i) Inthe context of Theorem.1.3 prove that

f(t+) = lim f,(i4) foreveryt € [a,b)
and
ft—=)=lim f,(t—) for everyt € (a,b.

n—oo

This statement represents a special case of the Moore-Osgood theorem; an
stronger result will be obtained in Lemma2.3

(i) Let f(x)==x if =1/k for a certaink € N, and f(z) =0 otherwise. Show
that f is regulated orj0, 1].

(i) Let fp(x)=1 if = is a rational number, andy(x) =0 otherwise (fp is
the Dirichlet functior). Show thatf, is not regulated ono, 1].

Let us now formulate the crucial result of this chapter.

4.1.5 Theorem(HONIG). The following three statements are equivalent:

() feG(la,0]).

(i) There exists a sequende,,} C S([a,b]) which converges uniformly tg
on [a, b].

(iii) Foreverye > 0 there exists a divisiomx of [a, b] such that
[f(t) = fs)| <e

holds for everyj € {1,...,v(a)} and each pairt, s € (a;_1, o).
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Proof. a) The implication (ii))=> (i) is proved by Theorem.1.3
b) Assume (i) holds and let an arbitrary> 0 be given. Denote by3 the set of
all points T € (a, b] with the following property:

There is a divisiorx of [a, 7] such that f(t) — f(s)| <e
for each paitt, s € (o;_1, oj), wherej e {1,...,v(a)}.

} (4.1.1)

Our goal is to prove thai € B. First, we show thaf3 is nonempty. By Definition
4.1.], there is &, € (0,b — a) such that

()= fla+)| <5 holds forall t& (a,a+d,).

Thus, for arbitraryt, s € (a,a + d,), we get

[F(&) = F) < [f(#) = flat)[+[f(s) = flat)[ <e.

Denoter =a+4d,. Then {a,7} is a division of [a, 7] satisfying @.1.]). This
means that the sd8 is nonempty and* := sup B € (a, b].

Next, we will show thatr* € B. Indeed, by Definitiord.1.1we can choose
aod; € (0,7*—a) in such a way that

If(t) = f(r*=)| < g holds for all t € (7" — 61, 7).

Hence, for arbitrary, s € (7* — d;, 7*), we have

[f(@) = F() <1f(@) = f(r )+ [ (s) = f(r7 )| <e. (4.1.2)

Furthermore, by the definition of the supremum, there is@aB N (7* — §;, 7*).

Let o be a division offa, 7] such that4.1.]) is true and letao = a U {7*}. Then
a={ag,a1,...,7,7} is adivision of[a, 7*] with v(a) =v(a)+ 1, whose di-
vision points are

N {aj it je{l,....v(a)},
™ it j=uv(@).

Using @4.1.1) and 4.1.2), we get|f(t) — f(s)| <e forall t, s € (&j_1, @;), where
je{l,...,v(a)}. This means that* € B.

Finally, we prove that* = 0. Assume, on the contrary, that < 5. By Defi-
nition'4.1.1, we can choose & < (0,b — 7*) in such a way that

u@—f@uﬂ<g holds for all ¢t € (7%, 7* + ).
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Similarly as before in this proof, we can deduce that the inequality

[f() = f) 1) = f P+ (s) = f(T )| <e (4.1.3)

holds for arbitraryt, s € (7, 7* + 0,). Let a be a division of the intervala, 7]
such thati4.1.]) holds. Setr =7+, anda=a U {7}. Then

a={ag,q,..., 7,7}

is a division of[a, 7] with v(a) =v(a) + 1, whose division points are

a:{aj it je{l,...,v(a)},
Tl i j=va).

Using 4.1.7) and 4.1.3, we have
|f(t)— f(s)|<e forallt,se(aj_1,a;) and je{l,...,v(a}.

It follows that 7 € B. However, since we have > 7*, this contradicts the defin-
ition of 7* =sup B. Hence,7* = b, and the proof of the implication (B=- (iii)
is complete.

c) Assume that (iii) holds. Let € N be given and letx be a division of{a, 0]
such that| f(t) — f(s)| < = forall t,s € (a;_1,0;) andje{1,... v(a)}.

Foreveryj e {1,...,v(a)} choose an arbitrary; € («;_1, ;) and put
f(t) if tea,
fu(t) = .
flm) iFte(oj,q).

Obviously, f, €S([a,b]) and ||f — fullo < for everyneN, ie. f,=f on
la, b] whenn — oo. This proves the implication (iii}=- (ii). O

4.1.6 Corollary. Every regulated functiorf : [a, b] — R is bounded.

Proof. By statement (iii) of Hbnig’s Theorem. 1.5 there is a division of the
interval [a, b] such that

|f(t)— f(s)|<1 whenevert,se (a;j_1,c;) and je{l,...,v(ax)}.
Foreveryje{1,...,v(a)}, choose an arbitrary; € (a;_1, ;). Then

f@)|<|f(r;)|+1 for te(aj_1,a;) and je{l,...,v(a)}.
Hence|f(t)| < M for all ¢ € [a, ], where

M = max{| f(ao)l, .- |f @) L] + 1. oo | F(ruqe) 1} <00 o
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4.1.7 Corollary. For every regulated functiotf : [a, b)) — R and every: > 0, the-
re are at most finitely many pointse [a, b] such that

tela,b) and |[ATf(t)|>¢ or te(a,b] and |A™ f(z)| >e.

Proof. Let £ >0 be given. By the statement (iii) fromdtig’s Theoremd.1.5
we can find a divisiory of [a, b] such that

|f(t)— f(s)|<e for t,se(a;_1,a;) and je{1,...,v(a)}.
This implies that
IATf(t)|<e and |Af(t)|<e for te(a,b]\ o,
wherefrom the statement of the corollary follows immediately. O

4.1.8 Theorem.Every regulated functiory : [a,b] — R has at most countably
many discontinuities.

Proof. For eachk € N, denote
Df ={tela,b):|A*f(t)|>+} and D, ={t € (a,b]:|A"f(t)|> 1}
Then
Dt =| ) Df ={tea,b):|ATf(t)| >0}
keN
is the set of all points wher¢ is discontinuous from the right, and
D™= Dy ={te(ab):|Af(t)| >0}
keN

is the set of all points where the functighis discontinuous from the left. Obvi-
ously, D= D" U D~ is the set of all discontinuity points of on [a, b].

By Corollary4.1.7every setD;", D, , k€N, is finite. As a result,D is at
most countable. O

4.1.9 Corollary. Let f € G([a,b]) and

= | f) if telab),

! (t)_{ F) if t=b, (4.1.4)
S f(a) if x=a,

f<t)_{ Ft=) if te(a,b]. (4.1.9)
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Then bothf and f are regulated ora, b| and

fi+)=f(t+) if tela,b), f(t—)=/f(t—) if te(a,b], (4.1.6)
and

-~

Flt+)=f(t+) if telab), ft—)=ft—) if te(a,b]. (4.1.7)

Proof. a) Lete >0 be given. By Hbnig’'s Theorenl.1.5(iii), there exists a divi-
sion « of the interval[a, b] such that the inequality

[f(t) = fs)] <

holds whenevet, s €

—~ N ™

a;_1,a;) forsomeje{1,...,v(a)}. In particular,

9
F(t+6) = fls+)] <
holds for every pait, s € [o;_1, ;) with € {1,...,v(a)} and every >0 such
thatt + 9, s+ 9 € (oj_1, ;). Therefore

() = F(s4)] = lim |f(t+8) = f(s+6)| <5 <e

holds for eachy € {1, ...,v(a)} and each pait, s € [o;_1, «;), as well. In other
words,

|f(t)— f(s)| <e foreveryje{l,...,v(a)} andt, s e [a;_1,a;). (4.1.8)

Similarly, it can be shown that

o~

1F(t) = f(s)| < foreveryje{1,...,v(a)} and t,s e (o;_1,a;]. (4.1.9)

By Honig's Theorenit. 1.5 it follows that bothf and f are regulated ofu, b].

b) Letx € [a,b) ande > 0 be given, and letx be a division of{a, b] such that
|f(t)— f(s)] <5 for every pairt,sec (a;_1,a;) and everyjc{l,... ,v(a)}.
There is a unique indexe {1,...,v(a)} such thatx € [a;_1, ;). By (4.1.9,
we have

F) = fah) = f(t) = f(x)| <& for t€ (z,a).

In other words,f (z+) = f(z+). This proves the first statement fro#.1.6).

c) Analogously, letr € (a, b], € >0, and leta be a division offa, b] such that
|f(t) — f(s)| < § holds for every pait, s € (o;_1, ;) and everyj € {1,...,v(a)}.
Thereisauniquéc{1,...,v(a)} suchthatr € (a;_1, ;. If t€(;_1,2) and
0<d0<min{zx —t,z—«a;_1}, then

o <r—0<a; and o, <t+d<zx.
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Therefore, by the definition of the division, we have

[f(z—) — f(t)| = lim |f(z—08) — f(t+5)| < g <e for te (a1, ).

d—0+

In other wordsf(x—) = f(x—) and this completes the proof of the second state
ment from ¢.1.6).

d) The relations4.1.7) can be proved similarly toi(1.6). O

4.2 The space of regulated functions and its sub-
spaces

The setG([a, b)) is a linear space equipped with the natural operations of poin
wise addition and multiplication by scalars, i.e.,

(f+9)t)=f(t)+g(t) forf,geG([a,b]), t € a,b], }(421)

(cf)t)=cf(t) forceR, feG([a,b]), t € a,b]. o
Itis also easy to verify that

[ fllc:=1fllec= o |f ()] (4.2.2)

defines a norm ol ([a, b]).

4.2.1 Theorem.G([a, b]) is a Banach space with respect to the operati@hg.1)
and the norn(4.2.2).

Proof. It suffices to show that the spa€g[a, b]) is complete with respect to the
norm given by¢4.2.2). Thus, assume thdtf,,} is a Cauchy sequence @([a, b]).
Using the completeness of the spaeanalogously to the parts a) and b) of
the proof of Theorer2.2.2, we can prove that there is a functigh|a, bj —R such
that f, = f. By Theorem4.1.3it follows that f € G([a, b]) and this completes
the proof. O

4.2.2 Remark. (i) By Definition2.5.1, f €S([a,b]) if and only if there exists
a division « of the interval [a, b] such thatf is constant on every subinterval
(a1, ;). Every function fromS([a, b]) is a finite linear combination of func-
tions of the formy,,5) and x|, where(a, 3) is an arbitrary subinterval ifu, b]
andr is any pointinja, b|. Note that

X(a,8) = X(ap) — X3 Toralla, g ela,b], a<p
and
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Xir] = X[rp) — X(rp) forall 7€ la,b).

Hence f € S([a, b)) if and only if f is a finite linear combination of functions of
the formsxp, Xj-4. X(-p, Wherer can be an arbitrary point ifu, b), i.e.,

S([a,b]) = Lin({xhb], Xerals X1 7 € las b)}), (4.2.3)
where Lin(M) denotes the linear span of the gdt
(if) Similarly, we can show that also

S([CL, b]) = Lin({X[G,T]J Xla,7)s Xa] * T € (CL, b]}) : (424)

(iii) By Honig's Theorem4.1.5 the setS([a,b]) is dense inG([a,b]), i.e.,
cl(S([a, b)) = G([a, b]), where c[M) stands for the closure of a s&f.

4.2.3 Lemma.Let {f,} C G([a,b]) and f,, = f on [a,b]. For n €N, set
f;(t)—{ fult+), if te[a,b), fn(t>={ fula), if t=a,

fab), if t=b, falt=), if te(a,b],
and
oo f@), it tefab), o o | fla), i t=aq,
f(t)_{ f(b), if t=b, ) _{ ft=), if te(a,b].

Thenf, = f and f, = f on[a,b].

Proof. By Corollary4.1.9 the functionsf, fn, f, fn, n €N, are regulated on
[a,b]. Let e >0 be given. Choose. € N such that|f,,(s) — f(s)| < § for every
n >n. and everys € [a, b]. Letting s — ¢t from the right we get that

TRORTG] = lim |fu(s) = f(s)| =5 <e
holds for everyt € [a, b) and everyn > n.. Consequently,
lim || fo—flle=0, i€, fu=f onfa,]
Similarly, we would show thatf,, = f on [a,b]. O

In the remaining part of this chapter, we present several statements which \
be useful later (in particular, in Chapters 6 and 7). Note that if the assumptions
Lemma4.2.3are satisfied, then it follows that

f(t+) :nlif& fn(t+) foreacht € [a,b),

and
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f(t—)= lim f,(t—) foreacht € (a,b];

this observation leads to the following corollary.

4.2.4 Corollary. The sets

Gu([a,b)) = {f € G([a, b)) : F(t—) = f(¢) for t € (a, b]}
Gu(la,b)) = {f € G(la b)) : F(t—) = f(¢) for t € (a,5)}
Grlla,b]) = {f € G([a, b)) f(t+) = f(¢) for t € [a, b)}
Grlla,b]) = { £ € G[a, b)) f(t+) = (¢) for t € (a,5)}
Gregl[a, b)) = { € G([a.B]): f(t=) + F(t-+) =2 f(t) for & (a,b),
Fla+) = f(a), F(b=) = FB)},
Chreglla, b)) = {f € G([a.b]): f(t=) + (1) =2 f(1) for ¢ € (a,b)}

are closed inG([a, b]).

4.2.5 Remark. If a regulated functionf satisfies f(t—)+f(t+)=2f(t) for
t € (a,b), we say thatf isregularon (a, ). Functions from the spac@q(|[a, b])
are said to be regular on the closed intervab].

4.2.6 Lemma. The following relations hold:

cl(G([a, b]) NS([a, b])) = Gi([a, b)),
cl(Gi([a, b)) NS([a, b])) = Ge([a, 1)),
cl(Gr(la, b]) NS(la, b])) = Gr(la, b]),
cl(Gr([a. b]) NS([a, t])) = Gr([a, b)),
Cl(Greg([a, b1) NS([a, b)) = Greg([a, b]),
l(Greg([a. b]) NS ([a, b])) = Gregl[a, B]).

Proof. We will prove only the next to last assertion, the other ones can be prov
similarly.

Let arbitrary f € Greg([a, b]) ande >0 be given. By Hnig’'s Theorem (The-
orem4.1.5, there is ap € S([a, b]) such that

1f = ¢lloo <e. (4.2.5)
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It follows that

|f(t=) —(t—)| =lime— | f(s) —p(s)|<e  for t€(a,b],
and (4.2.6)
|f(t+) = (i) =limeii [ f(s) — @(s)| <e for t€a,b).

Define
w(a+) if t=a,
P(t) = %(w(t+)—l—tp(t—)> if ¢e(a,b), 4.2.7)
o(b—) if t=0.

Then 3 € S([a, b)) N Greg([a, b]). Furthermore, by4.2.5 and ¢.2.7), we have
|f(a) = @(a)| =[flat+) —plat)| <, [f() —@(0)[=]f(b—) —p(b—)|<e
and, by ¢.2.6) and @.2.7),
F(8) = @) = |5 (f(t+H) + f(t=)) — 5 (p(t+) +p(t-))]

<3 (1£00) = ot0)] + (=) = e(t-)]) <<

for t € (a,b). In other words, we have|f — ||, <&, wherefrom the desired
equality clGreg([a, b]) NS([a, b])) = Greg([a, b]) follows. O

4.2.7 Exercise.Prove the remaining assertions of Lem#a.G

4.2.8 Lemma. The following relations hold:
Gu([a, BN S([a, b)) = Lin ({xj0r: 7€ [0, 8]}
Gela,b) NS (la, b)) = Lin ({xtart, X017 € [0, 8]}),
b)) =Lin({x}ry:7€ [a,b]}),
b)) =

Greg([a, b]) NS([a, b]) = Lin {X[aﬁb}

(
Gr(la, b)) NS([a,
(

GR[a bl NS(][a,
1
)5 Xir T X T € (e, b)}) ,

- ‘ 1

Gregla, b] NS([a, b]) :L1n<{X[a,b}a X(abls 5 Xirl Xt Xip) 1T € (a, b)})-
Proof. Notice that the first statement follows from RemarR.2 (ii); from the
set @.2.9 of functions generating the whole s&t[a, b]), we have selected those
which are left-continuous ofu, b).
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Next, we will show the proof of the fifth relation. To this aim, IEES([a, b]) N
Greg([a, b]) be given. Then there ame €N, g, z1,. .., 2,11 € R and a division
a= {ao, at, ... ,am} of [a, b] such that

x1, if tela, o),
£ z;, if te(oj_1,q;) foracertainj € {2,...,m},
t J—
Lt jf t=aq,foracertainj € {1,...,m—1},
Toms if te€(am_1,b].

Therefore,

f(t) = X[ll,al)(t) T + Z X(aj_l,aj)(t) mj + X(amfl,b} (t) Tm
m—! - (4.2.8)
1
*3 ( > Xia(t) (z5+ :vm)) for ¢ € [a,].
j=1

This relation can be rearranged as follows:
f(t) = Xla,b] (t) Ty — X[oq](t) L1 = X(au,b] (t) 21

m m—1
) Xt (T = D Xl (O 5= > Xy (1) 7
=2 =2
1 m—1
+3 ( D Xiag) () (25 + $j+1)>
j=1
m—1
Xla b] xl + Z X(ozj xj—l—l - Z X(Oéjl)} (t> Zj
j=1
- Z Xiay) (8) 25 + 3 ( Z Xia)(t) (25 + %‘+1)>

3
L

.
U
N

Xfaa) (1) 21 + Z X(ay 8 (8) + 3 Xioy | (D] (701 — 25)
Xla b] xl + Z X(aj 1, b + % X[Oéj—ﬂ(t)] 5j7

where

%12171, and i’/j:l'j—flfj_l for jG{Q,,m} (429)
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This means that

. 1
f € Lin <{X[a,b]a 5 X[T]—I—X(T,b} ITE ((I, b)}>7

wherefrom the fifth statement of the lemma follows.

The other statements of the lemma may be proved in a similar way. O

4.3 Relatively compact subsets of:([a, b])

Recall that a subset/ of a Banach spac# isrelatively compacif any sequence
of its elements contains a convergent subsequence. It is known (seé€€lg. [
Theorem 1.6.15 o1154], Theorem, p.13) thad/ is relatively compact if and only
if it is totally boundedli.e., if for eache > 0 there is a finite seD. C X such that
for everyxz € M there exists al € D, satisfying ||z — d||x <e. Such a setD, is
called ancs-netfor M in X.

The following assertion is not surprising.

4.3.1 Lemma. Each totally bounded set is bounded.
Proof. Let M C X be totally bounded and let
D={dy,ds,...,dn}CX

be such that for each e M, there isd, € D satisfying ||z — d,||x < 1. Thus, for
an arbitraryx € M we have

[2llx <z = dollx + [lde|[x < K,
where K =1+ max{||di||x, ..., ||d.||x} does not depend onec/. O

In the spaceC([a, b]) of continuous functions we have the following criterion
for relative compactness known as the A&zéiscoli theorem. Its proof can be
found in many functional analysis textbooks, see e.g. Theorem 8.2.12h |

4.3.2 Theorem(ARZELA-AscoLI). A subset)M of the spaceC([a,b]) is rela-
tively compact if and only if the following conditions are satisfied:

() Thereis ac* €0, 00) such that|| f||. < c¢* for each f € M.

(i) For each ¢>0 thereis ad >0 suchthat |f(t)— f(s)|<e holds for
each f € M and eacht, s € [a, b] satisfying|t — s| <.
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If the condition (i) from the Arzel-Ascoli theorem is satisfied, we say that the
set M is uniformly boundegwhile if the condition (ii) is satisfied, we say that the
set M is equicontinuousThus, Theorerd.3.2can be reformulated as follows:

A subset ofC([a, b]) is relatively compact if and only if it is uniformly bounded
and equicontinuous.

We will derive an analogous criterion for subsets of the spage, b|) with
the notion of equicontinuity replaced by the related notioea@diregulatedness
The definition of this notion resembles the definition of equicontinuity with ordi
nary limits replaced by the one-sided ones.

4.3.3 Definition. A subsetM of G([a,b]) is calledequiregulatedf the following
conditions hold:
e Foreach: >0 andr € (a, b] thereis a; () € (0,7 — a) such that

|[f(r=)—=f(t)|<e forallte(r—d(7),7) and f € M.

e Foreachs >0 andr € [a,b) thereis a»(7) € (0,b— 7) such that

\f(t+)— f(t)|<e forallte(r,7+d2(7)) and f € M.

The next characterization of equiregulated sets of functions will be helpf
later.

4.3.4 Lemma. The following statements are equivalent:
(i) M C G([a,b]) is equiregulated.

(i) Foreverye > 0 there exists a divisiomx of [a, b] such that for everyf € M,
je{l,...,v(a)} and s, t € (oj_1, ), we have|f(s) — f(t)| <e.

Proof. a) The proof of the implication (3= (ii) is almost identical with the
proof of the implication (i) = (iii) in Theorem4.1.5 we leave it as an exercise
for the reader.

b) Let an arbitrarye > 0 be given, and letx be the corresponding division from
condition (ii).

Choose an arbitrary € (a, b]. There is a uniqug € {1,...,v(a)} such that
7€ (a1, 04]. Forallt, s e (a;_1,7) and f € M we have|f(s) — f(t)| <e. Let-
ting s — 7— we get

If(r=)—f(t)|<e forallte(r—d,7) and f € M,

Where(51 =T —Qj_1.
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Analogously, if 7 € [a,b), there exists a uniqug € {1,...,v(a)} such that
T € |1, a5). Hence,|f(s) — f(t)| <e holds for allt,s € (1,a;) and f e M.
Letting s — 7+ yields

\f(t+) = f()|<e forall te(r,7+d), [feM,

whered, = a; — 7.
This shows that\/ C G([a, b]) is equiregulated. O

4.3.5 Exercise.Prove the implication (i}=- (ii) from Lemma4.3.4

We now proceed to the analogue of the Agediscoli theorem in the world of
regulated functions, which reads as follows.

4.3.6 Theorem(FRANKOVA). A subsetM of G([a,b]) is relatively compact if
and only if it is uniformly bounded and equiregulated.

Proof. a) Let M C G([a,b]) be relatively compact. We will show that/ is
uniformly bounded and equiregulated. The uniform boundedness of functic
from M follows from Lemmad.3.1. It remains to show thad/ is equiregulated.

Let >0 and 7€[a,b] be given and let F={f, fo,...,fm} be
ane/3—net for the setV/ in G([a, b]). This means that

forany f€ M thereisanf € F such that|| f — fHOO < % (4.3.2)

Consequently, the inequalities

f(t—) = f(t—)| <& for te(a,b], }
N (4.3.2)

|f(t+) — f(t+)| <5 for t€]a,b)

hold for any f € M and anyf satisfying €.3.7). All the functions f, € ' are

regulated on[a,b]. Hence, for a givenr € (a,b] and everyke{1,2, ... ,m},
there is @} € (0, 7 — a) such that

|fe(t) — fu(r—)| <e for te(r -6}, 7). (4.3.3)
Similarly, for a given 7€[a,b) and every ke{l1,2,...,m}, there is
a oz €(0,b— ) such that

| fi(t) — fr(t4)| <e for te(r,7+53). (4.3.9)
Set

min{di:i=1,2; k=1,...,m} if 7€(a,b),
d=4q min{d;: k=1,...,m} if 7=,

min{d?: k=1,...,m} if 7=a.
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If a <7—d<t<7<b, then by @d.3.1)—(4.3.9 the inequalities
&) = FE) <) = FO+ 170 = Fr) |+ If(r=) = f(r=)| <e

hold for any f € M and anyf corresponding tof by (4.3.J). Similarly, we can
prove that

|[f(t)— f(r+)|<e forall feM

whenevera < 7—§ <t <7 <b. Consequently, the séi/ is equiregulated.

b) Now, assume that/ is uniformly bounded and equiregulated. We will show
that M is relatively compact inG([a, b]). It suffices to show thatl/ is totally
bounded, i.e., that for every> 0 the setM has a finites—net in G(|a, b]).

Let an arbitrarye > 0 be given, and leix be the corresponding division of
[a, b] from part (ii) of Lemmad.3.4

Since M is uniformly bounded, there is@ > 0 such that|| f||. < c* for all
feM. Let z={zy,z,...,2,} beadivision of[—c*, ¢*] such that

|z| = gjag%(zj —2zj1) < 3

Let F be the set of all functiong : la,b] — R which are constant on each of
the intervals(a;_1, ), j=1,...,v(a), and whose values belong to the zet
The number of elements af is obviously finite.

We will show thatF is ans—net for M in G([a,b]). To this aim, consider
an arbitrary functionf € M. By the definition ofz, we know that

e foreachj € {0,1,...,v(e)} thereis ak; € {0,1,...,n} such that
£
| (o) — 21, | <3

e foreachje{1,...,v(a)} thereisart; € {0,1,...,n} such that
I (0‘91_+0‘J> _Z£j|<§.

Furthermore, by the definition ak, we have

) = 2| <] () - 1 (u) s (u) | <e

forall je{1,...,v(a)} andt € (a;_1, e ), as well. Let us define

~ 2z, If t=q; forsomej€{0,1,...,m},
2, it te(aj_1,a;) forsomeje{l,...,m}.
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Obviously, f € F and || f — f|l <¢. Thus F is an—net for M in G([a,d]),
and the proof is complete. O

The next assertion shows that the condition of uniform boundedness can
weakened.

4.3.7 Corollary. A subset) of the spaceG(]a, b)) is relatively compact if and
only if it is equiregulated and

the set{ f(¢): f € M} is bounded for eache [a, b]. (4.3.5)

Proof. If M C G([a,b]) is uniformly bounded, then it obviously satisfies condi-
tion (4.3.5. Hence, by Frakova's Theoren¥.3.6 any relatively compact sub-
set M of G([a,b]) is equiregulated and satisfie$3.5. It remains to prove the
reverse implication. To this aim, assume thdt is equiregulated and satisfies
condition 4.3.5. We will show that) is uniformly bounded. By Lemma.3.4
we can choose a divisioax of [a, b] such that

HMOEFIOIES!
(4.3.6)
for all t,s€ (Oéjfl,Oéj), jE{l, . ,m} and fEM,
wherem =v(a). By our assumptior4 3.5, there exist constants
v, 3=0,1,...,m, and~;, j=1,...,m,
such that the estimates

| f(a)] < for j=0,1,...,m,
(4.3.7)
|fG(aj1+oy)| <5 for j=1,....m

hold for all f € M. This, together with4.3.6), implies that the estimate
FOI<|f(g(ajo1+ay)) |+ 1< +1
(g1 e ’ (4.3.8)
if te (Oéj_l,Oéj) and je {1, c. ,m}

holds for eachf € M. According to @.3.7) and @.3.§ we have||f||. <c* for
any f € M, where

v'=max{y,;:j=0,1,...,m}, F ' =max{y,:j=1,...,m},
" =max{y", 7"} + 1.

Hence, the seil/ is uniformly bounded and the proof is complete. O

We conclude this section by another useful criterion for the relative compa
ness inG(la, b]).
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4.3.8 Corollary. Let M c G([a, b]). Assume that the sétf(a): f € M} is boun-
ded and there exists a nondecreasing functiofia, b] — R such that

|f(t)— f(s)| <|h(t) — h(s)| forall t,se [a,b] and f € M. (4.3.9)
Then M is relatively compact irG([a, b]).

Proof. By assumption, there i& € [0, c0) such that|f(a)| < K forany f € M.
Consequently,

[F(@) < [f(a)l +[f(x) = fla)] < K+ h(b) = h(a)

forall z € [a,b] and f € M. Thus, the sef\/ is uniformly bounded.
Now, let an arbitrarys >0 be given. Obviously,h € G([a,b]). Hence, by
Honig’s Theoren. 1.5 there is a divisionx of [a, b] such that

\h(t) —h(s)| <eforallt,se(a;_1,a;) and je{1,...,v(ax)}.
It follows that

[F(#) = f(s)| < [h(t) = h(s)] <e

for arbitrary ¢, s € (a;_1, ), j€{1,...,v(a)}, and f € M. By Lemma4.3.4
the setM is equiregulated. Finally, by Fi&ova’s Theorenil.3.6 M is relatively
compact inG([a, b]). O

4.3.9 Remark. Corollary 4.3.8 provides a sufficient condition for the relative
compactness of sets ik(]a,b]). Note that this condition is not necessary: If
(4.3.9 holds, it is easy to verify that var < h(b) — h(a) for each feM. How-
ever, in general, regulated functions need not have bounded variation.

The next assertion shows thati C G([a, b]) is a pointwise convergent se-
guence of functions which satisfid.3.9, then necessarily this sequence con
verges uniformly.

4.3.10 Corollary. Assume that{ f,,} C G([a,b]) is a sequence which is point-
wise convergenttd : [a, b] — R. Moreover, suppose there exists a nondecreasin
functionh : [a, b] — R such that

|fu(t) = fu(s)| <|h(t) — h(s)| forallt,séea,b]andn e N.
Then{f,} converges uniformly tg on [a, b].

Proof. Corollary4.3.8implies that each subsequence{gf,} has a subsequence
which is uniformly convergent. Obviously, the uniform limit of this subsequenc
is necessarilyf.
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Now, suppose thaff,,} is not uniformly convergent tgf. Then there exists
ane >0 such that for eacl € N, there is an index;, € N with the property that
| frr — fllo > €. It follows that { f,,, }» has no subsequence which is uniformly
convergent tof, and this is a contradiction. O

More information about regulated functions can be foundadmig’s monograph@(Q] (see
Section 1.3 there). Other useful results (e.g., characterization of compact setkirb))
or a generalization of Helly’s Choice Theorem) are included in Ditkosa’s paper89].



Chapter 5

Riemann-Stieltjes integral

The answer to some problems mentioned in the introductory chapter is provic
by the Riemann-Stieltjes integral, which is a natural generalization of the we
known Riemann integral.

5.1 Definition and basic properties

Recall that a setx = {«, a1, . . ., . } Of points from an intervala, b] is called
adivision of the intervala, b] if

a=apg<a;<---<a,=>.

The set of all divisions of the intervak, b] is denoted byz [a, b]. The elements
of a division o of [a,b] are usually denoted by;, v(a) is the index of the
maximum element (i.eq, (o) =b) and

Ay

We say that a divisiom’ of [a, b] is arefinemendf a if &' D a.

5.1.1 Definition. A pair P = (a, &) of finite subsets ofa, b] is called gpartition
(or also atagged divisioh of the interval|a, b] if « is a division of [a,b], &=
{&, ... &}, and

Oéjflggjé@j foralljzl,...,y(a).
We say that; is thetag of the subintervalc;_;, «; | and £ is theset of tagof
the division .

Sequences of divisions or partitions will be denoted{lay"} or {(3",n")}, re-
spectively; we use upper indices to avoid confusion with the elements of the s

o, B, n, etc.
5.1.2 Definition. Given a pair of functionsf, g : [a,b] — R and a partitionP =
(o, &) of the interval[a, b], we define

v(e)

S(f.dg, Pla,b]) ==Y (&) [9(a;) — glaj_1)]-

J=1

If [a,b] and f, g are fixed and no misunderstanding can happen, we Wfifedg, P),
S(a, &), orevenS(P) instead ofS(f, dg, P; [a,b]).

95
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5.1.3 Definition. Let f,g:[a,b] — R.
(i) We say that theRiemann-Stieltjego) -integral (shortly () RS-integral) of f
with respect tog

b b
(%) / f(x) dg(z)  (we also write (§) / £ dg)

exists and has a valuec R if
for everye > 0 there is ad. > 0 such that
IS(P)—1I|<e (5.1.1)
for all partitions P = («, §) of [a, b] such thata| < ..

(if) We say that th&Riemann-Stieltjego ) -integral (shortly (o) RS-integral) off
with respect tog

(a)/ f(z)dg(z) (we also Write(a)/ fdg)

exists and has a valuec R if
for everye > 0 there is a divisiona. of [a,b] such that
IS(P)—1I|<e (5.1.2)
for all partitions P = («, &) of [a, b] such thaix D a..

(ii) Forany cé€ [a,b] we set

(5)/ccfdg=(0)/ccfdg:0.

If the integral (§) ff fdg or (o) fabf dg exists, we define

<6>/bafdg=—<6>/:fdg or (a)/bafdgz—m/abfdg,

respectively.

5.1.4 Remark. Our (0) RS-integral corresponds to the original Stieltjes’ defini-
tion, while the (o) RS-integral is also known as tivoore-Pollardintegral.

The classical Riemann integral is a special case of (h&kS-integral for
g(x)=x ona,bl.

If we speak about the RS-integral without distinguishing between(dher
(o) variant, we mean that the given statement holds for both integrals. In such
other cases when no misunderstanding can occur we do not include the syn
(0) or (o) before the integral sign.

The functionf in the integralfabf dg is called thantegrand while the func-
tion g is called theintegrator.
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5.1.5 Exercise.Prove that Definitiorb.1.3is correct in the sense that the value of
the integral is determined uniquely, i.e..lif e R and I, € R satisfy £.1.7) (with
I replaced byl; or I,), thenI; = I, (and similarly for £.1.2)).

5.1.6 ExercisesProve the following assertions for both kinds of the RS-integral

(i) If the function ¢ Iis constant, thenfabfdg:() for any function
fila,b] =R

(if) If the function f is constant, thenfabfdg:f(a) (g(b) —g(a)) for any
function g : [a, b] — R.

From Definition5.1.3we can easily conclude that ti¢) RS-integral is a spe-
cial case of thgo) RS-integral in the following sense.

5.1.7 Theorem.If (§) f;’f dg exists, theno) f:f dg exits as well and has the
same value.

Proof. The statement follows immediately from the fact that the inequalit
|| < || holds for all divisionsa, &” of [a, b] such thate” D «’'. O

5.1.8 Remark. Let an arbitraryd, > 0 be given. Then, in Definitiob.1.1(i), the
condition £.1.1) can be replaced by the following weaker condition:

For everye >0 there is ad. € (0, éy) such that
|S(P)—1I|<e (5.1.1)
for all partitions P = (e, §) of [a, b] such thaja| < 6..

Similarly, if a division « of [a,b] is given, then, in Definitiorb.1.3 (i), the
condition £.1.2) can be replaced by the following weaker condition:

For everye >0 there is anx. € 2[a, b] such thaix. D oy and
|S(P)—1I|<e (5.1.2)
for all partitions P = («, &) of [a, b] such thaix D a..
5.1.9 Exercise.Verify the statements mentioned in Remé&rk.&
5.1.10 Example.Leta=—-1, b=1 and

0 if z<0 1 if <0
= — 7 and = ’
/(@) {1 if 2>0, 9(@) {0 if 2>0.

Setay={—1,0,1}. Then, for every divisionx of [—1, 1] which is a refinement
of ay and for every partitionP = («, &) of [a,b], there is ak € N such that
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ar=0. Then

S(P) = f(&) (9(0) — glak-1)) + f(&r11) (9(@r41) — 9(0)) =0,

because
f(&)=0 and g(ags1)—g(0)=0.

By the second part of Remafk1.§ we see thato) f_ll fdg=0.
On the other hand, for every partitidd = («, &) of the interval[—1, 1] such
that 0 ¢ o there is ak € N such thatn,_; < 0 < oy, and consequently

0 if & <0,
S(P)=f(&) (g(ag) —glag—1))=—f(&) = — {

Now it is clear that the integraly) f_ll f dg does not exist.

The following two lemmas hold for both kinds of the RS-integral and are dire
corollaries of Definitiorb. 1.3

5.1.11 Lemma.(i) If the integral fff dg exists, then

b
/ fdg‘ <[Iflvart.

(i) If, in addition, g € BV([a, b]) and the integralfab f(x)d(var? g) exists, then

b b
/ fdg‘ < [ 1@ dwvar; ) < | varl.

5.1.12 Remark. We will show later (cf. Corollarys.3.10) that if f is bounded
on [a,b] then for both kinds of the RS-integral, the existence of the integr:

fab f(z) d(var? g) already follows from the existence of the integjélf dg.

5.1.13 Lemma.Let f, f1, f2, 9,91, 92 : [a,b] — R and let all the integrals

b b b b
/fldg, / £ dg, / fdg, and / £ dgs

exist. Then for any;, c; € R, the following relations hold:
b b b
/ (c1fi+cafa)dg=cy / fi d9+02/ f2 dg,

b b b
/ fd(cig +C292):Cl/ fd91+02/ f dg..
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5.1.14 Exercises(i) Prove Lemma%.1.11and5.1.13
(i1) Prove the following statement for both kinds of the RS-integral:

If f,g:[a,b]— R are such thaty is nondecreasing and the integrgfff dg ex-
ists, then

(int 7@) 00 gt < [ £< (s 1)) (60) —gfa)

z€la,b] w€la,b]

Both kinds of the RS-integral are, in a sense, generalized limits of integral su
with respect to partitions. It is thus not surprising that the following statemer
which is an analogue of the classical Bolzano-Cauchy condition, holds.

5.1.15 Theorem(BoLZANO-CAUCHY CONDITION).
Given a pair of functionsf, g: [a,b] — R, the integral () fff dg exists if and
only if
for everye > 0 there is aj. > 0 such that
1S(P)—5(Qf <&

(5.1.3)
for all partitions P=(, &), Q=(3,n) of [a,b]
such thata| < 9. and |3| < d..
Similarly, the integral(o) fabf dg exists if and only if
for everye >0 there is a divisiona. of [a,b] such that
S(P)—S
S(P) - S(Ql <= 5.1

for all partitions P = (e, £), Q = (3, n) of [a, b
witha D . and8 D a..

Proof. The necessity of the conditiorS.(L.J and £.1.4) for the existence of the
corresponding integrals is obvious from Definitioi.3

We will prove that condition.1.4 guarantees the existence of the integra
(0) ff fdg. If (5.1.9 is satisfied, there is a sequengB,} = {(a*, £")} of par-
titions of [a, b] such that

|S(P) = S(P)l <3
for all partitions P = («, €) of [a,b] such thatx D o, (5.1.5)

and
a*cal for/eN and (> k.

In particular,

|S(Py)—S(Py)| < wheneverk, (eN and (> k. (5.1.6)
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The sequencéS(F;)} is a Cauchy sequence of real numbers. Hence there exi:
an I R such thatklim S(P;)=1. Now, lete >0 be given. Choosé. in such

a way that

1 ¢ €
k_g<§ and |S(Pk5)—]|<§. (5.1.7)

Then, combining$.1.5) and £.1.7), we deduce that
|S(P) —I[ < |S(P) = S(Pi )|+ [S(Pr.) — I <e

for every partition P=(a, &) of [a,b] such that a D> a*. Therefore
I1=(0) [ fdg.

In a similar way we can prove that conditiof. 1.9 implies the existence of
the integral(9) f:fdg. O
5.1.16 Exercises.(i) Prove the assertion of Theorésil.15for (§) RS-integrals.

(i) Prove that conditionsH.1.3 or (5.1.9 are respectively equivalent to the fol-
lowing ones:

For every= >0 there is &. >0 such that )
for all partitions P = («, &), Q=(8,m) of [a, ]
such that|a| < 4., BD a. )
For everys > 0 there is a divisior. of [, b] such that )
for all partitions P = (e, &), Q=(8,m) of [a, ]
such that@ > a D a.. )

Hint: Let «, B be divisions offa,b] anda’=aUB. Thena'’ is also a division
of [a,b], a'Da, a’'D B and

for all partitions (e, £), (8,m) and(a’,&’) of [a,b].

The following theorem is a direct corollary of Theoré&ni..1% It is valid for
both kinds of the RS-integral.

5.1.17 Theorem.If the integral [* f dg exists andc, d] C [a, b], then the integral
fcdf dg exists, as well.
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Proof. Assume that the integral) f;’f dg exists and let: >0 be given. By
Theorenb.1.15there is a divisiono. of [a, b] such that

IS(P) — S(P')| <e (5.1.8)

holds for all partitionsP = («, &), P'= (/. ¢') of [a,b] such thata D . and
o’ D a.. By Remark5.1.§ we can assume thdtc, d} C a. and we can thus
decomposex. in such a way that

(&% :ﬁ_UIBa U/3+7

where3~ is a division of[a, c|, 3. is a division of[c, d], and 3" is a division of
[d,b]. Now, let (3,n) and (3',n') be partitions of|c, d] such that3 > 3. and
B’ D B.. Define

a=B"UBUB",n=(n",n.n") anda’=8"UB'UBT, (n",n.n"),
where(8~,n7) is a partition of[a, ¢] and (3", n*) is a partition of{d, b]. Obvi-
ously, (a, &) and (o, &) are partitions ofla, b, a D a., o' D a.,

S(e,§)=5(8",n")+5(8,m)+S(B",n")
and
S(el, &) =5(B",n")+S(B",n")+S(B",n").
Thus, by 6.1.9 we have
15(8,m) = S(B",n")|=|5(a,§) = S, )| <e
and, by Theorerb.1.15 this yields the existence of the integrﬁﬁ fdg. O

The statement of the theorem for tli&) RS-integral can be proved analo-
gously; we leave it as an exercise to the reader. O

5.1.18 Exercise Prove Theorer®.1.17for the (6) RS-integral.
The following statement holds for both kinds of the RS-integral.

5.1.19 Theorem.If the integral fff dg exists andc € [a, b], then also both the
integrals [ f dg and ff f dg exist and satisfy

/abfdgz/acfdg+/cbfdg-

Proof. If ¢=a or c=b, the statement of the theorem is trivial. Thus,det (a, b)
and let the integray’ff dg exist. Then the existence of the integrgﬁ]fsf dg and
fcb f dg is guaranteed by Theorem1.17
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Let ¢ > 0. Choose partitiong” = (o, £’) of [a,c] and P" = (a”, £") of [c, D]
in such a way that

c b b
‘S(P’)—/ fdg‘Jr‘S(P”)—/ fdg’+‘S(P)—/ fdg‘<s,

wherea=a'Ua”, €=¢'U¢" and P=(q,§).
Obviously, S(P)=S(P’)+ S(P"). Hence,

/abfdg—/acfdg—/cbfdg‘

[ ras- S<P>\ £IS(P)— S(P') — S(P")

(5.1.9)

<

c b
+ S(P’)—/ fdg’Jr‘S(P”)—/ fdg‘<5.

As ¢ >0 was arbitrary, this completes the proof. O

5.1.20 Exercise Why does the existence of the integrals

/abfdg, /acfdg, /bedg

imply the existence of partition$’ of [a,c| and P” of [¢,b] such that$.1.9
holds?

The converse of Theorem1.19is easily shown to be valid for thér) RS-
integral.

5.1.21 Theorem.If ¢ € [a, b] and if the integrals

c b
11:(0)/fdg and Igz((f)/fdg

exist, then also the integrdb) fab f dg exists and equalg; + I>.

Proof. Let ¢ >0 be given. Choose divisiona. of [a,c] and &’ of [c,b] such
that

|S(P") — I| < for all partitions P' = (o, &) of [a, ] suchthata’ D o,
|S(P") — L] < e for all partitionsP” = (a”, £ ") of [¢, b] such thata” D o

Now, let a. =a.Ua!. Sincece a., every partitionP = («, §) of [a,b] sat-
isfying a D a. can be decomposed to partition®’ = (a/,¢’) of [a,¢] and
P’'=(a",£") of [¢,b] in such a way that

a=ad'Ua” and ¢€=¢'U¢", wherea’'Dal anda” D> al.
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Moreover,S(P) = S(P’)+ S(P"), and the definitions o&. and a imply
|S(P) = (I + L)| < [S(P') = L + |S(P") — I| <2¢
f

for every partition P = (o, &) of [a,b] such thata D a.. This completes the
proof of the theorem. O

5.1.22 Remark.To get an analogous statement also for (hgRS-integral, we
have to assume the pseudo-additivity of the functighsy at the pointc; see
Definition’5.2.1and Exercis®.2.10

For the existence of the) RS-integral, we have the following necessary anc
sufficient condition.

5.1.23 Theorem.For each pair f, g : [a, b] — R, the integral (J) f;’f dg exists if
and only if

lim S(P,) € R for each sequencgP, } = {(a", £")}
s (5.1.10)

of partitions offa, b] such that lim |a"|=0.

Proof. The necessity of the conditio®.(L.1() for the existence of the integral
(0) ff f dg is obvious; it remains to prove its sufficiency.
_Thus, assume tha(1.1() holds and let the sequencgs, } = {(a",£")} and
{P,}={(a" &)} of partitions of[a, b] be such that
lim |a"|=

n—oo

and

lim |&"|=0
n—oo

lim S(a”, &) =I€R and lim S(a",€")=I€cR.

n—oo n—oo

Now, consider the sequendé),,} of partitions of[a, b] given by
ng_1 :Pk;, ng:ﬁk for k&€ N.

By our assumption, the sequen¢s(Q,,)} has a finite limit. € R, and since it
contains both the sequencesS(F,)} and {S(P,)}, we necessarily have
I =1=J. This means that the value of the limit

I=lim S(P,)

does not depend on the choice of the sequefiég of partitions of [a, b] for
which lim,, ., |a™| =0.

Now, assume thato) fabf dg # I. Then there exists ag> 0 such that for
everyk € N there is a partitionP;, = (o, £€*) of [a,b] such that

la*| <1/k and |S(P,) —I| >E.
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In other words, we have a sequen¢g;,} = {(a*, £)} of partitions of{a, b] such
that

lim |a*|=0 and Jim S(P)#1,

k—o0

which is a contradiction. Therefor@) ff fdg=1. O

5.1.24 Remark.Let z( € (a,b), ¢, d€R and

d if x€la,x),
g(z)=¢celd, ] if z=u,,
' if z¢e(x,d,

and let an arbitraryf € G([a, b]) be given.

(i) Consider a sequence of divisiofi&”} of [a, b] such thaja™| — 0, while for
everyn € N there is ak,, such thato} <o <aj . Further, let£",n", (" be
the sequences of sets of tags correspondington € N, and such that

§e, =0, o <mp <zo and zo <y <ap foreveryneN.
Then

S(a”, €") = f(xo) (" =) = fxo) Ag(wo),
S(a",n") = f(ng,) (" =)= fng,) Ag(xo),

S(a",¢") = f(¢,) (" =) = f(G,) Ag(zo)
for everyn € N. Thus, if there is anl € R such that

lim S(a™, &) =1

n—od

for each sequencéa™, £") of partitions of|a, b] fulfilling lim,,_.., |@"| =0, then
either

g(xo—) = =g(xg) =c=g(vot+) =" or f(ro—)= f(w0) = f(xo+)

must hold. In view of Theorei.1.23 we can expect that if the integréﬂ)ff fdg
exists, then the functiong and g have no common point of discontinuity.

(i) Now, let ap be an arbitrary division ofa,b] containingz,. For each its
refinementa, there is an indext = k(a) such thatzy=«,. Hence for each
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partition (a, £) such thata D «y we have

(£(&-1) A=g(zo) + (&) Atg(mo)  if &1 <z0<&,
f(zo) A7 g(wo) + [ (&) ATg(zo) I G =20 <&,
f(&k-1) A7g(xo) + f(20)) ATg(zo) I &1 <@ =&,
f(zo) A7 g(wo) + f(wo) Atglxo) I &1 =20="E

and

f(xo—) A7g(wo) + f(&) AT g(xo),  f(z0) A”g(xo) + f(zo+) AT g(x0),
f(xo—=) A7 g(x0) + f(20)) AT g(wo),  f(w0) A™g(w0) + f(w0) AT g(0)

are the accumulation points of the set

Y= {S(a, £): (o, &) is a partition of{a, b] anda D ao}

Of course, the integrdlo) fab f dg can exist only if the set will have exactly
one accumulation point. It is easy to see that this can happen only if

AT f(zo) ATg(zo) =A™ f(20) A”g(20) =0

5.2 Pseudo-additivity

The notion ofpseudo-additivitgnables us to better clarify the mutual relationshig
between thed) and (o) integrals.

5.2.1 Definition. We say that functiond, ¢ : [a,b] — R satisfy the condition of
pseudo-additivity at a point € (a, b), if

for everye > 0 there is &. > 0 such that )
|1(&) (g(z +8") — gz = 8") = (&) (9() — g(x = "))
—f(€") (g(z +8") —g(2))| <e (PA)

holds whenever’, §” € (0,4.) and
Eele =08, 2+0"), ¢ elx—0, 2], & €z, x+ "] )
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5.2.2 Remark.Itis sometimes more convenient to reformulate the condition (PA
as follows:

For every: > 0 there is &. > 0 such that )
|£(€) (9(2") = g(a")) = F(€) (9(x) — g(a"))
—f(&") (g(z") —g(x))| <e (PA)

holds whenever’ € (x — 0., z), 2" € (z,z +0.) and

celd 2", el z], " €z, 2"].
5.2.3 Example.Let

0 if <0, )1 if <0,
f@_{l if >0, gm_{o if 2>0.

If 2/ <0<2”, €€l 2], & el2’,0], £ €]0,2"], then
(&) (9(a") = g(2)) = F(£) (9(0) — g(a")) = f(£") (9(=") — 9(0))]
== £+ f(€")]=1

wheneveré <0 and¢” > 0. Thus, the functions, g do not satisfy the condition
(PA) at the point0.

5.2.4 Lemma.lf f g:[a,b]— R satisfy the condition of pseudo-additivity at
x € (a,b), then at least one of the functiorfsg is continuous at:.

On the other hand, if one of the functiorisg is continuous at: € (a, b) and
the other one is bounded on a neigborhoodrofthen the functions, g satisfy
the condition of pseudo-additivity at the point

Proof. a) Letx € (a,b) and f, g satisfy the conditionHA") of pseudo-additivity
at z. If we substitute¢ = ¢’ into (PA’), we get that for each > 0 there is a). >0
such that

£(&) = (€| |9(2")—g(2)| = (&) = F(€")] |9(a")—g(x)| <e
holds whenever

¥e(xr—o.,z), 2" €(x,x+4d.) and =€, z], " €lz,2"]. (5.2.1)
In particular, it has to be

AT f(2)] |A*g(x)| = [Af ()| |ATg(z)| = 0.

Therefore, f has to be continuous at wheneverg is not continuous from the
right at . Similarly, by setting¢ =¢” in (PA’), we can deduce that if is not
continuous from the left at, then f has to be continuous at
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b) Let z € (a,b), o' €la,z), 2" € (x,b], E€l2/,2"], £ eld x], £ €[x,2"].
Then

|£(€) (g(x ”)—g( )= f ( ) (g ( )—g(@ ’)) ( ’) (9(a") = g(x))|
=|( = [(€)) (9(x) —g(a)) = (F(¢" )(9 ") = 9(x))]
<|f(¢ f(f’)\ |g() H\f( Hg ) —g(z)]
< (If(¢ ) f(w)|+|f(rv)— ) [g(x) —g(l”){
+(IF(€") = f@)| +f(2) —f(é)l) l9(2") = g(2)],
wherefrom the second statement of the lemma easily follows. a

5.2.5 Lemma.lf f,g:[a,b] — R are such that the integra(J) f;fdg exists,
then they satisfy the condition of pseudo-additivity at every poita, b).

Proof. Assume that the integrgl) fff dg exists and at the same timdA)
does not hold at some pointe (a,b). Then there exists aa> 0 such that for
everyd >0 itis possible to find points’, 2, 7', n", n such that

¥ e(x—9,z), 2" €(x,x+9), )
nelx, 2", n' €la’,z] and n” €[z, 2"
and (5.2.2)
|[f(n) (g(2") = g(a") = f(n") (9(x) — g(z"))
—f(") (9(z") — g(x))| = & )

Now, let §>0 and «/,2",n',n",n be given such that5(2.2) hold and let
P =(a, &) with be a partition of{a, b] such that

la| <0, ap1=2"<x<2"=aq, and §=n forsomeke{l,...,v(a)}.

Puta =aU{z}, €= (&, ., & 1,1, 0" Ers - - Eney) @A P = (&, £). Note
that |a| < . We have

IS(P) = S(P)| =] £(&) lg(aw) — gla—1)] = f(n') [9(x) — g(cr1)]
— f(n") lg(ax) = g(2)]]
=|f(n) lg(«") = g(=")] = f(n") [9(z) — g(«)]
— f(n") [g(«") — g()]]

>e.

This means that the conditiof.(.3 is not satisfied and hence, in view of Theo-
rem5.1.15 the integral() f;’f dg does not exist. 0

The following statement is a corollary of Lemmag.4and5.2.5
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5.2.6 Theorem.Let f, g:[a,b] — R be such that the integralj) fabf dg exists.
Then for each: € (a, ) at least one of the functiong ¢ is continuous atr.

We know that the(d) RS-integral is a special case of the) RS-integral (see
Theorenmb.1.7). The following theorem shows that the concept of pseudo-addit
vity enables us to clarify the relationship between these integrals in the oppos
direction, too.

5.2.7 Theorem.Let f, g [a,b] — R. Then the integral() fbfdg exists if and

only if the integral (o f f dg exists and the paitf, g satisfies the condition of
pseudo-additivity at every pointe (a, b).

Proof. First, assume tha®) fa”f dg exists. Then, by Theoref1.7, (o) fa”f dg
exists as well and has the same value. Furthermore, by Léirirtathe functions
f, g satisfy the condition of pseudo-additivity at every paint (a, b).

Conversely, assume that the integfal) fff dg = I exists and the functions
f, g satisfy the condition of pseudo-additivity at every paint (a,b). Let £ >0
be given and let the divisiotx. = {so, s1, ..., s,.} Of [a,b] be such that > 2 and

|S(Q) — I| <e for all partitions@ = (3, n) of [a,b] suchthai3 D> a.. (5.2.3)
Set
b, :=min {s; —s;_1: 1€ {1,...,7}}. (5.2.4)

Since the functiong, ¢ satisfy the condition of pseudo-additivity dn, b), there
exists aj. € (0, d,) such that for every € {1,...,r—1}, the inequality

| £(€) (a(s7) — g(s})
=€) (gsi) = 9(s0)) = £(€") (9(s7) = 9(s0))] < ——
holds whenever (5.2.5)
si€(8;—0c,8:), s! € (siy8i+0:),
§elsiysi], & elsiysi], & €lsi, 57 )

Let P=(a, &) be a partition ofla, b] and let|a| < 0..
By (5.2.9, foranyj e {1,...,m} the set(o;_1, ;) N e is either a singleton
or empty. Let

U={je{l,....v(a)}: (aj_1,0;) No. =0},
U2:{1,...,y(a)}\U1.

Then, for every jeU, there is a uniquei(j)e{l,...,r—1} such that
s,(j) € (aj—1, ;). Thus, the cardinality ot/, does not exceed — 1.

€
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Now, setB=aUa.. Then

18] < 0. < 0. (5.2.6)
and for everyj € Uy, there exists a uniqui(j) €{1,...,v(83)} such that

Briy 1> Prei] = a1, ] (5.2.7)
If j € U,, then there exists exactly orf¢j) € {1,...,v(8) — 1} such that

Beiy—1= -1, Bej) = Sit)» Beg)+1 = Q- (5.2.8)
Choose a partitior) = (3, n) of [a,b] such that

)y =&, If jeU. (5.2.9)

Now, we compare the integral sum§P) and S(Q). We have

= J(&) (9lay) = glaz—)) + D F(&) (9lay) = glag-1)).

je U jeUs

Let Vi={k(j):j €U}, Va={1,...,v(Q)}\ V4. Then by 6.2.9-(5.2.9,

kz; Flm) 9(Br-1) +kz; £ () (9(Br) = 9(Br-1))
= eZi jf(mgﬂ(@(ﬁm )— : +k€ZV £ () = 9(-1))
ZJGZ;I f(&) (9(a;) = g(e-1)) |
J: ; (Mets)) (9(Bei))—9(Beciy—1)) + f (eiya1) (9(Begiy+1) — 9(Bec)))
= g Zf(fj) (9(az) — g(j-1))
+Z () (9ls1y) — 9051)) + F o) (9(a) — a(s:).
Hence

=Y f(&) (9(ay) — g(ej1))

JjeEU2

= (F i) (i) —g(-1)) + F(negiyn) (9(05) =g (si7))),

j€U2
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W= f(&) (9(ey) — g(ej-1))
— f(eyy) (9(si)) — g(ei—1)) = F(megy+1) (9(ey) — g(sig))-
Let us recall that byH.2.6) and £.2.9 we have
[oj1, 0] C (s45) = Oc, 8ij) +0e), &5 € o1, ],
M) € [g-15 8]y ey € [siy, ] for j € U,

By (5.2.9, |W;| < Ll for every j € Uy, and therefore (using the fact that the
r—
cardinality of U; does not exceed— 1) we have

1S(P) - S(Q)| <> W] <e.
je U2
Finally, by (5.2.3 and in view of the definition of3, we get

[S(P) = I <[S(P) = S(Q)[+15(Q) — I] < 2e.

This means thatd) ff fdg=1. O

5.2.8 Corollary. Assume thato) fabf dg exists and for each € (a, b), at least
one of the functiond, g: [a,b] — R is continuous atz, while the other one is

bounded on a neighborhood of Then(§) f: f dg exists and equalér) fab f dg.

Proof. By Lemmab.2.4 the pair f, g satisfies the condition of pseudo-additivity
at every pointr € (a, b). By Theorenb.2.7, the integral(§) fab f dg exists as well.

The equality(d) fab fdg= (o) f;’ f dg follows from Theoren®.1.7 O

5.2.9 Remark. In particular, if g(x) =2 and f is bounded ona, b], then the
definitions of the integral$s) fabf(a:) dz and (o) f;’f(:c) dz coincide.

5.2.10 Exercise.Prove the following statement:
If c€a,b], the integrals(d) [ f dg and (4) fcbfdg exist, andf, g satisfy the
condition of pseudo-additivity at then the integral(9) fff dg exists and

o [ ra=6) [ s [ 1o

Hint: Make use of Theorenis.1.21and5.2.7.
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5.3 Absolute integrability

We now introduce the following notation.

5.3.1 Definition. Let—co <c<d< oo and f, g:[c,d] — R. Then we define

Sragle,d]
. (5.3.1)
={|S(f,dg, P) = S(f,dg, P")|: P, P'" are partitions of|c, d] }

and
w(Srag;le,d]) =sup &yaylc,d]. (5.3.2)

The following modifications of the Bolzano-Cauchy condition will be useful.
5.3.2 Theorem.Let f, g: [a,b] — R. Then the following assertions hold:

b
() The integral(é)/ f dg exists if and only if

for everye >0 there is aj. >0 such that
v(a@)
S w(Sragilaj1,a5)) <e (5.3.3)
j=1

holds for all divisionsa of [a, b] such that|a| < 6..

b
(i) The integral(a)/ f dg exists if and only if

for every e >0 there is a divisiona. of [a, b] such that
v(a)
> w(Sraglaj1,a5)) <e (5.34)
j=1

holds for all divisionsa of [a,b] such thata D ..

Proof. We will show that the conditior 3.3 is necessary and sufficient for the
existence of thé) RS-integral.
a) Assume thatf,1.9 holds. Lete >0, e =£/2, and letd. be defined by the con-
dition (5.1.9. Let a divisiona of [a, b] be such thata| < §.. Denotem = v(«)
and, for everyj € {1,...,m}, choose partitions; = (a’, &7), P;=(&’,¢&’) of
laj_1, ;] such that

~ g

W(Siag [aj-1,05]) <S(F;) = S(F) + —. (5.3.5)
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Further, define
=Ue! n=U¢ p=Ue& n=J¢
j=1 j=1 j=1 j=1

Then@ =(8,n) andQ = (B, n) are partitions ofla, b], and
18] <. and | 8] < ..

Hence, using4.1.9 and £.3.5 we get

S (Spgilagnas) <3 (S(B) - S(B) + 5)
=8(Q)— S(Q) +e<2e=E

Sincee > 0 was arbitrary, it follows that conditiorb(3.3) is satisfied.

b) For the proof of the reverse implication, assume thai.f) holds. We will
prove that condition (5.1.3’) is satisfied.

Choose an arbitrary > 0. Let 6. be defined by%.3.39 and letP = («, £) and
P= (&, £) be partitions of|a, b] such thatja| <. and & D a.. Setm = v (P).
Then foreachj € {1,...,m} there is a partition?; = (a’, ¢’) of [a;_1, ;] such
that

&:Lmjaj andZ:Ogj.
j=1 i=1
In view of the assumptiorb(3.3), we get
[S(P) = S(P)| <Y [ (&) (g(a) = gla;1)) = S(P)|

<Y w(Spag a1, ) <e.

Therefore, (5.1.3’) holds.

The equivalence of the conditiob.3.4) with the Bolzano-Cauchy condition for
the existence of thés) RS-integral can be proved analogously; the detailed proc
is left as an exercise for the reader. O

5.3.3 Exercise.Prove the statement of TheorénB.2for (o) RS-integrals.
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5.3.4 Lemma.Let f,g:[a,b] — R and ¢, d] C [a,b]. Then

e (f)19(d) = 9(e)] Sw(Spagi e, d]) < wpea () vard g, (5:3.6)
where
wr(f)= S?éPj |f(t) — f(s)]

denotes the modulus of oscillation pfover interval /.

Proof. @) Leta=B={c,d}, &nele.d and&={¢}, n={n}. Then(a,¢)
and (3, n) are partitions ofc, d], and thus

[£(&) = f(m)]lg(d) = g(c)| € &(f, dg, [c, d])

and
wied) () 19(d) — g(c)] <sup &pagle,dl=w (Sfay; e, d)).

b) On the other hand, if) = (3,n) and Q= (B, n) are partitions oflc, d| and
a=[£Up3, thena is a division of[c, d] and

5@ = S@|=| > (£ = £@) (9la) = glaz-1)].

where 77} = It [o_1, ;] C[Br—1,Bk] and 7]3 = if [oy_1,04] C [Bk—h Bk]
Consequently,
_ v(ox)
1S(Q) = S(Q] <D |£(ns) = £ |9las) — (e
j=1
< Wie,d] (f) V(g7 a) < We,d] (f) Varg g,
and finally
w(Sng; [Cv d]) =sup Gng[C, d] S w[c,d](f) Vargg'

This proves that the inequalities.8.€) hold. O
5.3.5 Remark. If var? g = oo, then the second inequality frorf.@.6) is trivial.
The following result indicates the role of bounded functions in the Rieman

Stieltjes integration theory. It implies thatﬁab f dg exists, thenf is bounded on
the complement of a finite collection of intervals wherés constant.
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5.3.6 Theorem.Let f, g: [a, b] — R be such thag[ab f dg exists. Then there exists
a division a of [a,b] such that for eachj € {1,...,v(a)}, f is bounded on
laj_1, @], or g is constant ona;_1, o).

Proof. Without loss of generality, assume that the integia) ff f dg exists.
Choose an arbitrary > 0. By Theoren.3.2, there is a divisionx of [a, b] such
that

v(

)

)
w(Ssag; [Bi-1,B5]) <e

1

j
holds for all divisions3 of [a, b] satisfying3 D «. In particular, we have

w(Srag;le,d]) <e foreach(c,d] C [a;_1,a ] with je{1,...,v(a)}.
For eachlc, d] C [oj_1, a;], we also have (cf. the proof of Lemra3.4)

[£(€) = F(m)l1g(d) — g(e)] Sw(Spag;[c,d]) <e  whenevers,n € [, d].

Observe that if w4 (f) =oco, then the previous inequality necessarily implies
that |g(d) — g(c)| =0, i.e., g(c) = g(d).

Let us prove that for eaclie {1,...,v(a)}, f is bounded orja;_, a;], or
g is constant orjoy;_1, o).

If f is unbounded ofiw;_, a;] for acertainj € {1,...,v(a)}, then

Wiaj1.05)(f) = 00.
Our previous reasoning leads to the conclusion that
g(aj)=g(a;_1)=~ fora certainy e R.

It remains to show thag(t) =~ for eacht € («;_1, ;). Note that we necessarily
have

w[ajflyt}(f) =00 Or W[t,aj](f) = 0.

The former possibility implies thag(t) = g(«;_1) =+, while the latter one im-
plies
g(t) =g(a;) =~. This completes the proof. O

5.3.7 Remark. Assume thatfabf dg exists. Since the value of the integral does
not change if we change arbitrarily the values fobn the intervals whereg is
constant, we see from TheorénB.6that it is always possible to find a bounded

function f: [a, ] — R such thatfcd fdg= fcd f dg wheneveric, d] C [a, b].
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The next statement provides other necessary and sufficient conditions for
existence of both kinds of RS-integrals.
5.3.8 Theorem.Let f:[a,b]—R, g € BV([a,b]) andv(z) =var? g for x € [a, b].
Then:
(i) The integral(o f fdg exists if and only if the integralo) f fdv exists.
(i) If f is bounded ona, b], then the integral§) fa f dg exists if and only if the
integral (3) [* f dv exists.

Proof. a) For every intervalc, d] C [a, b] we have vafv=uv(d) — v(c). Hence,
by Lemme5.3.4(with g replaced byv),
v(a)
Zw[aj_l,aj](f) (U( —v a] 1 w SfAU) a] 17&]])
j= 1

J:

holds for any divisiona of [a, b]. Consequently, using Lemnia3.4for an arbi-
trary division o of [a, b] we deduce

v(a) v(a)
Z w(Sfag; [aj—lv O‘j]) < Z W[Oc;’—l@j](f) Vara .9
=1 i=1
v(a) v(a)
_Zw[aj 1a] (O‘J —v(a;-1) W(Stav; (1, a4]).
7=1

Using Theorenb.3.2, we can now easily prove that for both kinds of the RS-
integral, the existence of;2 f dv implies the existence off fdg.
b) Assume that the integrét) fabf dg exists. We will prove that then the integral

(o) ff f dv exists as well.
Let e > 0 be given. By Theorerh.3.2 there exists a divisio of [a, b] such
that

v(ox)

Zw(Sng; laj_1,05]) <e (5.3.7)

j=1
holds for each its refinemeiat > 3. We can also assume that
0<var’g—V(g,a)<e (5.3.8)

holds for every divisiono of [a, b] such thata D 3. Finally, according to The-
orem5.3.6 we can suppose that for eaeho 3 and j € {1,...,v(a)}, f is
bounded ora;_1, o], or g is constant orje;_1, «;]. For each such division, de-
note by J, the setofallj € {1,...,v(a)} such thatf is bounded onc;_;, a;].
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Let a be a division offa, b] such thata D 3. Using Lemméb.3.4we obtain

v(o)

> w(Sravilajo,a5)) =Y w(Syav[aj-1,05))

j=1 jE€Ja

< Z w[aj_l,aj}( vargf .9
j€Ja

< Z Wi a] f)lg(e;) —g(aj1)|
J€Ja
+ ) Wyl (F) (Vard_ g —1lglay) —g(a; 1))

j€a

<D w(Srag a1 ay))
j€Ja
+ (st (1) S (vt () ~gfe )

JE€Ja

<&+ <maX w[ajlyoéj](f)) (VarZ 9—Viy, a))

j€Ja

<e+ (maxwm] 1.8, ](f)) €.

VD)

By Theorent.3.2we conclude that the integréd) ff f dv exists.

c¢) Itremains to prove that if the functiofiis bounded oria, b}, then the existence
of the integral(¢) fjf dg implies the existence of the integr@) fabf dv. In this
situation, TheoremS.1.7and5.2.6imply that the integral o) fabf dg exists and
the functionsf, g have no common point of discontinuity ifw, ). Moreover,
by Lemma2.3.3 the functionsf, v have no common point of discontinuity in
(a,b), either. Finally, since the integrab) fab f dv exists by part b) of this proof,
the existence of the integréb) f;’ f dv follows from Corollary5.2.& (As g has
a bounded variation ofx, b], the functionsy and v are bounded offu,b].) O

5.3.9 Theorem. Assume thatf:[a,b] =R, g€ BV([a,b]), and the integral
fabf dg exists. Then the integraﬁf |f] dg exists as well.

Proof. By Theorem2.1.27and Lemmeb.1.13we can restrict ourselves to the
case wheng is nondecreasing offa,b]. Then var g=g(d) — g(c) for each
lc,d] C [a,b]. Thus, due to Lemm5.3.4 the relations

v()
> w(Sragilaj1,a4)) Zw[aj 1oy (F) (9(e) = g(@j-1))
j=1

and
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(

R

)
W(Slf\Aga @1, aj) Zw[aj 1,05] |f| g(ay) — (O‘j—l))

1

j
hold for all divisionsa of [a, b]. On the other hand,

f @) = 1fWI| < If (@) = fy)| forall z,y€ [a,b].
Thus we havevy q41(] f|) gw[cd](f) forany [¢,d] C [a, b] and, therefore,

(o)

Z (S\flﬁg’ a1, q;5]) Zwa] 1,05] |f| g9(oy) — (O‘j—l))

j=1
v(or) v(o)
<Zw[aj val(f) (9(ay) = gla1)) = Y w (Sragilaj-1,a5)).
j=1
The statement of the theorem now follows from Theofef2, O

The next assertion is a direct corollary of Lemfa.1lland Theorem$8.3.8
and5.3.9

5.3.10 Corollary. Let f:[a,b] =R, geBV([a,b]), and v(x)=varig for
x € [a,b]. Then:

(i) If the integral (o f f dg exists, then the integrdlr) f |f| dv exists as well
and

o) [ sos| <) [ 11d0<fvarty

(i) If the integral (9) fabf dg exists and the functioyf is bounded orja, b], then
the integral (9) fab | f| dv exists as well and

) [ s <) [ 17100 < 1l vat

5.4 Substitution

All statements in this section hold in the same form for both kinds of the R
integral. The nextresultis a fairly straightforward consequence of Defiriiti®d.

5.4.1 Lemma.lf the integral f;’f dg exists, then the inequality

b v(P)
/ fdg—S(P)’§Zw(Sng;[ozj_1,ozj]) (5.4.1)

holds for any partitionP = («, &) of [a, b].
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Proof. Let ¢ >0 and a partition? = (¢, E)~of [a, b] be given. For both kinds of
the RS-integral, we can choose a partitiBn= (o, £) of [a,b] such thata D «

and
/bfdg—S(ﬁ)’<€

Sincea is a refinement otx, we can split it so that

m

a=|Ja’, wherea’isadivision off;_;, ;] for je{1,...,m}.
j=1
Similarly, €= {€",€%,...,€™}, whereg&’ are sets such that
P;=(&,€,) are partitions of[a;_;, o] forj€{1,...,m}.

We thus have

[ru-srl:

/fdg S(P ’ ]s S(P)’

<43 |16 ota) ~glay 1)~ S(B)

<e+ ) w(Sragilaj1,05).

J=1

Sincee > 0 is arbitrary, it follows that%.4.7) holds. i

5.4.2 Corollary. If the integral f;’f dg exists andc, d] C [a, b], then

fdg—f(&)(9(d) —g(c))

<w(Sragile, d])

holds for every € [c, d].

The following substitution theorem is another corollary of Lentiné 1.

5.4.3 Theorem(SUBSTITUTION THEOREM). Let f, g, h:]a,b] —R be such
that f is bounded andf;’g dh exists. Then one of the integrals

/abf(x)d(/:gdh) and /abfgdh

exists if and only if the other exists. In this case we have

/abf(x)d(/:gdh>:/abfgdh, (5.4.2)
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Proof. Consider the function : [a, b] — R given by

w(x) :/ gdh, x€la,b.
For any partitionP = («, &) of [a, b], we have

|S(fg>dh’7p)_8(fadva)|

v(P) v(P)
= Z f(&) 9(&) (hay) — hla-1)) — Z f(&) (wley) —w(aj-1))

9(6;) () — hlay_1)) — / 7 gdn

j—

v(P)
<> 1)
j=1

) |

v(P)
<[ fllse (Z

J=1

9(6) ()~ hlas) — [ g

j—

Now, Corollary5.4.2yields

v(P)
[S(fg. dh, P) = S(f. dw, P)| <[ fllec ) w(Soans a1, ),
j=1
and the proof of$.4.2) is completed by using Theorein3.2. a

Settingh(t) =t in Theoremb.4.3 we get the following statement.

5.4.4 Corollary. If f:[a,b] — R is boundedg: [a,b] — R is Riemann integrab-
le, andp(x) = [ g(t) dt, then one of the integrals

[ o and [

exists if and only if the other exists. In this case, we have

[ rao=[ o e

5.4.5 Theorem(SECOND SUBSTITUTION THEOREM).

Assume thab : [¢, d] — R is continuous, strictly monotone and maps the inter
val [c, d] onto [a, b]. Then for arbitrary functionsf, g : [a, ] — R, the following
statement holds:

If /bf(x) dg(z) exists, then df(gb(:p)) dg(¢(z)) exists as well,
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and the relation

d b
+ / F(é(x)) dg(d(x)) = / f(x) dg(x) (5.4.3)

holds with the plus sign i is increasing, and with the minus signyifis decreas-
ing.

Proof. Assume, for example, that is decreasing. Theh= ¢(c) anda = ¢(d).
For a given partitionP = («, &) of the intervallc, d], set

Buipys =0lay) and nypy = (&) forje{1,....v(P)}.

Then Q: (/87 7’)7 where /8: {ﬁ(hﬁla o 7ﬁl/(P)}7 n= {nla N2, - 7771/(P)}7 is
a partition of [a, b]. We write 8= ¢(a), n=¢(£), and Q = ¢(P). Obviously,
if aDa’, then alsog(a) D ¢(a’). Since ¢ is uniformly continuous ore, d|,
we have

lim |¢(a)]=0.

|| —0
Moreover,

v(P) v(Q)

D F8(E)) (9(d(e) = g(dlaj1)) == > f;) (9(3)) — 9(B;-1))

j=1 i=1

holds for every partition? = («, &) of [c, d]. This fact easily implies the state-
ment of the theorem; we leave the details to the reader. The case wi&n
increasing can be handled in a similar way. O

The following theorem is yet another variant of the substitution theorem. |
proof is left as an exercise for the reader.

5.4.6 Theorem.Let¢: [a,b] — [¢(a), ¢(b)] be increasing and continuous, and let
v [p(a), d(b)] — [a,b] be the inverse ofh. Moreover, let an arbitrary function
f:[a,b] — R be given. Then, if one of the integrals

b @(b)
/ f(x) dz, /¢ ECEILIE

exists, the other exists as well, and

b o(b)
/ f(a) de = /(b ) de)

5.4.7 Exercise.Prove Theorerb.4.6for both kinds of the RS-integral.
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5.5 Integration by parts

The following statement is a generalization of the classical integration by pa
formula for the Riemann integral (see Exercisg.J).

5.5.1 Theorem(INTEGRATION BY PARTS). If one of the integralsfffdg and
fabg df exists, then the other exists as well, and we have

/ fdg+ / gdf = F(b)g(b) — F(a)g(a). (5.5.1)

Proof. a) Let an arbitrary partition® = («, &) of [a, b] be given. Setn =v(P).
Rearranging the terms in the sustif, dg, P), we get

S(f,dg, P) = f(&) (9(en) = g(a)) + f(&2) (g9(az) — g(an))
+ At f(En) (9(0) — g(am-1))

=—f(a) g(a) = (f(&) — f(a)) g(a) = (f (&) = f(n))
— (flar) = f(&)) glen) = - = (f(&m) — flam-1))
= (fem—1) = f(&m-1)) g(m—1) = (f(0) = f(&m)) 9

= f(b) (b) = f(a) g(a) = S(g,df, Q),

where the partitior) = (8, n) of [a, b] is such that
5:{%517041,52,0427-..,Oém—1>§mab}>

n={a,a1,a1,a2,a9,...,0m_1,0n_1,b}.

(a
)

Clearly, 3 is a refinement otx. *

b) Assume that the integralo f gdf exists and let >0 be given. Choose
a division 3. of [a, b] such that

b
S(9.9£,0)~ (o) | gdf’ <
holds for all partitions) = (3, n) of [a,b] such that3 D 3..

Let P=(a, &) be an arbitrary partition ofu, b| such thata O 3.. By the first
part of the proof there is a partitio = (3, n) of [a, b] such that

b
S(f,dg, P)— £(b) g(b) + f(a) g(a) + (o) / gdf

b
—(0) / gdf - 5(g,df. Q).

10f course, if¢; =a;_; or £ =a; for somej, we have to leave ouf; from 3 and the
corresponding tag fromy.
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while 8 D o and hence als@ D> 3.. Consequently,

S(/.dg. P) = J0)g(0) + (@) + (o) [ g df‘

<a>/abgdf—s<g,df,@>'<a

This means that the integré&) f: f dg exists and$.5.7) holds.
By interchanging the roles of and g, we immediately see that {fr) ff fdg
exists, then(o) ff g df exists as well ande(5.7) holds.

c) Also the statement of the theorem f@r) RS-integrals follows easily from the
relation £.5.1); the details are left to the reader. O

5.5.2 Exercise.Prove Theorerf.5.1for the (0) RS-integral.

5.5.3 Exercise.The classical integration by parts theorem for the Riemann int
gral reads as followsAssume thatf, g: [a,b] — R are Riemann integrable and
let F,G:[a,b] — R be given by

F(m):/amf, G(ﬁ):/amg for z € [a, b].

If one of the integralsff fG and fab F g exists, then the other exists as well, and
we have

/fG+/ Fg=F(b) G(b) — F(a) G(a).

Show that this result is a consequence of Thedsemnl.
Hint: Use Corollary5.4.4

5.6 Uniform convergence and existence of the inte-
gral

All statements in this section except Theorgér.4and Exercis®.6.5hold in the
same form for both kinds of the RS-integral.

5.6.1 Theorem. Assume thatgeBV([a,b]), f:]a,b]—R is bounded,

fn:la,b] = R, ne€N, are such that the integraf; fn dg exists for everyn € N,
and
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Then the integra[[: f dg exists as well and

n—oo

lim fn dg = / fdg. (5.6.2)

Proof. If var’g =0, then, by Lemm&.1.1§ ¢ is constant orja, ] and the state-
ment of the theorem is obvious. Therefore, assume thdtgvas.
Let £ >0 be given. According tc5.6.]), we can choose, € N such that

an _f”oo < and an”oo < ||f||oo+1 forall n > n.. (563)

vart g

Furthermore, Lemma.1.11(i) implies that

b
/ fn dg‘ < | fullscvartg < (|| fll + 1) var,g  foralln>n..

Hence, there are an increasing subsequéngé of N and / € R such that
b
klim / fn, dg=1.
In particular, there exists & € N such that

ng. >n. and

b
/ Fou, dg—]‘ <e. (5.6.4)

Now, let a. be a division offa, b] such that

’ (fn.,dg, P / fon. dg(<€

wheneverP = (a, §) ia a partition of [¢, b] such thata D a..

(5.6.5)

Sinceny,_ > n., it follows from (5.6.9) that

‘S<f’ dg7P)_S(fnk57dg7P)’ S ||f_fnk€||oovargg<€

for every partitionP = (a, §) of [a, b]. Further, using%.6.4—(5.6.5, we deduce
that

S(f.dg, P) — I| <|S(f., dg, P) — S(fu,. . dg. P)
‘ (fur. g, P / for dg’

/fnk dg — I'<38
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for each partitionP = («, &) of [a, b] such thata D .. Thus,

/abfdgzl.

Finally, since by LemmaS.1.11and5.1.13we have

b b
/fndg—/ fdg‘San—fHoovar’;g,

equality 6.6.2) follows from our assumptior5(6.1). This proves the statement
for the (o) RS-integral. The proof for thé) RS-integral is analogous and is left
to the reader. O

5.6.2 Exercise.Prove the statement of Theorén®.1for () RS-integrals.

5.6.3 Theorem.Let f € C([a,b]) and g€ BV([a,b]). Then both the integrals
fabf dg and fabg df exist.

Proof. By Theorems2.1.2], 5.1.7 5.5.1and Lemmeéb5.1.13 it is sufficient to
prove the existence of the integi@al) fab f dg inthe case whep is nondecreasing
on [a, b].

Let £ >0 be given. If g(b) =g(a), then g is constant ona,b] and hence
(0) f:fdg:O. Thus, we can assume thatb) — g(a) > 0. Next, since every
function continuous on a compact interval is also uniformly continuous on th
interval, we can find &, > 0 such that

|f(z)— fly)| < for all z,y € [a, b] such thafz — y| < d.. (5.6.6)

_c
9(b) —g(a)
Now, consider two partition®® = (a, £), Q@ = (3,n) of [a,b] such that|a| < .
and 8D a. We will show that|S(P) — S(Q)|<e. By Theorenb.1.15and Exer-
ciseb.1.16(ii), this will guarantee the existence of the integf&) fb fdg.

Denotem =v(«a). SinceB D a, the elements o can be forj € {1,...,m}
andic{l,...n;} denoted bys!, where o, =3} <---< JJ =q. The tag
corresponding td3’_,, 3/] will be denoted byy’. Then

S(P)=Zf(€j)(g(aj)—g(aj-l))=2f(§g)2( 9(%) = 9(8L1)
and

nj

IS(P) = S@I <3 D 17(6) = £ (9 — 9(81).
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Since|&; — )| <|a| <9, forall je{1,...,m} andic{1,...,n;}, it follows
from (5.6.6) that
1S(P)=S(Q) < ——7~ ZZ (8)) —9(B1))
g(b ) )55
£
= b a))=¢c

ORI (9(b) —g(a))

This completes the proof. a

5.6.4 Theorem.(i) If f€BV([a,?]) is left-continuous on(a, b], then the inte-

grals
b b
o) [ 14 and () [ 9o

exist for everyyg € G([a, b]) which is right-continuous offu, b).
(i) If f€BV([a,b]) is right-continuous ona, b), then the integrals

a)/abfdg and (a)/abgdf.

exist for everyy € G([a, b]) which is left-continuous ofa, b].
Proof. In both cases, it suffices (thanks to Theor®ri.]) to prove the existence
of the integral(o f gdf.

Let g € G([a,b]) be right-continuous offa, b), i.e., g € Gr([a, b]). By Lem-
mas4.2.6and4.2.8we have

Gr([a, b)) = l(Gr([a,b]) NS([a, b)) = l(Lin ({x(r: 7 € [0, 8] })).
Thus, by Lemmé&.1.13and Theoren®.6.], it is sufficient to prove that the inte-
gral (o) fab g df exists if g = x5 for somer € [a, b].

If 9=Xpay, i-€., T=a and g=1 on [a,b], then (o) fabgdf:f(b)—f(a)
(see Exercis&.1.6(ii)). Therefore, we may assume that (a, b] and g = x(s).
We will show that

() / gdf = f(b) — f(r). (5.6.7)

By Remark5.1.8we can restrict ourselves to partitiods= («, &) of [a,b] such
that 7 € a. For every such partitionP, let k(P) denote the unique index
ke {1, RN I/(P)} such thatr = «y,. Then Qk(P)—1 < fk(p) < Qpp) =T, and

S(P):{ f(0) = f(7) if Skp) < T,
f(b) - f(ak:(P)—l) if &(P) =T.
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Consequently,

[S(P) = (f(b) = £())] { ’ TAnST G
IO = flawey )l i Gy=T

Thanks to the continuity of the functiori at = from the left, we can choose
a division a. of [a, b] containing the point and such that

1f(7) = flawpy-1)| <e
holds for anya O a.. By (5.6.8), we have
|S(P) = (f(b) = f(1))| <¢
for all partitions P = (a, €) of [a, b] such thata D a., which implies £.6.7) and

the proof of the statement (i) is complete.
The second statement can be proved similarly. O

5.6.5 Exercises(i) For both kinds of the RS-integral, prove the following as-
sertion:If fe BV([a,b]) is continuous, then the integrzj]f fdg exists for every
g€ G([a, b]).

(ii) Give a detailed proof of the statement (ii) in Theorém.4

5.6.6 Remark. Let us mention (without proof) another interesting existence re
sult. It was proved in 1936 by L.C. Young, one of the pioneers of integratic
theory (see15€): Assume thaff :[a,b] =R and g: [a, b] — R satisfy

(@) = f(y)| <K |z —y|* and |g(z) — g(y)| < L]z —y|” forz,y € [a,b],
where K, L € [0,), a, € (0,00), a+ 3>1. Then(J) fffdg exists.

5.7 Pointwise convergence

In order to derive a convergence theorem for integy"§|$n dg when the sequence
{f»} is not uniformly convergent, we introduce the following concepts of thi
Darboux upper and lower integrals.

5.7.1 Definition. Let g : [a, b] — R be nondecreasing. For a functigina, b =R
and a divisiona of the interval[a, b], put
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Furthermore, we define thegper integralof f with respect tog as

T b
/ f dg=inf {S(f, dg, a): o is adivision of [a, 8]},

and thelower integralof f with respect tog as

b
/ £dg=sup {ﬁ(f, dg, @) : a is a division of [a, b]}.

If the functions f, g are fixed, we write simplyS(c) instead ofS(f, dg, &)
and S(«) instead ofS(f, dg, «).

5.7.2 Lemma.Let f:[a,b] — R and letg: [a, ] — R be nondecreasing. Then

/abfdg:/abfdg:IeR (5.7.1)

if and only if (o) [ f dg=1.

Proof. a) Assume tha.7.]) holds. Sincey is nondecreasing, it follows directly
from Definition5.7.1that

S(a) < S(a, &) < S(a) for all partitions (a, &) of [a, b],
and
5(@) > S(a) and 5(&) <S(a) if &> a.

Using the first fact, it is not difficult to verify that for eadhe N there is a division
" of [a, b] such that the inequalities

I <5(a")<5(at € <S(ah) <+,

hold for whenever(a*, £¥) is a partition of [a,b]. For a givene >0, choose
k->1 and seta. = o=. Then
I—e<S(a*)<S(a) <S(a, &) <S(a)<S(af)<T+e

whenevera O a. and(a;, &) is a partition of{a, b]. It follows that (a)fa” fdg=I.

b) Assume thato) f;fdg exists. Lete > 0 be given. By Theorerb.1.15there
exists a divisiona such that the inequalityS(c, &) — S(a, )| < £, or

€

v(c)
> (F(&) = Fny) (9lay) = gla1))| < 5,
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holds for all sets of tagg,n of the division «. Passing to the supremum and
infimum on every intervala;_1, o], we get

v()
— ( 6[sup f(z)— inf f(x)> (9(aj) — g(aj_1)) < g e

Oz]'_l,aj} $E[Oéj71706j]

Consequently,

b b
/fdggg(a)<§(a)+5§/fdg+e

and finally also

b b
0§/fdg—/fdg<e.

Sincee > 0 was arbitrary, we conclude that

ffdgz/;fdg

By the first part of the proof, both the integrals are equaktp fab fdg. O
5.7.3 Remark. If

ffdgz/abfdgeK

then the common value of both the integrals is calledDheboux-Stieltjes inte-
gral. Lemmab.7.2implies that this integral is in fact equivalent to tfe) RS-
integral.

Our next goal is to prove two main results of this section, Osgood’s bound
convergence theorem and Helly’s convergence theorem. To this aim, we need
following statement known as Arzes lemma. Its proof is pretty long and can be
found e.g. inb5], Lemma 11.15.8.

5.7.4 Lemma(ARZELA'SLEMMA). For everyk €N, let {J,;:j € U} be a fi-
nite collection of intervals ina, b]. Assume there exists @ >0 such that for
every k € N, the length of the uniot ), Ji; is greater thanC. Then there
exist infinite sequencegk,} and {j,} such thatj, € Uy, for every/ecN and

ﬂfeN Jkuje 7‘é 0.
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5.7.5 Theorem(OsGcooD s CONVERGENCETHEOREM). Assume that the fun-
ction f:[a,b] — R and the sequencgf,} of functions defined ofu, b| satisfy

lim f,(z)=f(z) forxé€]la,b

n—oo

and (5.7.2)
|fo(x)| <M <oo forzéela,b] and neN.

Further, let g € BV([a, b]) be such that the integralfabf dg and fab fn dg exist
for everyn € N. Then

lim fn dg = / fdg. (5.7.3)

n—oo

Proof. By Corollary’5.3.1( the integralf;’ |fu(z) — f(z)| d(var? g) exists for
everyn € N and the inequality

/fn ) dg(z /f ) dg(z

holds. Therefore, it is sufficient to prove that the theorem holds if the functiot
f» are non-negativef =0 and g is nondecreasing. Under these assumptions, w
need to prove that

/\fn z)| d(var; g) (5.7.4)

b
lim fn dg=0. (5.7.5)

n—oo

Without loss of generality, assume thais nonconstant (otherwise the statemen
is obvious).

Suppose thaix.7.5 does not hold. Then, due to Lemrba/.Z there is an
e >0 and a subsequendg,,, } such that

b b
/fnkdg:/ fn,dg>e forall keN.

By Definition’5.7.], this means that for everlyc N there is a divisiom* of [a, b]
such that

ﬁk(ak) > g, Where §k(ak) :ﬁ(fnka dgv ak)
Further, putm; = v(a*) and

$rj= inf fo(2) forkeN andje{l,...,my}.

xe[a] 1 ]
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For a givenn > 0, let U, stand for the set of indiceg such thatg,, ; >n, while
Vi.= {1, e ,mk} \ Uy. ObViOUSly,

M (g(ef)—glad )+ (g(eh) —glah ) >e

jeUg JEVE
or
M Z (9(af) —gla} ) >e—n(g(b) — g(a)).
For = 1505 — gty "o %

> (glah) = glaf1) > 577 >0.

JjeU

Note that the intervals/, ; = [g(c_,),g(a})], j € Uk, are nonoverlapping, and
thus the length of their union is

Z ‘Jk]‘ > — 2M > 0.

J€U,
Hence, by Arzél’'s lemma, there exist a point and sequenceék,} and {j,}
such thatj, € Uy, forevery /e N andy, € (,cy Ji,.j,- This gives

Yo € [g(aff_l), g(at9)] forevery feN.

Je
Sinceg is nondecreasing ofu, b], there exists a point, € [a, b] such that

yo € [9(z0—), g(wo+)], w0 € [0} 1, Oéff] and j, € Uy, for everyl € N.

By the definition of the set#/, it follows that fnk (x9) >n for every/ € N. How-
ever, this contradicts our assumption th&tn%o fn(x)=0. Thus, £.7.5 is true.
O

The next assertion is complementary to Osgood’s theorem.
5.7.6 Theorem(HELLY'S CONVERGENCETHEOREM). Let f:[a, b]—R be con-
tinuous and lety : [a,b] = R, {g,} C BV([a,b]) and~y € [0, 00) are such that

varl g, <y<oo forallneN and lim g,(v)=g(z) forall z€la,b].

n—oo

Thenvar’g <~ and

lim fdgn / £ dy.

n—oo
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Proof. By Theoren2.7.2we have val g <+; by Theorenb.6.3 all the integrals

f;fdgn, neN, and fabfdg exist. Lete >0 be given. The continuity off
implies that there is a divisionx of [a, b] such that

€
|f(z) = ) <+
37 (5.7.6)
forall z,y € [o;_1,05] @and je{1,...,v(a)}.
Let &£ = (a1, s, ..., q,). Then for eachn € N we have

b
/ £ dg — S(f, dgo, (0, )

:f ( / ) dou(o) = Flos) [ dgm))

j—

n@) g,
:Z/_ (f(x) = f(ey)) dgn(z).

j=1 71
Using 5.7.6) and Lemméb.1.1], we get

v(ox) - c
vary’ g, <-—y=-.
1 T3y

[ @ 0,0 -5 dgn,<a,s>>\s%

3

j:
Similarly, we can derive the following inequality with the functigp replaced
by ¢g:

[ ) d0t0) - 57,80 (2,8)
Sinceg, (z) — g(z) for everyz € [a, b], itis clear that
lim [S(f, dgn, (e, €)) = S(f, dg, (ex, €))| =0.
Thus, there exists any € N such that
[S(F. dga, (0,€)) = S(f,dg. (@, €))| < 5 forn>n.
Using the last three inequalities we finally get
b b b
| 1= [ rasl<| [ ron=s(r.d0,.(@.6)
+[S(f, dgn, (@, €)) = S(f, dg. (e, €))|
S(f.d. (. )~ [ g

for all n > ngy, which implies the desired equality

b b
lim fdg, :/ fdg. |

<€
3

<

+ <e
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5.8 Consequences of RS-integrability

In this section we investigate some consequences of the existence of the inte
fab f dg. To prove the first result, we need the following two auxiliary lemmas.

5.8.1 Lemma.lf a, >0 forall neN and "~ | a, = oo, then there exists a se-
quence{c,} such that

c,>0 forallneN, lim ¢,=0 and chan:oo. (5.8.1)

n—o00
n=1

Proof. The sequencés, } ={>",_, a.} is nondecreasing and

lim s, =o0. (5.8.2)

n—oo

In particular, for sufficiently largex (n >ny), all s,, are positive. Therefore, we
can define

1 if n<ny,
Cn = 1

- if n>ng.

n

Obviously, ¢, >0 for everyn eN andlim,,_.., ¢, =0. On the other hand, we
have

for all m,n € N such thatn >n >ng. In view of (5.8.2), for eachn € N there is
anm,, >n such thati’:n—*1 < % Consequently,

%C a >1
k Uk 9"
k=n
This means thaly(8.]) is true. o
5.8.2 Lemma.Let g:[a,b] — R be given.
(i) If
xo € (a,b] and var;® g=o00 forevery z € [a, zy), (5.8.3)

then there exists an increasing sequekieg} of points infa, xy) such that

k—o0

lim x, =2z, and Z lg(xpi1) — g(xg)| = 0. (5.8.4)
k=1
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(i) If
To € [a,b) and var; g=oo forevery z c (x,b], (5.8.5)

then there exists a decreasing sequeficg} of points in (g, b] such that
(5.8.9 is true.

Proof. i) Assume b.8.9). First, we will prove that
sup{var,g:z € (y, 7o)} = oo foreachy € [a, 7o). (5.8.6)

Assume the opposite. In particular, let there/lec [0, c0) andy € [a, xy) such
that

sup{varyg:x € (y, zo) } < M. (5.8.7)

Set M* =M + |g(x¢) — g(y)|- Then, due t0/%.8.9, we can choose a division
{vo0,v1,--.,ym} Of the interval[y, xy] such that

Z l9(y;) — g(yj—1)| >3 M".

Since

19(Ym) = 9(Ym—1)|=19(x0) = 9(Ym—1)]
<lg(zo) —gW)|+9(y) = g(ym—1)| < M~,

we have

3

l9(y;) — 9(yj—1)| >2 M~,
1

j
and thus vag~-'g > 2 M*, which contradicts$.8.7). Hence, §.8.9) is true.

Now, let us construct the desired sequence..$et a and choose:, € (a, x)
such thatu, > zo — 1 and vati2g > 1. If uy,u, ..., us € [a,x¢) are already de-
fined and satisfy

up € (up_1,0) N (g — ,x20) and vag’ g>1,

1
(-1
find u,,; such that

1
Ups1 € (ug, xo) N (o — 7 ro) and vag‘ttg>1.
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The sequencéu,} is increasing and
lim wy = . (5.8.8)

{—00

By the definition of variation, for every € N there is a division
o' ={af,at, ... a }

Y my

of the interval[u,, u,, 1] such that

my
> lglad) —g(af_)>1
j=1

holds. Then
> (Z l9(c) —9(a§_1)1> > 1=oc0. (5.8.9)
=1 \j=1 (=1

Let us reorder the elements of the setS ¢ € N, to the sequencéz;} in such
a way that

T =a=aqp,
¢

ka:aﬁH if xp=0a; and j<m,—1,

and

VA5 I ot
L1 = O if rp =0, ;.

By (5.8.9 and £.8.9, the sequencéz;} has the required properties. This com-
pletes the proof of the assertion (i).

i) The proof of the second assertion is quite analogous and we can leave
details to readers. O

5.8.3 Theorem. If the integral fabfdg exists for every continuous function
f:la,b) =R, theng:[a,b] — R has bounded variation.

Proof. By Theorenmb.1.7, we can restrict ourselves to tlie) RS-integral.

Notice that by Heine-Borel Theorem and thanks to the additivity of variatio
as a function of intervals (cf. Theoreil.19), it follows that a given function
¢:]a,b] = R has bounded variation if and only if the following conditions are
satisfied:

e For eachr € (a, b], there is &; € (0, x — a) such that
var® < 0.
i _ (5.8.10)
e For eachr € [a, b), there is &, € (0,b — x) such that

varitozp < oo.
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Consequently, it can happen that ¥ar=co only if there exists an, € [a, ]
such that at lest one of the conditioris§.10) is not satisfied forr = x,. First,
assume that, € (a, b] is such that vai g = oo for eachx € [a, z(). Then, by the
first part of Lemméb.8.2there is an increasing sequenicg,} of points in(a, x)
such that

k—o0

lim x =1z, and Z lg(xps1) — g(xp)| =
k=1
By Lemmab.8.], there is a sequendg;.} of positive numbers such that

lim ¢, =0 and ch \g(@rt1) — g(xn)| = 0.

k—o0
Now, let &, = 4L for eachk € N, define

0 if x<xy, orx>xg, or xe{xg},

flx) = .
cx sgn(g(zri1)—g(wy)) if 2=§,

and extend the functioffi linearly to [a, b]. This implies thatf will be continuous

on [a, b]. We have

o0

f(&k) (9(7r11) — g(ar)) = o0

k=1
In particular, for eachV/ > 0 there is anV,; € N such that

Ny

Zf &) (9(@ht1) — g(zx)) > M.

For a givenM > 0, set

oy ={a,1, 29, ..., TNy, TNy+1, 0}, €= (a,81,8, . €Ny, D).
Then Py, = (a, €,,) IS a partition of{a, b] and

Ny

Z J(&k) (9(Tps1) — g(zr)) > M.

(Recall thatf(a) = f(b) =0.) But this means that the integrat) fabf dg cannot
have a finite value.

If the latter condition from%.8.1() is not satisfied, i.e., there is an € [a, b)
such that vaf g=oo for every x € (o, b], then the proof is similar, just the
second part of Lemmi@a.8.2should be used instead of the first one. O
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5.8.4 Exercise.Formulate and prove an analogue of Lenin@ 2which is nec-
essary to complete the proof of Theor&m.3if there is anz € [a, b) such that
var; g=oc foreveryz e (o, b).

5.8.5 Theorem.Let f:[a,b] — R be such that the integraf;’f dg exists for
every step functiog. Then f is continuous.

Proof. Clearly, we can restrict ourselves to tle) RS-integral. Letx, € (a,b),
¢, d"eR, (d—c) (" —c) ("= ) #0 and let the functiory : [a, b] — R be de-
fined as in Remark.1.24 i.e.

9(x) = ¢ Xjapo) () + € Xjzo] (T) + " X(@op)(z) fOr z€a,b].

Arguing like in Remarks.1.24 we can see that the integr@i)ff f dg can exist
only if

f(xo—) = f(x0) = f(wo+).

Right-continuity of f at a and left-continuity ab can be proved similarly™

5.9 Mean value theorems

The results presented in this section apply to both kinds of the RS-integral.

5.9.1 Theorem(MEAN VALUE THEOREM). If f is continuous orja,b] and g is
nondecreasing offu, b, then there exists am, € [a, b] such that

/ £ dg = f(z0) (9(b) — g(a)). (5.9.1)

Proof. Theorenb.6.3guarantees the existence of the integﬁ:’ay dg. Sinceg is
nondecreasing ofu, b|, we have

m (g(b) —g(a)) < S(P) <M (g(b) — g(a))
for every partitionP = («, &) of [a, b], where

m=min{f(x):x €[a,b]} and M =max{f(x):x € [a,b]}.

It follows that

mlg) - 9(a) < [ flg <M(g(t) - g(a)

Since f is continuous, it takes on all values from the interjsal A/]. In particu-
lar, there is anx € [a, b] such that$.9.7) holds. O
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5.9.2 Theorem(SECOND MEAN VALUE THEOREM). If f is continuous orja, b]
and g is nondecreasing ofu, b|, then there is an, € [a, b] such that

/f z)dr=g(a / f(z)dz+g(b /f (5.9.2)

Proof. The functionf is Riemann integrable ofu, b]. Set

:/xf(t) dt forz€la,b].

By virtue of Corollary5.4.4(substitution theorem), Theorefb. 1 (integration by
parts) and Theorei®.9.], there is ancg € [a, b] such that

/ f(z dx—/bgdh:h(b)g(b)—/abhdg
(/fdx) o) - (/xofd:U)(() o(@)

oo [row

5.10 Other integrals of Stieltjes type

Let functionsf, g : [a, b)) — R and a divisiona of [a, b] be given. Set

v(a)
Zfaj +f(a] 1)( (

g(aj) — glaj-1)),

u(a)

If S(a, &) in Definition5.1.3is replaced bySy/ (), Scr(a), or Scr(a), we
get the definitions of thenain integral left Cauchy integralandright Cauchy
integral, respectively. Again, we distinguish between th@y and (o) variants
according to the choice of the limiting process. For each of these integrals,
class of integrable functions includes all RS-integrable functions. However, not
properties of RS-integrals are maintained. For example, an analogue of Theo

4.3 (substitution theorem) does not hold for the central integral. More detal
can be found in Section 11.19 of T. H. Hildebrandt’s monogreif.[
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5.11 Exercises

(i) In the following examples, investigate the existence and value of the Stieltj
integral f: f dg of each kind introduced in this chapter:

(@) [a,b]=[0,7], f(x)=z andg(x)=sin z for = € [a, b],

(b) [a,0]=[-1,1], f(z) =2 andg(x)=exp(|z|) for x € [a, b],

0 if z€(0,3),
(©) [a,0]=10,1], f:[a,b] =R andg(z)=qc if z=1,
d if ze(3,1].
(i) Let
0 if z<0, _J0 if x<0,
f<x):{1 if 2>0, g<x>_{1 if 2>0.

Investigate the existence and the value of the following integrals (consider b
(0) and (o) RS-integrals):

1 0 1 1 0 1
/gdf,/ gdﬁ/ gdf,/ gdg,/ gdg,/gdg
-1 -1 0 -1 -1 0

(iiiy Determine the value of the integrab) [ «2 dg(x), where
z ifzel0, 3],
g(x) = _
1 ifre(s,1].

(iv) Provide an exact definition of the line integral of the first kind mentioned il
Sectionl.Z, and formulate some of its basic properties that follow from the resul
obtained in the present chapter.



Chapter 6

Kurzwell-Stieltjes integral

Riemann-Stieltjes integral is widely used everywhere where it is possible to lin
ourselves to the cases when the integrand and the integrator have no com
points of discontinuity (or, in the case ¢f) RS-integral, there are no points at
which both functions have discontinuity on the same side). For some applicatic
(e.g. in the theory of hysteresis and related variational inequalities1gg¢ 16]
and [/7]), the Stieltjes integral which has no requirements on the continuity of tt
integrated and integrating functions is needed. It appears that the most suit:
integral from this point of view is the integral which we will call the Kurzweil-
Stieltjes integral. However, its generality is not its only asset. In particular, |
us mention also the simplicity of its definition and a relatively easy way of th
proofs. Unfortunately, monographic literature has not devoted sufficient attenti
to this concept. As far as we know, a brief treatise of this integral can be fou
in chapter 24 of Schechter’s monogradif] from 1997 (however, it is called
the Henstock-Stieltjes integral there). Furthermore, McLeod’s monogf&ih [
from 1980, where it is calledauge integral and several extensive sections (2.6
and 2.7 and partially also 2.8) of the monogrepé] by Dudley and Norvdia deal
with this integral (called there the Henstock-Kurzweil integral) in more detail. Le
us notice that this integral is a special case of the generalized nonlinear inte
which has been introduced in Kurzweil's seminal work][from 1957 as a tool
for explaining some of the convergence effects occurring in the theory of no
linear differential equations. A year later, iAi9], Kurzweil explicitly used this
special Stieltjes form of its integral to consider generalized differential equatio
covering e.g. the equations whose right hand sides contain terms with Dirac c
tributions. During the 70’s of the last century, the term Kurzweil-Stieltjes integr:
(or Perron-Stieltjes integral by Kurzweil’s definition) was already commonly use
in the works dealing with the generalized nonlinear differential equations (see €
[119 or [131]] and the papers cited there).

The aim of this chapter is to present the theory of the Kurzweil-Stieltjes int
gral as comprehensively as possible.

6.1 Definition and basic properties

Let us recall that the finite ordered subsgty, o, ..., «,,} of aninterval|a, b]
is called adivisionof the interval[a, 0] if

a=qg<ay<-- <o, =>".

139
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The set of all divisions of the intervak, b] is denoted by7 [a, b]. The number
of subintervals forming a division is usually denoted bfe), i.e. o, (o) =b.
Finally, we also set

lal|= max (a;j—aj_1) for a€2]a,b.

We say thata' € 2[a, b] is arefinement ofa € 21a, b], if &’ D a.
The pair P = (a, &) of finite ordered sets

o= {Ozg, o1, ... ,Oéy(a)} and EZ {51, - ,fy(a)}
is called gpartition of the interval[a, b] if « is a division of the intervala, b] and
ijflgngij for jE{l,,V<a)}

We say that; is thetag of the subintervala;_;, «; | and £ is theset of the tags
For partitionsP = («, &) we will also writev(P) instead ofv(a). (We can also
say thatv(P) is the number of tags contained in partitidh)

6.1.1 Definition. Every positive function : [a, b] — (0, 00) is called agaugeon
the interval[a, b]. A set of gauges offu, b] is denoted by%|a, b|.

If 0 is a gauge orja, b], we say that the partitio® = («, £) of the interval
la,b] is d-fineif

[aj—1,05] C(§—0(&), & +6(&)) forallj=1,... v(a). (6.1.1)

Consider functions, g : [a, b] — R and a partitionP = (a, &) of [a, b]. Anal-
ogously to RS-integrals, we define

v(P)

S(f. dg. P:[a,b]) (= S(/. dg, (o, €); [a,8])) = Y (&) [g() — gla;1)]

(:g%f@nbww—gwfﬂw‘

According to the concrete situation, we will usually write simply e.§(P)
or S(a, &) or S(f,dg, P) or 5(f,dg, (a,§)) instead of S(f, dg, P;[a,b]) or

S(f,dg, (o, §);a,b]).

6.1.2 Definition. Let f, g: [a,b] — R and I € R. We say that th&urzweil-Stielt-
jes integral(KS-integral)

b
/ﬁﬂ@dwun
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exists and has the value éfc R if

for every € >0 there exists a gaugé. on|a,b] such that
I —S(P)|<e (6.1.2)
holds for all 6. — fine partitions of [a, b].
As for RS-integrals, we will also use the shortened notation

[ 0= [ s dote)

and define

/bafdg:—/abfdg and /aafdg:().

If g(z)==x, then we speak about KH-integral (Kurzweil-Henstock integral) in
stead of KS-integral and we denotefgf’ f(x) dz, orin a shorter Wayf;’ f dzx.

This definition is correct due to the following two lemmas.

6.1.3 Lemma(CousiN). The set of allj-fine partitions of the intervala, 0] is
nonempty for every gaugeon [a, b].

Proof. Consider a gauged on [a,b]. For a givence (a,b], let us denote by
(6; [a, c]) the set of allo-fine partitions of the intervala, ¢] and let M be the
setof allc € (a,b] for which «(0; [a,c]) iS nonempty.
Let
c=min{a+d(a),b}, a={a,c} and € ={a}.
Sinced(a) >0, we havec € (a,b] and (o, &) € «7(0; [a, c]), i.e. ce€ M. The set
M is thus nonempty and thereforé=sup M > —oc.

Next, we will show that! does belong to the sét/. As §(d) >0, and by the
definition of d, thereisace (d—d(d),d]N M. Hence, there exists alsaafine
partition (a’, &) of [a, c|. Let ¢ < d. (In the opposite case, triviallyl=c € M.)
Set a=a'U{d} and £=¢&'U{d}. Then (a,&) is a partition of the interval
la,d], andas|c,d]|C (d—d(d),d+d(d)), itis d-fine. Therefored € M.

If d=0b, the proofis finished. Thus, assumé< b and choose an arbitrary
tagged division(a”, ¢") of [a,d] and v € (d,d+ §(d)) N (d, D). (Such ay exists
becaused(d) >0.) Thus, we have

[d,~v] C(d—d(d),d+d(d)).

Therefore (a” U{~},£"U{d}) is ad-fine partition of the intervala,], i.e.
v € M. Since v>d, we get a contradiction with the definitiah=sup M. We
thus haved =sup M =b and the proof is completed. O



142

6.1.4 Lemma. The value of the integralf: f dg is defined uniquely by condi-
tion (6.1.2).

Proof. Assume there exisl;, I € R, I, # I5, such that§.1.2) holds and if we
substitute I =1;, 1= 1,2. Set = % |I; — I]. Then there exist gauge§, and
do such that

|S(P)— 1| <& foreveryd; —fine partitionP of [a, b],
and

|S(P)—I,] <& foreveryd, — fine partitionP of [a, b],

Define a gaugeé by
d(z) =min{d;(x),09(z)} for x€|a,b].

Then everyd -fine partition of [a, b] is simultaneously botf, -fine andd, -fine.
Consequently, for every-fine partition P of [a, b] we have

2e=|I — L|=|I, - S(P)+ S(P) — L]
< |1~ S(P)|+|S(P) — I,| < 2E.
This being impossible, it has to big = 1. O
If not stated otherwise, in the following text the symbol of the integral will

always stand for the KS-integral.

6.1.5 Remark. If gaugesd, d, are such that, <4 on [a, b], then everyd,-fine
partition of [a, b] is alsod-fine. Therefore, if some condition is satisfied for all
do-fine partitions of{a, b], a fortiori it is satisfied also for alb-fine partitions.
Hence, if the gaugé, is given, we can limit ourselves in Definitigh1.2to the
gauges., for which 6. <dy on [a, b].

Moreover, Definitionc.1.2will not change if £.1.]) is replaced by the condi-
tion

[j1,05] C 6 —0(&), & +6(&)] for j=1,...,v(c).
The next result provides a Bolzano-Cauchy condition for the existence of t
KS-integral.

6.1.6 Theorem(BoLZANO—CAUCHY CONDITION). Let f g:[a,b] — R. Then
the integral [” f dg exists if and only if

for eache >0 there is a gaugé. on [a, b] such that (6.1.3)
|S(P) - 5(Q)| <& holds for allé.-fine partitionsP, Q. o
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Proof. a) If the integral fabfdg:]E]R exists, then by Definitiorb.1.2 for
everye > 0 there is a gaugej. on [a,b] such that

|IS(P)—1I|< % for all . — fine partitionsof|a, b].
Hence, for every paiP, ) of o, -fine partitions we have
[S(P) =S(@) <[S(P) =1 +]5(Q) - I] <¢,

which means that( 3.9 is true.

b) Now, assume that the Bolzano—Cauchy condit®.€) holds and for a given
>0, let 4. stand for the gauge given b§.6.6). Set

I(e)={S(P): P is aé.-fine partition offa, b} }.

By Cousin’s Lemmé.1.3 the I(¢) is nonempty for every >0 and by 8.3.6
we have

diam!(¢) =sup{|S(P)—S(Q)|:P, Q arei.-fine partitions ofla, b} <e. (6.1.4)
Furthermore,
I(1) C I(e2) whenevek; < e,.

Thus, by Cantor’s intersection theorem for complete metric spaces (see e.g. T
orem 6.52 inb1] or Theorem 5.1.17 inl43), the intersectior( .., cl/(e) is a
one point se{ 7} with 7 € R. As a result of6.1.9), it follows that

holds for everyd -fine partition P of [a, b]. In other words,f(ffdg:I and this
completes the proof. a

6.1.7 Remark. As in the case of RS-integrals (see Exeréisk 16, if a division
a of [a, b] is given, we can weaken the conditidh$.6) in the following way:

forall ¢ >0 thereis a gaugé& on a, b] such that
S(P)—-85(Q)|<e
for all §.-fine partitions P = («, §), Q = (8, n) of [a, D]

(6.1.5)

such that3 D a.

The KS-integral has the usual linear properties.
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6.1.8 Theorem.Let f, f1, f2, 9, g1, g2 :[a,b] — R and let the integrals

b b b b
/fldg, /fzdg, /fdgl and / 7 dgs

exist. Then for any;, c; € R,

/ab(01f1+02f2)dg:Cl/abf1d9+02/abf2dg

and
b b b
/fd[01g1+6292]201/ fd91+62/ f dga

hold.

Proof. Let us show for example the proof of the first statement.

Let ¢ >0 be given. By our assumption there are gaugesnd j, on [a, b
such that

b
‘S(fl, dg, P) —/ fi dg’ <e forall 6;-fine partitionsP on [a, b]
and
b
‘S(fQ, dg, P) —/ fa dg’ <e forall d5-fine partitionsP on [a, b]

Set . () =min{d,(z), d2(z)} for z €la,b] and h=c; fi + c2 fo. Since for a
given partitionP = (a, &) on ab we have

v(P)

S(h.dg, P)= (e1 fi(&) + 2 fa(§)) [9() — gla-1)]

J=1

=C S(fl,dg, P)"’CQ S(fg,dg,P),

we get
b b
‘S(hadgap)—ﬁ/ fldg_c2/ f2d9‘

b b
<o [S(s.dg. )~ [ iy +leal[S(7 80, P) - [ 1ol

<(ler] +eal) e,
wherefrom our statement immediately follows.

The second statement of the theorem would be proved similarly and can
left as an exercise for the reader. O
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6.1.9 Exercise.Prove the second statement of Theo@mé&
6.1.10 Theorem.If the integral fabf dg exists and if [c,d] C [a, b], then the

integral fcd f dg exists, too.

Proof. Assume that the integralfff dg exists anda <c<d<b. By Theo-
rem6.1.6there exists a gauge on [a, b] such that

|S(P)—S(P")| <e forall i.-fine partitionsP, P’ of [a, b]. (6.1.6)
Let Q=(83,7n) andQ' = (3',n’) be arbitrarys. -fine partitions of[c, d]. Further,
let us fix arbitrarily a. -fine partitionQ~ = (8, n~) of [a, ¢] and ad. -fine parti-

tion
QT =(8%,n") of [c,d] and setP = («, &) and P' = (c/, ¢'), where

a=p4"UBUB", E=n UnuUn"
and
a'=p"uUp'uUB", &= uUnun’
Then P and P’ are . -fine partitions of{a, b and
S(P)=8(Q7)+5(Q)+5(Q") and S(P)=5(Q7) +5(Q) +5(Q7).
Thus, in view of 6.1.6 we have
19(Q) = S(@)=[5(P) = S(P)| <,
wherefrom by Theorerf.1.6the existence of the integrafcd f dg follows. O

6.1.11 Theorem.Let f,g:[a,b] =R and c € [a,b]. Then the integral fffdg

exists if and only if both the integralg; fdg and fcb f dg exist. In such case,
the equality

/abfdgz/acfdg+/cbfdg

holds.

Proof. If ¢=a or c¢=0b, the statement of the theorem is trivial. Thus, let
ce(a,b).

a) If the integral fabfdg exists, then by Theorerfi.1.10 both the integrals
[ fdg and fcb f dg exist, too.
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b) Let

c b
/ fdg=1, and / fdg=1I.
Let £ >0 be given. Choose gauges. on [a,c] andd” on [¢,b] such that

|S(P')—I| < g for all ¢/-fine partitionsP’ on [a,c]
and (6.1.7)
|S(P") — L] < % for all ¢”-fine partitionsP” on [c,b].
Now, we define the gaugé. on [a, b] by
min {.(z),+(c—x)} if z€la,c),
de(x) =< min{d.(c),d”(c)} if z=c,
min {¢?(z), 3 (x—c)} if z€(c,b]
Then
1 .
x+55(x)§x+1(c—x)<c if z<c,
and

x—5€(x)2x—%(x—c)>c if x>c.

Therefore c € [x — 0.(x), x + d.(z)] for no z #c. Hence, for everyd. -fine par-
tition P=(a,&) of [a,b], there exists & € {1,...,v(a)} such that & =c.
Thus, we can assume that

g1 <o =& =c=Er1 < Qpy1.

ap—1 <c=§ < ay,
we would adjust the corresponding term in the sfi®) as follows:

f(@)lg(ar) — glar-1)] = f(c) [g(ax) = g(e)] + f(c) [9(c) — g(ar-1)].

Thus, there arej. -fine partitions P’ = (o, &’) of [a,c] and P'=(a”,¢") of
[c,b] such that

a=ad'Ua” £€=¢'U¢"” and S(P)=S(P")+ S(P").
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If we take into consideration the relatic®.1.7), we can see that
[S(P) = (Li+ L) =|S(P) + S(P") = (I + 1)
<|S(P) = L] +|S(P") — | <&

holds for everyo. -fine partition P of [a, ], i.e. f;’ fdg=1+ L. O

The next lemma provides a crucial characterization of the KS-integration.
proof is based on a slight modification of the choice of a suitable gauge usec
the proof of the previous statement.

6.1.12 Lemma.For any finite setD of points of the intervala, b], there exists a
gauged on [a, b] such thatD C ¢ for everyo -fine partition («, &) of the interval
la, b].

Proof. Let D={s1,...,s,} anda<s; <... <sp<b. Set
tmin{|lz—s;|:j€{l,....k}} if ©¢D,

o(z) = .
1, if zeD.

For givenj € {1,...,k} we have

§+5(§)<§+E(Sj—§)<5‘j if & (sj-1,55)
and

5—5(§)>5—}1(5j—5)>5j if §e(s)s541).
That s,

s;€1€—0(€),6+06(¢)] ifandonlyif £ =s;.

Hence,s; € £ for eachj e {1,...,k} and eachy-fine partition (o, §) of [a, b].
In other words,D C £ for eachd. -fine partition (e, §) of [a, b]. O

6.2 Relationship to Riemann-Stieltjes and Perron-
Stieltjes integrals

If the integral (¢) fabfdg exists, then the KS-integraya"fdg exists, too, and
has the same value. Indeed, if

b
<6)/ fdg=IcR,
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then for everye > 0 there is A. >0 such that
|S(a, &) —I| <e for all partitions(c, &) of [a, b] such that|a| < A..

Thend.(z)=A./2 is a gauge with the properties guaranteeing the relation

/:fdg:fzw)/abfdg.

On the other hand, iffab fdg=I€R andif for everyes >0 we can find a
gauged. on [a,b] such that

inf{d.(z):z €la,b]} >0 and |S(a, &) — I| < € for eachs-fine partition(e, ),

then

o) [ras=1
will be true, as well. Indeed, settind. = inf{o.(x) : x € [a, b]}, we get that
|S(a, &) — I| <e for every partition(a, &) of [a, b] such thaja| < A,
holds.

The relationship between the) RS-integral and the KS-integral is not that
evident.
b
6.2.1 Theorem.If the integral (a)/ fdg exists, then th&S-integral fabfdg
exists as well and ‘

/abfdgz(a)/abfd,f/.
b

Proof. Assume that(o) / fdg=I€R. Let >0 be given and leta. be a

division of the intervalla, b] such that
|S(a, &) — I| <= for every partition(c, £) of [a, b] such thai D c..
By Lemmat.1.12there exists a gauge such that
a. C ¢ foreachd. —fine partition(a, £) of [a, b]. (6.2.1)
Now, let (o, &) be an arbitrary. -fine partition of[a, b]. Then

(o)
S(e,€) =" [ 116) [olas) = 9(&)] + 1(&) [9(&) — 9(es1)]

1

] (6.2.2)
S(e, &),



KURZWEIL-STIELTJES INTEGRAL 149

where

o= {a07€17 041752, S >€l/(a)a au(a)} and E: {517517627527 S 751/((1)751/(0:)}'

(Of course, ifay,_y =&, or & = oy, for somek, then we would remove the inter-
vals [ayx_1,&] and[&, ax] and the corresponding tags frofa, £).) By (6.2.7)
we have a. C £ C a. Finally, in view of (6.2.2) and due to the definition aof.,
we get

S(a, &) = I|=|S(@, &) —I| <e,
which means thatfabf dg=1. This completes the proof. O

Notice that the proof of the previous theorem also contains the proof of tl
following statement.

6.2.2 Lemma.Let f, g: [a,b] — R. Then for every partition” = («, &) of [a, b,
there exists a partition® = («, &) of [a,b] such that

¢cang and S(P)=S(P).
6.2.3 Examples.Let us consider for a while the special case when the integrat
is the identity function, i.e. when the KS-integral reduces to the KH-integral.

(i) The KH-integral is obviously a generalization of the classical Riemann int
gral.

(i) Let f(xz)=0 for z € [a,b]\D where D is a subset ofa, b of zero measure.
Let an arbitrarys > 0 be given and let\/ be the set of thosec [a, b] for which
f(z)#0. By assumptionu(M) =0 holds for the Lebesgue measure)) of
M. Set

M,={z€la,b]:n—1<f(z)<n} for neN.
Obviously,

M=) and p(M,) =0 foreveryneN.

neN

In particular, for eachn € N there is an open subsét, of [a,b] such that

€
n2n’

M, C G, and u(G,) <
Now, define a gaugé. in such a way that

de(x)=1ifx¢ D and (z — .(x),x + 6.(z)) C G, if x € M, for somen € N.
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Let P=(a,&) be ad.-fine partition of[a, b] and letm =v(P). Then

|S(P)|= Zf(f]) laj —aj]|= Z Z f(&) oy — o]
= oo
D A& =y )[ <D n | D (aj—aj)
" e, "\
<e€ (g 2_n> =€

According to Definition6.1.2it follows that f: f(z)dz=0.

(i) Let the Newton integral (Nf;’ f(x)dx=F(b) — F(a) exist where the func-
tion F' is continuous orja, b] and

F'(z) = f(z) for eachs € (a,b), F'(a+) = f(a), F'(b—)= f(b). (6.2.3)

We will show that then the KH-integraIff f(z)dz also exists and its value
equalsF(b) — F(a).

Let £ >0 be given. Due tod.2.9, for each¢ € [a, b] there exists a.(£) >0
such that
3

F() = F(€) = f(§) (e =)l < 7—

is true for all x € [a,b] N (£ — 6:(§), £ +6:(§)). Now, let P= (o, &) be an arbi-
trary
J. -fine partition of [a, b] and putm =v(P). Then

|F(ay) = Fe1) = f(&) la — aja]]
<|F(oy) = F(&) = f(&) [a; — &
+ | F(&) = Flaj1) = f(&) [6 — a1
€ 3
<o (loy =&l +1& = ajal) =3—Io

foreveryjec{1,...,m} and hence

|z — ¢

— 1]

[IF(b) ~ F(a)] - S(P)| = | f (Play) = Flaj-) = £(&) lag — as1])|

Jj=1
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< Z‘F(aj)—F(Oéj—l)_f(fﬂ[ —aj1]]

m
— D los =]
—a J—

7j=1
i.e. f f(x)dz=F(b) — F(a).
6.2.4 Remark. Consider the Dirichlet function

fola) 1 if xis rational
gj g
P 0 if zisirrational

O“

(cf. Exercise4.1.4 (iii)) and an arbitrary bounded intervad, b]. By Example
2.3(ii), we have

/ab fo(z)dr =

On the other hand, the Riemann integral ﬂ?)"p dx does not exist when-
ever the intervalla, b] is nondegenerate. Indeed, lat={ag, aq, ..., o} be
an arbitrary division of{a, b]. Choosing all the tagsg; € [a;_1, «;] rational, we
getS(a, &) =b—a+#0, while, if all the tags are irrational, we hav{ a, £) =0,
wherefrom the assertion immediately follows.

The Kurzweil-Stieltjes integral is closely connected with the integral known &
the Perron-Stieltjes integral even though its definition actually belongs
to A.J. Ward [IL5]]. Ward’s definition is also described in Section V1.8 of the
monograph by S. Sak4 1€ and is based on the termsajorantandminorant

6.2.5 Definition. Let f,¢g:[a,b] —R. We say thatM : [a,b] — R is amajorant
for f with respect tog if there exists a gaugé on [a, b] such that

(t—7) [M(t) = M(r)] = (t—7) f(1) [9(t) — g(7)]
holds for every 7 € [a,b] and everyt € [a,b]N (7 —(7), 7+ (T)).

Similarly, m: [a, b] — R is theminorantfor f with respect tog if there exist
a gauge on [a, b] such that

(t=7) [m(t) —m(7)] < (t—7) f(7) [9(t) — g(7)]
holds for every 7 € [a, b] and everyt € [a,b]N (T —(7), 7+ (7).

The set of all majorants fof with respect tog is denoted byM(fA g)
whereasm(fA g) stands for the set of all minorants fgr with respect tog.
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6.2.6 Definition. Let f,g:[a,b] =R and

M(fAg)#D#m(fAg). (6.2.4)

Then we define

b
(PS)/ £ dg=inf {M(b) — M(a): M € Ma, b}
and

(PS)/ f dg=sup {m(b) — m(a) :m e mla,b]}.

The quantity (PS) f_:f dg is called theupper Perron-Stieltjes integrabf the
function f with respect tq; (from a to b) while (PS) fabf dg is thelower Perron-
Stieltjes integrabf the function f with respect tog (from « to b).

In the cases whei®(2.4) does not hold, we set

b
©8) [ fdg=o0 if M) -0,

and
b
(PS)/fdg:—oo if m(fAg)=0.

It is not surprising that the following statement holds.
6.2.7 Lemma. For any functionsf, g : [a,b] — R the inequality

b )
vs) [ rdg<(ps) [ 1y (6.2.5)

holds.

Proof. If at least one of the set9(fA g) or m(fA g) is empty, then the in-
equality 6.2.59 is trivially satisfied. Therefore, assume thatd.4) holds.

Choose arbitrary majoranfi/ € MM(fA ¢g) and minorantm e m(fA g). By
the definition there are gaugegs andd, on [a, b] such that

(t—7) [M(t) = M(7)] = (t —7) f(7) [9(t) — g(7)]
for 7€la,b] and t € fa,b]N (17— (1), 7+ 01(7)),
and
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(t—7) [m(t) =m(r)] < (t =) f(7) [9(t) — g(7)]

for 7€ a,b] and t e [a,b] N (7 —d2(7), 7+ 02(7))
hold. Set 6(z) =min{d;(x), d2(x)} for x € [a,b]. Then

m(t) —m(r) < f(7) [9(t) — g(7)] < M(t) — M(7)
for 7€la,b] and t€a,b|N |7, 7+d(7)),
and
m(r) —m(t) < f(7) [9(r) —g(t)] < M(7) - M(t)
for 7€la,b] and te[a,b]N[r—0(7),7].

Thus, for any §-fine partition P = (a, €) of [a,b] and everyj € {1,...,v(P)}
we have

m(ey) —m(&) < f(&) [9(ey) — 9(&)] < M(ay) — M(&;)

and

m(&;) —mla; 1) < f(&) [9(&5) — glag—1)] < M(&) = M ().
Summing these inequalities fgr=1, ..., v(P), we get

m(b) —m(a) < S(P) < M(b) — M(a). (6.2.6)

This implies that the inequality
m(b) —m(a) < M(b) — M(a)

holds for everyM € M(fA g) and everym € m(fA g). Hence,
(PS)/ f dg=sup {m(b) — m(a):memla,b]}
<inf {M(b) — M(a): M € m[a,b]} = (PS)/ fdg.

This completes the proof 06(2.5). O

6.2.8 Remark. Notice that the proof of the previous lemma contains also th
proof of the following assertion:

For given functionsf, g : [a,b] = R, M € M(fA g) andm e m(fA g), thereisa
gauged on [a,b] such that the inequalitie$.2.6) hold for eachd-fine partition

P of [a,b].
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6.2.9 Definition. If

(PS)/Lbf dg = (Ps)ff dg €R,

we say that théerron-Stieltjes integralin short, PS-integral)

s [ 1

of the function f with respect tog from a to b exists. Its value is determined by
the common value of the upper and lower integral, i.e.

(PS) / fag=(p3) K fdg= (P@ff dg.

The relationship between the PS-integral and the KS-integral is described
the following theorem.

b
6.2.10 Theorem.The integraI(PS)/ f dg exists if and only if th&S-integral

f;’ f dg exists and in that case, both integrals have the same value
b b
/ fdg= (PS)/ fdg. (6.2.7)
b

Proof. a) Assume thatPS) / fdg=1€R and let an arbitrary > 0 be given.
By definition, there are a mgjoramﬂ €M(fA g) and a minorantn € m(fA g)
such that

M@pﬂﬂ@-%<[<m@ywm@+;

or equivalently

I—%gmwwaMSANM—Aﬂ®<I+g. (6.2.8)
According to Remarf6.2.8there is a gaugé on [a, b] such that/§.2.6) holds for
eachd-fine partition P of [a,b]. Combining the inequalitie(2.6 and (£.2.9),
we show that the inequalities

I—= <m(b) —m(a) < S(P) < M(B) = M(a) < I+
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hold for everyd-fine partition P of the interval[a, b]. This means that the KS—
integral fabf dg exists and relatior(2.7) is true.

b) Assume thatf;’f dg=TI1€cR and an arbitrarye >0 is given. By Defini-
tion6.1.2there is a gaugé. such that

I— g <S(P)<I+ g for all §.-fine partitionsP of [a, b]. (6.2.9)
Define M (a) =m(a) =0,

M (z)=sup {S(Q) : Qis ad.-fine partition of [a, z]} for z € (a,b]
and

m(z) =inf {5(Q) : Qis ad.-fine partition of [a,z]} for z € (a,b].
By (6.2.9 we have

I—5<]—§§m(b) —m(a) < M(b) — M(a) §1+§<1+g. (6.2.10)

b]. Further, letQ = (3,n) be an arbitrary

Let z€[a,b) and t € [z,z+J.) N]a,
(5 ) whereﬁ BU {t} andn=nuU {z}.
t]a

d.-fine partition of[a, «] andQ =
Then () is a . fine partition of[a,

S(Q)+ f(x) lg(t) = g(2)] = 5(Q). (6.2.11)
_Passing to the supremum on both sides of equ&i¥. 1] we obtain the inequal-
ity

M(t)> M(z)+ f(z)[g(t) — g(x)] for z € [a,b) andt € [z, z + 6.) N [a, b].
Analogously,

M(x)>M(t)+ f(z) [g(x) — g(t)] forx € (a,b] andt € (x — I, z] N]a, b].
Similarly, we can also prove the following inequalities

m(t) <m(z)+ f(z)[g(t) — g(x)] forx € [a,b] and t € [z, 2+ 0.) N ]a, b]

and
m(z) <m(t)+ f(x) [g(x) —g(t)] forzela,b] and t € (x — ., z]N][a,b].

It follows that M andm are, respectively, the majorant and minorant fowith
respect tog. Consequently, having in mind Definitich2.6 Lemmat6.2.7 and
(6.2.10, we can see that the inequalities

b b
I—5<m(b)—m(a)§(PS)/ fng(PS)/ fdg<M(@b)—M(a)<I+e
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are true. As= > 0 was arbitrary, this yields

b b b
©9) [ 1og=(v8) [ feg=P9) [ sag=1,
which completes the proof. a
6.2.11 Remark. Notice that if M € 9M(fA g) and the integral f:f dg exists,

then by Theorer.2.10and Definitions.2.6and6.2.9the estimate

b
/f@SM@—M@

is true. Analogously, iff : [a,b] — R andg: [a,b] — R are such that the integral
fabf dg exists, and if there are a gaugeon [a,b] and a functionu: [a,b] — R
nondecreasing ofu, b] such that

[t =7I1f(T)]lg(t) = g()] < (t =) (u(t) — u(7)) }
(6.2.12)
holds whenever € [a,b] and t € (71— d(7), 7+ (7)) N a, b],
then
v(P)
Z|f E) (l9(ay) — g(€)] +19(&) — g(aj1)])
u(P
Z ) —u(aj—1)) = u(b) — u(a)

for every §-fine partition P = («, £) of [a, b], wherefrom the estimate

/abf dg) <u(b) — u(a) (6.2.13)

instantaneously follows.

6.3 Existence of integral

In Example$.2.3 we determined the values of some simple KH-integrals directl
from the definition. Now, we want to show that in some simple examples it is al
possible to determine directly the values of KS-integrals.
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6.3.1 Examples.(i) If f= f(a) on [a,b], then clearly

/ f dg=f(a) [g(b) - g(a)] and / gdf =0

for every functiong : [a, b] — R.

(i) For any functionf : [a,b] — R, the following relations are true:

b
/ fdvos=f(r) it T€a,b), (6.3.1)
b
/ fdxpe = f(7) if 7€ (a,b], (6.3.2)
b
/ fAXen=—f(1) if T€]a,b), (6.3.3)
b
| 78 =—1) it re @ (6.3.4)
and
\ —f(a) if 7=a,
/ Fdym=1 0 it 7€ (a.b), (6.3.5)
’ F(b) if r=0b.

Let us show the proofs ob(3.]) and 6.3.2). The other ones then follow by
Theoren6.1.11

a) Let7 € [a,b) and g(z) = x(rp)(z) ON [a,b]. Then g=0 on [a, 7] and by the
example (i) we have

/andg:O.

By Lemma6.1.12 there is a gaugé on [r,b| such thatr =« =¢&; holds for
eachd -fine partition P = («, €) of [r,b]. Moreover, we have

g(a;) —gla;—1)=0 for je{2,3,...,v(P)}.
Thus,
S(P)=f(7)[g(a1) — g(7)]= f(7) for eachi-fine partitionP = («, &) of [1,b],

which implies that

/bedngm.
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Relation ©6.3.7) now follows by Theoren®.1.11.

b) Relationshiplf.3.2) will be proved analogously. We have

b
7€ (a,b], g(x)=Xpp(x) and / fdg=0.

By Lemmal6.1.17 there is a gaugé on [a, 7| such thata,p) =&, py =7 for
eachd-fine partition P = (e, €) of [a, 7]. Thus

S(P)=f(7)[g(7) = glawp)-1)] = f(7)

for every §-fine partition P = (a, §) of [a, 7|. Therefore,

/andng(T

Relation 6.3.2) follows again by using Theorem1.1..

).

(iii) For any functiong regulated ora, b], the following relations are true:

b
/ X(rp] dg=g(b) —g(7+) if 7€]a,b),

b

/ Xira) dg = 9(b) — g(r—)
b

/ Niar B9 = g(r+) — g(a)

b
/ X dg = g(r—) — g(a)

and

Atg(a)

b
/ X1 dg=q Ag(T)

Again, we limit ourselves to the proof of the first two relations.

a) First, letr € [a,b) and f(z) = x(-5)(z). We have

| tes=o

A~ g(b)

if 7¢(a,b],

if 7€/a,b),

if 7€ (a,b

if 7=a,

if 7€ (a,b),
if 7=0.

(6.3.6)

(6.3.7)

(6.3.8)

(6.3.9)

(6.3.10)
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Let £ >0 be given and let). > 0 be such that
l9(T+) —g(x)| <e for xe(r,7+n.).

By Lemma6.1.12we can choose a gaugeon |7, b] such thatr = g =¢; for
eachd -fine partition P = (v, £) of [r,b]. Set

min{n., 6(7 if x=r,
R LR
d(z), if ze(r,0b].
Let an arbitrarys. -fine partition P = (a, &) of [7,b] be given. Then
T=ap=¢ and a; € (1,7 +1n.)

and consequently

and, due to Theore/®.1.1],
b T b
/ fdg=/ fdg+/ fdg=g(b) —g(r+),

i.e. (6.3.9 is true.
b) Let 7€ (a,b] and f(x) = x[-p)(x) for x€[a,b]. Then

/ £ dg=g(b) — g(7).

Let an arbitrary: > 0 be given. Choose. > 0 such that |g(7—) — g(z)| < ¢ for
everyz € (1 —n., 7). Further, using Lemmé&.1.12we can choose a gaugeon
la, 7] such that

T=a,p)=&,p) for eacho-fine partitionP = (a, §) of [a,7].
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Now, set

6.0 _{5(9:), if zela,7),

min{n., ()} if z=7.
Let an arbitrarys -fine partition P = («, &) of [a, 7] be given. Then
T=0ay(p)y = &u(p), Qup)—1 € (T —1.,7) and S(P)=g(7) — g(avp)-1)

and consequently

wherefrom
| fdg=g(r)-g(r-).

Finally, using Theoreng.1.17, we get

/abfdg:/andg+/bedg:g(b)_g(T_)‘

As far as the existence of the integral is concerned, since every finite s
function is a finite linear combination of functions of the form, 4, x4, X
wherer can be an arbitrary point frorfa, b) (see£.5.7)), we can summarize the
above examples into the following statement.

6.3.2 Corollary. If g€ G([a,b]) and f € S[a,b], then both integrals

/abfdg and /abgdf

exist.

6.3.3 Exercise.Prove the following statement:
Leth:[a,b]—R, ceR, D={d;,...,d,}C|a,b] and h(x)=c for x € [a,b] \D.
Then

b
/ f dh= £(b) h(b) — f(a) h(a) — (F(b) — f(a)) ¢
holds for everyf : [a, b] — R.

Hint: Write the functiont in the form h(z)=c+ >, _, [h(dy) — c] Xj4,) () and
use the results of Examplés3.1.
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The next three theorems give us the basic estimates for KS-integrals under
assumption that these integrals exist. The first two require no other assumpti
about the functiong’ and g. Nevertheless, it is obvious that these theorems hay
a practical meaning only under the assumption that bounded orja, b] and g
has a bounded variation dn, b].

6.3.4 Theorem.Let f,g:[a,b] = R. Then
IS(P)| < ||f||var’g holds for each partitionP of [a, b)]. (6.3.11)

If the integral [” fdg exists, then

b
| e <sivaris (6:3.12)

If, in addition, the integral fab |f(z)| d[var?g| exists, then we have also

b b
[ )< [ 7@ dvarzgl < 1] varis. (6:313)

Proof. For every partitionP = («, £) of [a, b] we have

v(P)

1S(P)] < Z 7€) g(as) = g(e-1)]

v(P)
<Y IFE) (varyi_ g) <|f|| varlg,
7j=1

wherefrom the assertion of the theorem immediately follows. O

6.3.5 Theorem.Let f,g:[a,b] = R. Then

b
|S(P)|§(|f(a)|+|f(b)l+va.r(ff)||9H } (6.3.14)
for each partitionP = (a, &) of [a, b].
Furthermore,
b
| 18] < 5@+ 150+ vartp) o] (6:3.15)

holds whenever the integrafabf dg exists.
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Proof. For an arbitrary partition? = («, &) of [a, b] we have

S(P)= (&) [g(ar) —gla)] + f(&) [9(az) — g(ar)]
o f(&m) [9(0) = g(am—)]
= f(0) g(b) = f(a) g(a)
= [f(&) = f@)l g(a) = [f (&) = F(&)] g(en)
— [f(0) = f(&m)] 9(b)

T
=

e
I

= [(0) g(b) = fla) g(a) = > [F(§41) = F(&)] 9(ey),

J

I
o

whereé,=a and ¢, .1 =b. Inequalities 6.3.149 and 6.3.15 now immediately
follow. O

6.3.6 Remark. Usually, instead of@.3.14 or (6.3.15, slightly less sharp esti-
mates

|S(P)| <2|fllsv |lg]| forevery partitionP = (e, &) of [a,b] (6.3.16)
and

(6.3.17)

will be sufficient for our aims.

Theorem6.3.Zenables us to prove the simplest convergence theorem.

6.3.7 Theorem.Let f:[a,b] = R, g€ BV([a,b]) and let the sequencgf,} of
functions defined on the interval, b] be such that

lim |, — ]| =0, (6.3.18)

and all the integralsff fndg, n €N, exist. Then the integraff f dg exists, too,
and

b b
lim fn dg :/ fdg. (6.3.19)
Proof. By assumption.3.19), for a givene > 0 there isn; € N such that

o= full <

3
———— forall m,n>n,.
1+vart g
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Thus, by Theorem8.1.8and6.3.4 we have

b b
/fndg—/ fmdg‘San—meVang<g for all n > n;.

Hence, the sequenc«{ fab fn dg} C R is a Cauchy one and consequently there
exists a number € R such that

b
lim fndg=1. (6.3.20)

n—oo

To show that fabf dg=1, let e >0 be given. Then we can choosg € N
such that

b
/ Foo dg—[‘<5 and || fn, — fll <& (6.3.21)

Moreover, letd, be a gauge offu, b] such that

b
Soo (P) —/ Fo dg‘ <e (6.3.22)
holds for all 6 -fine partitionsP of [a,b], whereS,,,(P)=S(f,,, dg, P). Now,
let a 0 -fine partition P = (a, §) of [a, b] be given. Then byd.3.2]) we have

v(P)

[S(P) = Suu(P)] = | 3 (£16) = Faa(&) [9(a) — gl )]

j=1
S ||fno _fH Vang<5vang7

and, furthermore, using(3.2]) and 6.3.29) we get

[S(P) = I <|S(P) = Sno(P)] +

SulP)~ [

b
+ / oo dg—[‘
<e(vartg+2).
Therefore
b b
/ fdg:[:hm/ fn dg. O

Now, we can formulate the first existence result.
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6.3.8 Theorem.Let f € G([a,b]) and g € BV([a, b]). Then both the integrals

b b
/fdg and / | f(z)| d]var? g]

exist and estimatg$.3.12 and(6.3.13 hold.

Proof. By Theorem4.1.5 there exists a sequendg,,} of finite step functions
which converges uniformly ofu, b] to the functionf. Further, by Corollar.3.2
all the integrals

b
/ fndg, meN,

exist. By Theoren®.3.7 this means that the integraff fdg exists as well and
(6.3.19 holds.

Obviously, | f| € G([a, b]) and by the previous part of the proof, also the inte-
gral

[ 1@l dlvars o)

exists. Thus, according to Theoréh3.4 both the relationsd.3.12 and (6.3.19)
are true. O

The following convergent result is kind of symmetric to Theor@@. 7.

6.3.9 Theorem.Let f:[a,b] — R be bounded ora,b], g€ BV([a,b]) and let
the sequencég, } of functions defined on the interval, b be such that

lim var’(g, —g)=0,

n—oo

and all the integralsfab fdg,, n€N, exist. Then the integramf f dg exists as
well and

hm f dg, = / fdg (6.3.23)

holds.

Proof. The proof is onward formally similar to the proof of Theorén3.7. For a
givene > 0 there isn; € N such that

varl (g —gn) =var(g, — g) < g forallneN,
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and consequently
var (g, — gm) <var’ (g, —g) +var(g —g,) <e forallm,neN.

By Theoremd.1.8 and6.3.5(see also Remaitk.3.6)

b b
/fdgn—/ fdgm‘§\|f||var2(gn—gm) for all m,n € N.

b
Hence, the sequenc{e/ f dgn} is a Cauchy one and there exigt€ R such

that
b
lim fodg=1.

n—oo

Givene >0, choosen, € N and a gaugeé, on [a, b] such that

b
/ fdgno_l‘<€7 VarZ(gno_g)<€
and

b
SnO(P)—/ f dg,,| <e for all §-fine partitionsP of |[a, b],

where S,,,(P)=S(f, dgn,, P). Then for everyd,-fine partition P = (c, &) of
la, b] we have

v(P)
|S(P) - Sno(P)| = ‘ Z f(é.]) [g(aj) _g(aj—l) _gno(aj) +9n0(04j—1)] ‘

<|fIl V(gno — 9. @) <L fll varg (gu, — 9) < I f]],

b
/a fdgno—I’

and therefore

S(P) — 1| < |S(P) — Sy (P)] + |, (P) — / £ g +

<e(lF1+2).

This gives the equality

b b
/fdg:[:lim/fdgn,

which concludes the proof. O
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We know that if the functiory is regulated ora, b] andg has a bounded vari-

ation on|a, b], then by Theorer®.3.8the integral fff dg exists. However, in
applications, we often need to work with the KS-integral also in the reverse sitt
tion when f € BV([a,b]) andg € G([a, b]). The following convergence theorem
will serve us well when proving the existence of an integral in such a situation.

6.3.10 Theorem.Let f € BV([a, b)), g:[a,b] — R, and let the sequencfy,, } of
functions defined on the interval, b be such that

lim g, — gl =0, (6.3.24)

and the integralsfab f dg,, exist for n € N.

Then the integralfabf dg exists and

lim f dg, = / fdg. (6.3.25)
Proof. a) By assumptiord.3.29), for a givene > 0 there is ann; € N such that
190 — gl < 5= forall m,n>mn,. (6.3.26)

2| fllsv

Our assumptions ensure that all the integrals

b
In—/ fdg,, mneN,

are defined. Further, by (3.26 and Theorem6.3.5(see also Remai.3.€) the
relations

‘/fd ~ g] <2||f||BV||gn gmll < forallm,n>n,

hold. The sequence{ f;’ f dgn} C R is a Cauchy one and thus has a finite limit,
i.e. there exists a numbére R such that

b
lim 7, = lim fdg,=1. (6.3.27)

n—oo n—oo

b) We will prove that fab fdg=1. To this aim, lets > 0 be arbitrary and choose
anng € N such that simultaneously

’[no - [’ <e and Hgno - g“ < (6328)

13
2| fllsv
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Further, for an arbitrary partitio® of [a, b] put

v(P)

Sno(P) = S(f7 dgnm P) = Z f(f]) [gno(&j) - gn0<05j71)]

j=1
and choose a gaugg on [a, b] such that
|Spo (P) — I,,| <e for eachd,-fine partitionP of [a, b]. (6.3.29)
By Remark6.3.6and due to inequalitie®(3.2§, (6.3.29 we deduce that
[S(P) = I[ <[S(P) = Sng (P)] +[Sng (P) = Ino| + g — 1

:|S(f7d[g_gno]vp)|+‘STL0<P)_In0|+|In0_I|
<2 fllev g = gnoll + [Sno (P) = Lng| + [Ing — I| <3 €

is true for eachy, -fine partition P of [a, b], that is
|S(P)—1I|<3¢e forall §-fine partitionsP of |a, b].
But this means thatfab fdg=1. The proof has been completed. O

Finally, we are able to prove the following important existence result which
somehow reverse to TheoréghB.&

6.3.11 Theorem.If f€BV([a,b]) and g € G([a,b]), then the integral f;’f dg
exists and the estima(é.3.15 holds.

Proof. Choose a sequencfy,} of finite step functions which converges uni-
formly on [a,b] to g (see Theoreni#.1.5). By Corollary|6.3.2 the integrals
f f dg, exist for all n € N.. This means that, by Theorefm3.5 the integral

fa f dg exists as well and the estima& .15 is true. O

We know that the uniform limit of regulated functions is a regulated functio
(see Theorem.1.3. The following convergent statement is thus a direct corollar
of Theorem.3.10and 6.3.11

6.3.12 Corollary. If g, g, € G([a, b]) for n € N and(6.3.29 holds, then

llm f dg, = / fdg (6.3.30)

for every f € BV(a, b)).
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Another variation of the convergent statement not covered by the aforem
tioned theorems will follow. However, its proof is based on the same principle
the proof of Theoren®.3.10

6.3.13 Theorem.Let the functiong be bounded ona, b] and let the sequence
{f.} € BV([a,b]) be such that
b
/ fndg exists foreveryneN and lim ||f, — f|lgv =0.
Then f € BV([a, b]), the integralff f dg exists and
b b
lim fn dg:/ fdg.

Proof. By Theorem<.1.8 and|6.3.5(see also Remait.3.6)

b b
[ to= [ guds| <200 152 fuly forallm nen.

b
Hence, the sequenc%/ fn dg} is a Cauchy one and consequently there i
I € R such that ‘
b
lim fodg=1.

n—oo

We will show thatf; fdg=1. To this aim, lete >0 be given and let;y € N be
such that

b
/fnodg—]‘<5 and || fn, — fllsv <e.

Furthermore, choose a gaugeon [a, b] in such a way that

b
S1(P) = [ fun tg] <2

holds for all . -fine partitionsP, where S, (P) = S(fn,, dg, P). By (6.3.19, for
any partition P of [a, b] we have

S(P) = 5u(P)] < (1£(@) = faol@)| +17(0) = fan(B)] +var’ (£ = f2) ) ]

<2[f = faollBV l9]l
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Altogether, for every. -fine partition of [a, b] we obtain

b
S(P) =112 |S(P) = Suu (P)| +[S0s(P) = | o ]

b
/afnodg—l‘

<2([f = fusllsv llgll +2e <e2([lgll + 1)

_|_

and thus

b b
/ fdg:]:hm/ fndg. 0O
To complete this section, we will show how to determine the value of th

integral fab f dg when the value off;’fc dg is known for the continuous part
f€ of f. The sum symbol

Y [A7(d) (g(b) = g(d=)) + AT f(d) (9(b) = g(d+))] (6.3.31)

deD

will appear in next corollary wherdé is the set of the points of discontinuity
of the function f € BV ([a, b]) in the open intervala, b). The setD has at most
countably many elements. If it is finite, then the meaning of the syntb8l3)) is
evident. If D is infinite, then there exists a one-to-one mappingN — d, € D
such thatD = {d}. In general, this mapping is not uniquely determined. How
ever, as the series
[A™ f(di) (9(b) — gldi—)) + AT F(di) (9(b) — g(dy+))]

k=1
is absolutely convergent, the concrete ordering of the/setloes not matter.
Therefore, we can use the notati@nd.3J) or

Y [ATf(2) (g(b) = g(a=)) + AT f(2) (9(b) — g(2+))] (6.3.32)

as in Remarl2.3.7

6.3.14 Corollary. If feBV([a,b]), g€ G([a,b]), D is the set of the points of
discontinuity of the functionf in (a,b) and f€ is the continuous part off,

£(a) = f(a), then

b b
[ rdo= [ odrs AT 1@ (90) - olar)) + A F0) A 0)
o “ (6.3.33)
+ 3 [AF(@) (9(6) = 9(d=)) + A £(d) (9(6) — g(d+))]

deD
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Proof. If the set D is finite, the validity of the relationshift(3.39 is obvious.
AssumeD is infinite, i.e. D = {d;}. By Theoreni2.3.6

D 1A F(di) X by () + A F(dr) X1 ()]
k=t (6.3.34)

M8

<> [IATF(d)[ + AT f(d)]] <00

e
Il

1

holds for everyz € [a, b]. The series on the left hand side of the inequalityd(39
is thus absolutely convergent for everye [a, b] and hence we may define

FB(w) =A% f(a) Xa) () + A7 F(b) xp5) ()

+ ) [A7 f(dk) Xiap.01 () + AT f(di) X(ap01(x)] for z € [a, b]

[M]¢

i
I

and
[2(x) =A% f(a) X(ay(z) + A F(b) xp(2)

+ 37 (A7) Xy (@) + A F(dr) X a1 ()]
k=1

for x € [a,b] andn € N. By Theoreni2.6.], fB is the jump part of the function
f, while f¢= f — fB isits continuous part. Moreovef,2(a) =0, f¢(a) = f(a)
and

FB(x) = £2(2) =) [A7 f(di) Xaen) (@) + AT F(dr) X(ap0) ()]

k=n+1

for z € [a,b] and n € N. By Definition2.5.2 B — fB is a step function and by
Theoreni2.5.3

o0

var (f8— £2)< 37 [IAT f(di)| + AT f(dy)]]. (6.3.35)

k=n+1

As the right hand side 0(3.35 is the remainder of an absolutely convergent
series, we have

Jim varl(£® — £2)< lim 3 [|A”f(dy)] + A" ()] =0. (6.3.36)
k=n+1

By Theorem6.3.13 this implies that

b b
/degzlim/ frdgeR. (6.3.37)
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On the other hand, b¥6(3.6), (6.3.7) and Theoren®.1.8we have

/ £8dg= A" f(a) (g(b) — glat)) + A~ F(b) A g(b)

n (6.3.38)
+ 3 (A7) [9(0) — gldn=)] + A" F(dh) [9(6) — g(de-+)] )
for all n € N. Thus, due t0.3.37) and 6£.3.39, we get
|75 =57 1(@) (g - ga)) + A1) A 0)
“ (6.3.39)

+ f} (A F() (9lb) = 9(de=) + A" F(dh) (9(0) — 9(d+)))-
Finally,_since
i A £(dh) (9(8) — (=) + A* F(d) (9(8) — g(dht))|
<2 i (18~ £ +187 F(di)l) <2 gl (vars ) < o0

due to Corollan?.3.§ we can see that the series on the right hand side.8f39
converges absolutely. Thus, we can rewrite it in the form

S~ (A () (9(0) — gdi=)) + A" F(de) (9(b) — glds+))
k=

1

s (A (@) (9(8) — g(d)) + A* 1(d) (9() — (@)

de D

or, equivalently,

[e.e]

D~ (A7F(dh) (9(6) = gdi=)) + A F(di) (9(b) — 9(dit)))

k=1

= 3 (A7) (9(b) — g(x)) + AFF(2) (9(b) — 9(x))).

If f=fC+ fB is another decomposition of the functighinto continuous
and jump part, then by Theorefn6.1there is a constante R such that

fl@)— fCx)=fB(x)— fB(x)=c forall z€]a,b).
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Then naturally

b

bN ~
fCdg+ [ fBdg
¢ b ¢ b

= | fCdg+clg(b)—g(a)]+ [ fBdg—clg(b)—g(a)]

a a

Hencel6.3.33 holds, while the value of the integral does not depend on the choi
of the decomposition of the functiofi into its continuous and jump parts. O

In the situation symmetrical to Corollay3.14 we have

6.3.15 Lemma.Let f:[a,b] — R be bounded, ley € BV([a, b]) be a step func-
tion and letD be the set of the points of discontinuity@fn (a,b). Then

/fdg f(@) Atga)+ 3 J(d) Ag(d) + F(B) A g(b).  (6.3.40)

de D

Proof. Let D ={s;}, where{s;} is an infinite non-repeating sequence of points
of (a,b). Then as in the proof of Lemnia6.5 we can write

g(z) =g(a) + A" g(a) X @y (®) + A g(b) xp)(2)

+Z (A*g(sk) X(spp) () + A7 g(s8) X[%b](x)) for z € [a, b],
k=1

where the series on the right hand side is absolutely and uniformly convergent
la,b]. For z € [a,b] andn € N define

gn(®) =g(a) + A g(a) X(p(x) + A7 g(b) X1 ()
+Z (A+g(3k) X(si0) (%) + A7 g(sk) X[sk,b]($)>-
k=1
By LemmaZ2.6.5 we have
Tim (g, — gllsv =0.

By Theoremt.3.9 this implies that the integra][: f dg exists and

lim f dg, = / f dg. (6.3.41)

n—oo
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On the other hand, using.(3.1), (6.3.2 and Theorer®.1.§ we can determine the
integrals on the left-hand side @.3.47). In particular, for eachh € N we have

[ 70— 1@ A9(0) 43 F) Agls) + S0} A9 (6342

Furthermore, ag is bounded, it is easy to see that the series

> Flse) Ag(se)

is absolutely convergent. Consequently,

lim (f(a) A%g(a)+ Y flse) Aglse) + F(b) Ag(b))

n—oo

o0

- (f(a) Atg(a) +Zf(sk) Ag(sy) + f(b) A_g(b)>.

k=1

Summarizing, we conclude

b b
/f@ﬁm/f%

:(f<> +zfsk Ag(sy) + F(5) Ag(0))
- (#(a) +zf +F(b) A7g(0)).

deD
This completes the proof. O

6.3.16 Corollary. If feG([a,b]), g€BV(|a,b]), D is the set of the disconti-
nuity points ofg in (a,b) and g€ is the continuous part ofy, then

b
| 7= /fdg +J(@) Atgla) + S F(d) Agld) + F(5) A g(b). (6.3.43)
a de D
Proof follows immediately from the Jordan decompositiongof(cf. Theo-
rem2.6.1) and Lemméb.3.15 O

6.3.17 Lemma.Let h € G([a,b]), ceR and
h(z)=c for x€la,b]\ D, (6.3.44)

where the seD C (a, b) is at most countable. Then

h(z—)=h(z+)=h(a+) =h(b—)=c forall z€(a,b). (6.3.45)
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Proof. The equalitiesh(t—) =c and h(s+) = c evidently hold for all? € (a, b]
ands € [a, b) which are not points of density dp. On the other hand, if € (a, 0]
is density point of D, we can choose an increasing sequeficg} C [a,z) \ D
which tends toz. Clearly, ]}LIEO h(xy)=c. Since h € G([a,b]), this, due to the

uniqueness of limits, means tha{x—)=c¢, as well. Similarly, the equality
h(x+)=c can be proved also for every density poirk [a, b) of D. O

We remark that a functioh defined by the equality in6(3.449 need not be
regulated. A simple example of this fact is given by the function

1, ift:a—k%,keN,
h(t)= _
0, otherwise

More generally, it suffices to hav® = {d;.} with
klim dpr=p¢ D and klim f(dg) #c.

6.3.18 Lemma.Leth € BV([a,b]), ce R andletD C (a, b) be an at most count-
able set such thgb.3.49 holds. Then

/ hdg=cg(b) - g(a)] + (h(a) — &) A*g(a)
+ 3 (b(d) — ©) Ag(d) + (h(b) — ¢) A g(b)

deD

(6.3.46)

holds for each functiory € G([a, b]).

Proof. Sinceh € G([a, b]), by Lemmz6.3.17we have 6.3.45). Hence, the func-
tion h(x) = h(a) is the continuous part of, hB=h —hC,

Ath(a)=c—h(a), A h(b)=h(b) —c
and

A"h(z)=h(z) —c=—-A"h(z) forall xe€(a,b).

Now, for an arbitraryg € G([a, b]), using Corollary6.3.14where we replacg by
h, we get

[ 1dg=ha) o(8) ~ 9(@)] + (e~ h(@)) o(8) ~ g(a+))
+ 3 2(b(d) =) o) - gld=) ~ 9(8) + g(d-+))

deD

+ (h(b) —c) ATg(b)
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= h(a) [g(b) — g(a) ]+ (h(a) — ¢) [9(b) — g(a)]
— (h(a) =) [g(a+) —g(a)]

i.e. (6.3.46 holds. O

6.3.19 Lemma.Let h € G([a,b]), c€R and an at most countable sétC (a, b)
be such tha{6.3.49 holds. Ther(6.3.46 and

/ g dh=g(b) h(b) — g(a) h(a) - c (g(b) — g(a) (6.3.47)
hold for eachg € BV ([a, b]).

Proof. Assume the seD is infinite, i.e. D = {d,}.
a) By Lemma6.3.17we have

h(z—)=h(z+)=h(a+)=h(b—)=c foreachx € (a,b)
and
A~h(z)=h(z) —c=—-A"h(z) foreachs € (a,b).
The functionh : [a, b] — R satisfies|6.3.49) if and only if
h(zx)—c if zeD,
h(z)=c+
0, if «¢ D,
where D' =D U{a} U{b}. ForneN, setD) ={d;}}_,U{a}U{b} and
h(z)—c if ze€D],
hn(x)=c+
0, if x¢D..
Then for everyn € N we geth,,(a) = h(a), h,(b)=h(b),
hn(z) =c+ (h x)+ (dk) — ¢) Xia,
(x) (h(a) Z k) di) (%) (6.3.48)
+(h(b) — ) xp () for x € [a, b
and
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|h(z)—¢|, if xeD\D.,,
|h(x) = hn(z)| = _
0, if ¢ D\ D).
Let £ >0 be given. Then by Corollarg.1.7the set of thosé € N for which
|A”h(z)|=[ATh(z)| =|h(d) —c| =

can have only an at most finite number of elements. Hence, therenisah such
that D. C D;, for n>n.. Hence,

|h(2) — ho(2)| =0 for zeD..
Obviously, we have also
\h(z) — hyp(z)| <e if z€la,b]\ Ds.
Thus, ||h— h,|| <e whenevern >n.. In other words,
lim [|h—h, || =0. (6.3.49)

b) Now, by 6.3.49, (6.3.5 and Theoreris.1.8(see also Exercige 3.3 we check
that the equalities

n

[ oan ="~ [ s

k=1 a

=g(b) [n(b) — c] —g(a) [h(a) —c]
=g(b) h(b) — g(a) h(a) — c[g(b) — g(a)]
hold for everyn € N. Thus, by 6.3.49 and by Corollary6.3.12we have

/ gdh=Tim | gdh,=g(b)h(b)— ga) hia) —clg(b) — g(a) ],

i.e. (6.3.4) holds.
c) Similarly, by 6.3.49, (6.3.9)—(6.3.9 and Theoren®.1.8we get

b b
[ d=c(900) ~ @)+ (hta) =) [ o
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for everyn € N. However, by Corolland.1.7 by (6.3.49 and Theorer®.3.7, we
have also

b b
/ hdg= lim h., dg

— c(9(b) — g(a)) + (h(a) — ) A* g(a)
+ lim Y (h(dy) — ) Ag(dy) + (h(b) — ) A™g(b)
= 9(t) o)+ (1(0) ~) A5 o)

+Z (de) — €) A g(de) + (h(b) — ¢) A= g b),

i.e. (6.3.46 holds.

The proof in the case whep is finite is obvious. O

6.3.20 Exercise.Show that the following assertion is true.

Let h € BV([a,b]), ce R and an at most countable sé C (a,b) be such that
(6.3.49 holds. Ther(6.3.47) holds for everyg € G([a, b]).

Hint: Use Lemm&.3.19and Theoren®.3.7.

6.4 Integration by parts

The aim of this section is to prove the integration by parts theorem for K
integrals. Before that, let us recall the convention (x) from Conventions and N
tation according to which we assume

fla=)=f(a) and f(b+)=f(b),

A7 f(a)=ATf(b) =0, Af(a)=ATf(a), Af(b)=A7f(b) (6.4.1)
forany f € G([a, b]).

First step of the proof will be the following lemma dealing with the case whe
one of the considered functions is a finite step function.

6.4.1 Lemma.Let f:[a,b] — R be a finite step function and lete G([a, b]).
Then both the integrals

/abfdg and /abgdf
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exist and

/ fdg+ / gdf = £(b) g(b) — £(a) gla)

(6.4.2)
+ > (A @) ATgle) — A fla) ATg() )
a<x<b
Proof. Sincegy is afinite step function, there are a divisiea= {«g, a1, . .., @, }
of [a,b] and real numbers;, ..., ¢, € R such thatg(t) =c; for t € (oj_1, ;).
Using the results of Examplé&s3.1we obtain
b
| 1 ds=1@atgta)+ £0) A 900

m—1
+ZCJ glaj )]+ > flay) [g(a;+) — glay-)],

j=1

and also
/ gdf = Z 65 (glaz-1) — gla)) + Flay) glay) — F(ag-1) glay1)].
Therefore

[ ot [ 9dr=r0)9(6) - @) gla) = 3 ¢s [ gley1) + A g(ay)

m

+ D I (a-1) Atglag) + flay) Aglay)].

j=1

Noting that
A+f(0éj_1) =Cj— f(Oéj_l) and A_f(Oéj) = f((](j) —Cj for j € {1, . ,m},
the equality6.4.7) follows. O

6.4.2 Theorem(INTEGRATION BY PARTS). Let f € G([a, b]) and g € BV ([a, b]).
Then both the integrals

/abfdg and /abgdf

exist and(6.4.2) holds.
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Proof. Let {f,} be a sequence of finite step functions which tends uniformly t
f ona,b]. Then by Lemmi.4.1we have

| o [ 98- 10 o)+ e gla)
= Y (A fl0) Agla) = A7 fula) Atg(a)

a<x<b

for any n € N. By Theorem.3.7and6.3.1( the relation

i ([ naat [ bgdfn—fn(b)g(b)+fn(a)g(a)>

(6.4.3)

n—oo

b b
— [ sdo+ [ gar = £0)90)+ fa) gla)
holds. Furthermore, taking into account that
ATFOI<2[IfIl. AT fOI<2]f]]
and
AT (fo = H)OI <2 fo = fIl @nd [AT(f, = HHB) < 2] fo = f]]
for t € [a, b], we obtain the following estimates

Y |ATF) ATg(t) = AT F(1) Ag(t)]

a<t<b

<27 Y0 (Iatg()]+1a7g(0)]) <2 varkg

a<t<b
and

S AT (fu = 1) ATg(t) = A (fa — F)(t) Ag(t)]

a<t<b

<2 a1 Y (18T g0 +1A7g0)]) <201 f — f] varsy.

a<t<b
Consequently, the sum
D (ATF() ATg(t) = AT f(t) Ag(D))
a<t<b
is absolutely convergent and

T DT (A7 fule) Agla) — AT () ATg()

a<z<b
= 3 (A f@) A gl@) - AT f(2) ATg()).
a<z<b

Summarizing, lettingr — oo in (6.4.3 we obtain 6.4.2). O
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6.4.3 Remark. We could see that the integration by parts theorem does not hc
for the KS-integral in the form we know for RS-integrals. The reason is that tt
domain of functions which are KS-integrable is significantly wider than that c
RS-integrable functions.

6.5 The indefinite integral

The Saks-Henstock lemma is an indispensable tool in the study of deeper pro
ties of the Kurzweil-Stieltjes integral.

6.5.1 Lemma(SAKS-HENSTOCK). Let f, g:[a,b] — R be such that the integral
fab f dg exists. Let > 0 be given and lebt be a gauge ona, b] such that

b
‘S(P) —/ fdg’ <e forall o-fine partitionsP of [a, b].

If {([s;,;],0;):7=1,2,...,n} is an arbitrary system satisfying

a<s51 <0 <t;<s5,<---<5, <0, <t,<b,
. (6.5.1)
[sj, 851 € (0; —0(6;),0; +0(0;)) forj=1,....n,
then
(f(ej) (9(t5) —9(s5)) —/ fdg> <e. (6.5.2)
=1 5

Proof. Assume that the systen{([s],t 1,6;):5e{1,2,. n}} satisfies condi-
tions 6.5.]). Setty=a ands,, 1 =0.

Now, letn>0 andj € {0,1,...,n} be given. Assume that; < s;,;. Then
by Remark6.1.5 there are a gauge; on [t;, ;4] and ad; -fine partition P; =
(a?, &%) of [t;, s;11] such that;(z) <d(x) for = € [t;, s;41] and

<

S(Pj)—/tsmfdg

J

. (6.5.3)

Now, form aé-fine partition@ = (3, n) of the interval|a, b] such that

Zf g9(s;)) +ZS
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(If t;=s;41, we setS(F;) =0.) Hence,

> (f(ﬁj) (it (o)~ [ fdg> #3o (s [ o)

j=1 i

Il
o
<.

b
=]S<Q>—/ fdg‘<€.

This together withi§.5.3) yields

> 16 (9(t) ~als) - [

J

b n Sj+1
S‘S(Q)—/ fdg‘+ Z(S(Pj)—/ fdg) <e+n.
@ j=0 t
Sincen > 0 was arbitrary,6.5.2) follows. a

Sometimes it is useful to have an estimate similai6té.¢), but with the ab-
solute value inside the sum. Such estimate is easily obtained directly from
Saks-Henstock lemma.

6.5.2 Corollary. Let f, g: [a,b] — R be such that the integragf;’f dg exists. Let
e >0 be given and let be a gauge orja, b] such that

b
‘S(P) —/ f dg’ <e for all o-fine partitions of [a, b].

If {([s;,t;],0;):7=1,2,...,n} is an arbitrary system satisfying
a<s1<0;<t;<s5<---<5, <0, <t, <D,
[sj,85] C (0 —6(6;),0;+0(6;)) forje{l,... .n},

then

n

2

J=1

<2e. (6.5.4)

76 (o(t) - 95~ [

J

Proof. Consider the sets
T =L f6) o) g(s)) ~ [ Fg>0),

PG ) f6) alt) ~g(s) - [ Fdg <o}
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According to Lemm&.5.1, we have

ESY (fwj) (9(t) a5 - | fdg> <e,

jeJt J
0<Z</ fdg— £(6;) (g(t;) - (ﬂ))és-
jeJ—
Adding these inequalities give6.6.4). O

6.5.3 Theorem. Letf f dg exist and letc € [a, b]. Then

li fdg+f(c) ) fd 6.5.5
wél[%lb (/ g / g. ( )

Proof. Let ¢ >0 be given and leb. be a gauge o, b] such that
b
‘S(P) — / f dg‘ <e forall 6. —fine partitionsof[a, b].

For eachx € (¢, ¢+ d.(c)) N|a, b], the system
{([81, tl], ‘91)}, where t1=x and S1= 91 =c,

satisfies condition(5.7). Therefore, by Lemma&.5.], we get

‘f(C) (o) =g~ [ f dg\ <e. (6.5.6)

Similarly, if z € (¢—96.(c),c)N[a,b], then, applying Lemm@&.5.1to the system
{[z,d], c}, we get

) ate) =gt - [ 1 dg' <e.

So, inequality'6.5.6 holds for eachr € (¢ — d.(c), ¢+ 0-(c)) N [a, b]. Hence

/fdg /fdg 7o) /fdg 1) [g) — g(e)]| <,

i.e., 6.5.9 holds. O

6.5.4 Corollary. Suppose thafabf dg exists,g is regulated ona, b], and let

:/ fdg for z€la,b.

Then the following statements hold:
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(i) A isregulated and satisfies
h(t+)=h(t)+ f(t) Atg(t) fortela,b),
h(t—=)=h(t)— f(t) A~g(t) forte (a,bl.

(i) If f is bounded andy has bounded variation, theh has bounded varia-
tion, too.

Proof. The first assertion follows immediately from Theorémb.2 To prove the
second assertion, let us consider an arbitrary divisioa {ag, a1, ..., a,,} of
the interval[a, b]. By Theorem&.3.4and2.1.14we have

/ fdg

j—

m

V(ha) =3 [h(ay) = hos-)| =Y

j=1

m
< IFI D varys g=|f| varlg <o,
j=1

and therefore varh < oo. 0

6.5.5 Theorem(HAKE). (i) Assume thaif” f dg exist for eachr € [a, b) and
dn ([ g 1®)o0) - g(w)) =1 €R
Then fabfdg:I.

(i) Assume thayff dg exist for eachr € (a,b] and

im ([ g+ 1@ lgla) — g(a)]) = TR

r—a+
Then f:fdg:I.

Proof. (i) a) Lete >0 be given. Choose & > 0 in such a way that

/x Fdg+ f(b)[g(b) — glz)] — 1‘ <c foreachreb—Ab). (6.5.7)

b— o .
Setaz,=b— k—+clb for k€ NU{0}. Then the sequencgr,} is increasing,
limy_ oo =0 and

for a givenk € N, there is a gaugé, on [a, x| such that

s(P) —/ g < (6.5.8)

for all §;-fine partitionsP of [a, z].
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b) Letdy be a gauge offu, b) such that
do(s) <dr(s) and [s—do(s), s+ do(s)] C la,xk]

for every k €N and s € [z4_1, x). Furthermore, for a gives € [a, ), let k(s)
stand for the uniquely determined natural numbesuch thats € [z4_1, 7).

c) We will prove that

S(T)— dg| <e

‘ ) /a / g‘ } (6.5.9)

forall z € [a,b) and alld,-fine partitions” of [a, z].
To this aim, assume that € [a,b) is given andp=kx(x) (i.e. z € [x,_1,2,)).
Moreover, letT’ = (7, 8) be an arbitraryy, -fine partition of[a, z|. Setv(T") =r.
For everyk e NN [1,p] and everyj € NN [1, 7] such thatx(;) = k, we have
9 _5k(0 )<0 —50(0 )<7'] 1<T]<9 —}—(50(0 )<9 +5k(9 )

Thanks t0/6.5.9, we see that for every € {1, ..., p}, the assumption$(5.]) of

Lemma6.5.1are satisfied if the systed([s;, ¢,],0;) : j=1,...,n} isreplaced by
{([rj=1,75],0;) :5=1,...,r, k(0;) =k} . Therefore,

S 16 lo(m) — 9(r-0) - [ £dg|< 5 foreachbe {1.....p).
x(0;)=k Tj—1

Finally,
‘5( )—/Ifdg)
Zp: . ( —9(7j-1)] /T fdg>)
k=1 r(0;)=k Ty
< (70 o)~ g6 [ 1| < DI EE
k=1 r(0;)=k Tj-1 -

i.e. (6.5.9 is true.

d) Seté*(z) =min{b— x, do(x)} for z € [a,b), 6*(z) = A for z=b and letP =
(a, €) be an arbitrary* -fine partition of[a, b]. Putm =v(P). Then¢,, =a,, =
b,
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am-1 € (b—A,b) and

_I_

[ g 10100 - gtan-)) - 1]

Finally, using 6.5.9 and 6.5.7) (where we set: = «,,,_1), we obtain

‘S(P)—]‘ <2¢, e /bfdg:I.

The proof of the second statement can be done analogously and is left as an ¢
cise for the reader. O

6.5.6 Exercise.Prove the statement (ii) of Theorefrb.5and its variant:
Assume the integramf f dg exists. Letx € [a,b) be given and let

s ([ Fer— s ot - o)) =1 R

Then [* fdg=1.

6.5.7 Examples.Using Hake’s theorem, we can easily and in an universal wa
derive the formulas obtained in Examplés3.1 directly from the definition by
using suitable choices of the gauge. E.g. the formula

b
/ F Ay = F(7),

wherer € (a,b] and f is arbitrary, can be derived in the following way:

b T
/ de[T,b}:/ de[Tvb]

= Jim ( / A + ) [ () - Xl (1)]) = £(7).

Similarly, for 7 € [a,b) and g € G([a, b]), using Hake’s theorem we get

b T b
/ Xla,7] dg :/ 1 dg +/ Xla,7] dg

=g(1) —g(a) + lim ([&mﬂdg+1w@%—mﬂ0

=9(m+) — g(a),
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i.e. (6.3.9 holds.

6.5.8 Exercise.Using Hake’s theorem, prove all the other formulas from Exam
ples6.3.1.

6.6 Substitution

The next theorem on substitution in KS-integrals will be substantially helpful i
the next chapter.

6.6.1 Theorem(SUBSTITUTION THEOREM). Let the functiong: [a,b] — R be
given and assume that the functién [a, b] — R is bounded and such that the

integral f: f dg exists. Then whenever one of the integrals

[rwd [ e [ 150

exists, the other one exists as well, in which case the equality

/abh(x) d[/amfdg] Z/abh(x)f(x) d g(2)]

holds.

Proof. First, notice that by Theorefi1.10the function w(z) = [ f dg is de-
fined for everyz € [a, b].

a) Assume the integrayab hf dg exists. Lete >0 be given and leb. be a gauge
on [a, b] such that the inequalities

v(P) o
> [1(6) 76 lates)  glas-] ~ [ nf dg| <
and

v(P)

> ‘f(ﬁj) [9(aj) — g(ej-1)] _/C_lef dg‘ =¢

j=1 &

hold for all §. -fine partitionsP = («, &) of [a, b]. (Such a gauge exists by Corol-
lary6.5.2)
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Let a é. -fine partition P = (a, &) be given andn =v(P). Then
m b
> he) lwley) ~ waj-1)) - [ hfdy
=1 “

<D [ a0 (&) 1) bfer) —gte )

Jj=

«

+30[1E) 16 lo(as) - glay-)) - |

<l )
j=1

+ i ) 65 otas) —ates)] - [~ nf oy

Qj—

~j hfdg’

j—

| 140- 6 lo(a) ~ (a0

07

<([[nll+1)e,

i.e. the integral(” h dw exists and [ hdw= [ hf dg holds.

b) The converse implication would be proved similarly, again with a substants
use of Corollarys.5.2. O

Of course, statements analogous to substitution theorems presented for
RS-integrals in Sectiof.4, hold for the KS-integral, as well. We will mention at
least one of them.

6.6.2 Theorem.Assume that the functiop: [¢,d] — R is increasing and maps
the intervallc, d] onto the intervalla, b]. Furthermore, letf : [a,b] — R. Then, if
any one of the integrals

/f(x) d{g(z)], /f(qﬁ(w))d[g(qﬁ(x))}

exists, the other one exists as well and the equality

/ F(6(x) dlg(6(x))] = / f() d g(x) (6.6.1)
holds.

Proof. Notice that ass is increasing and maps the interyald] onto the interval
[a, b], both ¢ and its inversionp~! have to be continuous.
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For a given partition) = (3,n) of [c,d] andje {1,...,v(Q)}, set
a;=o(B;), &= o(n)

and
a:{ao,al,...,a,,(@}, £:{fl,,€y(Q)}

Then P:=(«, &) is partition of [a, b] andv(P) =v(Q). We write

P=¢(Q) and Q=¢"'(P).
Obviously, ¢! (P) is a partition of|c, d] for every partitionP of [a, b].
Further, for a given gaugé on [c, d], defined : [a, b] — (0, c0) in such a way
that
6T +6(r) <7 (1) +d(¢7M (7)) if TEaD)
and (6.6.2)
¢7HT—8(1) > o7 () =307 (7)) if TE(a,b].
Now, for any§-fine partition P = («, £) of [a,b] we get by 6.6.2)
Bi=0""(a;) o7& +8(6)) <7 (&) + (67 (&) = +3(ny)
and

Bio1=¢ Najo1) > 671 (& — 8(&)) > ¢ (&) — (¢ (&) =n; — d(n;)

forall je{1,...,v(P)}. In other words,¢~1(P) is 5-fine wheneverpP is §-
fine. Similarly, for every gaugé on [a, b] we can find a gaugé on [c, d| such
that ¢(Q) is d-fine as soon ag) is J-fine.

Now, since the equality

v(P) v(Q)
Z £(&) [9(e) — gla1)] = Z F(omy)) [9(6(8))) — 9(6(Bj-1))]

holds for every partition” of ab and Q = ¢~'(P), the proof of the theorem
follows. o

6.6.3 Exercises. (i) Formulate and prove an analogue of Theo@® 2for the
case wheny is decreasing.
(i) Formulate and prove an analogue of Theofer 6for the KS-integral.

6.6.4 Remark. Theorem6.6.2can be generalized in several ways. For example
the following version of substitution theorem found its use in the application
the theory of hysteresis in economics (séé]):
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Assume that the functiorf : [a,b] — R is bounded orja, b] and regulated on
[a, b] for everya € (a, b). Moreover, let the functio : [a, b)) — R be nondecreas-
ingon [a,b] and leto(a) =c¢, ¢(b) =d. Finally, let the functiory € BV (¢, d]) be
continuous from the right ofr, d). Set

Y(s)=inf{t €[a,b]: s<o(t)} forsele,d].

Then the relation

#(b)

b
/ FOdgem)= [ Fs) dg(s)]

é()

holds for everyx € [a, b].

6.7 Absolute integrability

The Kurzweil-Stieltjes integral is a nonabsolutely convergent integral — the €
istence of f: f dg does not necessarily imply the existencef§f| f| dg. In this
section, we collect some sufficient and necessary conditions for the existence
the latter integral.

We restrict our attention to the case whers nondecreasing. In this situation,
if both fffdg and f;’ | f| dg exist, we have the inequality

/abfdg‘ﬁ/ab|f|dg-

This fact follows immediately from the definition of the integral, since

|S(f,dg, P)| <S(|f|,dg, P) foreach partitionP of [a,b].

6.7.1 Theorem.Assume thay : [a,b] — R is nondecreasing angf:f dg exists.
Let

F(m):/xfdg for = €a,b|.

Then [ |f| dg exists if and only if® has bounded variation offiz, b]. In this
case, we have

b
/ |f| dg =var’F.
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Proof. Suppose thay“b |f| dg exists. Ifa is an arbitrary division ofa, b], then

/ fdg

J

v(or) v(a)

)= X Pl = Floy-l =3

J=1

V(a)

<Z/ £ dg = /\f\dg,

and therefore varr” is finite.
Conversely, suppose th&t has bounded variation ofa, b]. Consider an ar-
bitrary e > 0 and leta be a division offa, b] satisfying

vartF — e <V(F,a)<var’F.
Observe that if3 is a refinement otx, then
vartF — e <V(F,a)<V(F,B)<var’F. (6.7.1)
Let § be a gauge oifu, b] with the following properties:
e If P isad-fine partition of[a, b], then ’f;’f dg—S(f,dg, P)| <e
o If ic{l,...,v(a)} andt € (o;_1, ), then
(t—6(t),t+6(t) C (a1, ).
o If ic{0,...,v(av)}, then
(a; — (), i + () C (i1, ip1)
with the convention thatr_; = —oo and a,(a)+1 = 0.

Let P=(3,&) be an arbitraryi-fine partition of [a, b]. The last two properties
of 6 ensure that each intervab;_,, 5;] is either contained in a single interval
a1, ], Or [Biz1, Bi] C [aj—1, oj41] @and&; = a;. By splitting all intervals of the
second type in two subintervals;_,&;] and [&;, 3;] that share the same tdg,
we can obtain a new partitiof”’ such thatS(|f|, dg, P) = S(|f|, dg, P'). Thus,
without loss of generality, we can assume tf3ais a refinement otx.

We now use the fact thaj is nondecreasing, the reverse triangle inequalit
||z| — |y|| < |« —y|, and finally Corollary6.5.2to obtain

S(11. dg, P) - Fﬁ\—\Zm G —aGi-| [ o))

i—1

<Z\f@ B -s) - [ ragl<o

i—1
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By combining this estimate wittt(7.1), we conclude that
S(1/1, dg. P) —var,F| <[S(|f], dg, P) = V(F, 8)| + [V (F, B) — var, F| < 3¢,

which means thaﬂ’ | f| dg exists and equals VAF. O

6.7.2 Example.Let {t,} be an increasing sequence of points from the ope
interval (0, 1) tending tor € (0, 1]. Consider the functiom : [0, 1] — R given by

1
E.

gt)=>_ Xp.)(t) (6.7.2)

It is not hard to see thaj is nondecreasing and right-continuous [0n1). Let
f:[0,1] = R be defined as

ft)=

(-1)"*'n if t=t, forsomeneN,
0 otherwise

Claim 1. The integralfo1 f dg exists.

Note that, for each € [0, 7), the integralfot f dg exists (due to Corollar§.3.2
and using the fact that the restriction @to the interval0, ¢| defines a finite step
function). Moreover, by Examplé.3.], we have

/0 Cfdg=f(t) gtn) =1,

and

tni1 tni1
/ Jdg— / F A9t Xentn) + 9(Enss) X
tn tn

= Fltwer) lg(t) — gl =
- n+1) [9\n+1 glln)| = n+1 5
for eachn € N. Since
t tn e (_ >n+1
1tlim / fdg+f(T)A+g(T):hm/ fdgzz =In 2,
—-7=Jo n—oo Jq —t

applying Hake’s Theorem (Theorefit.5), we conclude that the integrgﬂf fdg

exists and equals 2. If 7=1, the claim is proved. Ifr <1, then f: fdg=0
(becausgy is constant onjr, 1]), wherefrom the proof of the claim follows.

Claim 2. | f] is not integrable with respect tg on [0, 1].
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Let F'(t) :fotfdg for ¢ €[0,1]. We will show that vafF =oo. For every
n € N consider the divisiorD,, = {0, t1, ts, ..., t,, 1} of [0,1]. We have

VD) -y [ el [+ [ ra

k=1
1
/ / dg"
tn

"1
:ZE+
k=1

SinceV (F, D,,) <varjF foreveryn € N, varjF' cannot be finite. Thus the claim
is a consequence of Theoré&ny. 1.

6.7.3 ExercisesLet {t,} be an increasing sequence of points from the open ir
terval (a, b) tending tor € (a, b]. Let {c,} be a sequence of nonnegative number:
such that the series’ ¢, converges. Define a functiop: [a, b] — R by

g(t)= Z Ch-

n:tn <t
For a givenf : [a,b] — R prove that:

(i) The integralf;’ f dg exists if and only if the seried " ¢, f(t,) converges
and in such a case it is given by

b 0o
[ 1e5=3"curte)
a n=1

(i) The integral [”|f|dg exists if and only if the serie§" ¢, f(t,) is ab-
solutely convergent.

6.7.4 Theorem.Assume thay : [a, b] — R is nondecreasingf, i : [a,b] — R are
such thatfab fdg and fabh dg exist and|f(t)| <h(t) for eacht € [a,b]. Then
fab |f| dg exists.

Proof. If [¢,d] C [a,b] and P is a partition of|c, d], then
1S(f, dg, P)| < S(h,dg, P).

Thus, it follows from the definition of the integral that

d d
/fdg‘g/ hdg foreachc,d] C [a,b].




KURZWEIL-STIELTJES INTEGRAL 193

Let
F(x):/xfdg for z € [a, b].

If « is an arbitrary division ofa, b], we obtain the estimate

o v(e) o b
/ fdg‘SZ/ hdg:/ h dg,
Qi1 i=1 Y -1 a

which shows thatF" has bounded variation ofa, b]. Thus, the existence of the
integral ff | f| dg follows from Theoren®.7.1. O

v(a)

v(e)
V(Fa)=Y|F(0) = Floi)| =Y

i=1

6.7.5 Theorem.If g:[a,b] — R is nondecreasing and, f> : [a,b] — R are such
that the integralsff f1dg, f;’ fo dg, fab|f1]dg and fab|f2| dg exist, then
fab max( fi, f2) dg and fab min( f1, f2) dg exist as well.

Proof. By Theoren6.7.4 the integral ff | f1 — f2] dg exists, because
|fr = LIS A+ £
and the integralgﬂf(u;‘?1 — f2) dg, ff | f1| dg and fab |f2] dg exist. Since

it fetlfi—fo At 1A= f

max(fi, fo) = 5 and min(fy, f2)= 5

the existence ojf max(f1, f) dg and ff min(f1, f>) dg follows from the linear-
ity of the integral (i.e., from Theorei®.1.€). O

6.8 Convergence theorems

In this section, we present several convergence theorems for the Kurzweil-Stiel
integral that do not require uniform convergence.

We start by introducing the concept of uniform integrability (also known a
equiintegrability).

6.8.1 Definition. Consider a sequence of functioyfis: [a,b] — R, n€N, and a
function ¢: [a,b] — R. Then{f,} is called uniformly integrable with respect to
g, if the following two conditions are satisfied:

b
e The integral/ fn dg exists for eachn € N.
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e For everye > 0, there exists a gaugéon [a, b] such that the inequality

dg — S(fn,dg, P)| <e
holds for each’-fine partition P of [a, b] and for everyn € N.

The next result is a basic convergence theorem for the Kurzweil-Stieltjes in
gral. Although the assumption of uniform integrability might be difficult to verify,
the result will play a key role in deriving the other convergence theorems giv
later in this section.

6.8.2 Theorem.If {f,} is uniformly integrable with respect tg and
lim fu(t)=f(t) forall t€la,b],

then both the mtegraf f dg and the limitlim,, f fn dg exist, and the equal-

|
/fdgzhm/ . dg

is true.
Moreover,

t
lim (sup / frndg — / fng =0 (6.8.1)
n—00 \ tela,b]

holds whenevey is bounded orja, b].

Proof. a) Consider an arbitrary > 0 and leté be the corresponding gauge from
Definition'6.8.1. Choose an arbitrary-fine partition P of [a, b]. Since

lim S(f,,dg, P)=S(f,dg, P),
there exists amy € N such that

]S(fm,dg,P)—S(fn,dg,P)|<€

holds for all m,n >ng. Using this fact together with the definition of uniform
integrability, we get

/abfmdg—/abfndg‘

b
< / fon g — S(fm do. P)\+|S<fm,dg,P>—s<fmdg,P>|

S(f. dg, P / f dg'<Ss
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for all m,n > ng. In particular, {fab fndg} is a Cauchy sequence and thus it has
a finite limit:
b
lim fndg=LeR.

n—oo
a

Now, let P be an arbitraryj-fine partition of[a, b]. Choose am; € N such that

b
1S(f,, dg, P) — S(f, dg, P)| <= and / i dg—L\<s.

Then
|S(f,dg,P)—L]§]S(f,dg,P)—S(fm,dg,P)]

b
. ‘S(fn“ do. )~ [ fu dg\ ; <3

b
/ fmdg_L

b) To prove 6.8.0), let h,,(t) = f,.(t) — f(t) for n€ N andt € [a, b], and assume
that ¢ is bounded orja, b]. Note that the sequende:,,} tends pointwise offu, b]
to 0 and it is uniformly integrable with respect i Choose an arbitrary > 0
and find a gaugé on [a, b] such that

It follows that fab f dg exists and equalé.

b
/ hn,dg—S(h,,dg, P)| <e (6.8.2)

for eachd-fine partition P of [a,b]. Let P=(«, &) be such a partition. Since
h,(t) — 0 for t € [a,b] and g is bounded, there exists ap € N such that

(&) 19l < =—

2v(a)

Let arbitraryt € [a,b] andn € NN [ng, 00) be givenand lej € {1,...,v(a)} be
such thatt € [o;_1, a;]. Then,

Jj—1 [e7] t
g / h,, dg +/ h,, dg
i=1 v ¥i-1 @

foralln >ngandie{l,...,v(a)}. (6.8.3)

t
/ h, dg‘ =
a : i1

< jz_i (/: hy, dg — i (&) (9(0s) —9(0%1)))

i=1 i—1

n /; hn dg — (&) (9(t) — 9(%’—1))‘

j—1

3 Il loen) — (o) + 1) o(8) —gless )]
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Due to £.8.9) we have
Z |7 (80)] [9(0i) = g(aiza) [+ [hn(&5)] 19(2) — (1)

J
<> 20ha(&)] lgl <.

i=1

Furthermore, ift > ¢;, then, having in mindl@.8.2), we may apply the Saks-
Henstock lemma to the system

{(lovier, i), &) vi=1, .., — 1Y U{([ej1, 1], &)}

and deduce that

J—1

S ([ mda—tate) g0 —sfai))

1=1 i—1

<e.

+ / i dg — hn(€5) (9(t) — gl05-1))

j—

On the other hand, if <¢;, then applying the Saks-Henstock lemma to the sys
tems

{([ai—lvaiL&) Ii:1, o vj}} and {([t7aj]’§j)}7

we get

> ([ et i) oto)—gtei)

+/ hn dg — (&) (9(1) —g(%—l))‘

j—

3 ( [ hadg (&) gla —g(ai_m)

i=1 i1

<2e¢.

- ( [ adg =) st —g<t>>)

t

To summarize, we have shown that

t
/hndg’§3€ foralln>ny and t € [a, b],
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which completes the proof a6(8.7). O

The next example shows that the boundedness of the integrasoessential
to ensure the uniform convergence of the indefinite integra/.i1).

6.8.3 Example.Let f,(t)=1/n for t€[a,b] and letg:[a,b] — R be arbitrary
with ¢g(a)=0. Then {f,} tends pointwise orja, b] to the zero function. Fur-
thermore, asS(f,,dg, P)=(1/n) g(b) for eachn € N and each partitionP of
[a, b], we see thatfab fndg=(1/n)g(b) for eachn € N and the sequencégf,,}

is uniformly integrable with respect tg. However, we claim that the indefinite
integrals F,,(t) :f; fn dg tend uniformly to the zero function if and only i§
is bounded. Indeed, we haug,(t)=(1/n)g(t) for t €[a,b]. Clearly, if g is
bounded ona, b], then {F,,} tends uniformly on[a, b] to the zero function. On
the other hand, ify is unbounded and an arbitraey> 0 is given, then for each
n €N, there is at € [a, b] such that

[Fn ()] =1[(1/n) g(t)]| > e,
i.e., F,, does not converge uniformly to the zero function.

The remaining convergence theorems in this section provide more transpal
conditions that imply uniform integrability. To proceed, we need the followin
auxiliary lemma.

6.8.4 Lemma.For each/ € N, let S, be the set of all couple&r, s), whereo is
a division of[a,b] and s = {s1,..., s, } is afinite sequence of integers greater
than or equal tof.

Let g:[a,b] =R and let f,,:[a,b] =R, n€N, be a sequence of functions
such that the integraff fn dg exists for eacn € N. Moreover, assume that there

are B, C € R such that ife is a division of[a, b] and sy, ..., s,») €N, then
(@) o
B< Z/ fs, dg<C. (6.8.4)
j=1"%i-1

Then for eache >0 and ¢ €N there exist(n*, p’), (p%, r‘) €S, such that the
following statements are true:

() The inequalities

v(o) V(P Lpt

‘

;i e oj
/é f dg—g<2/ fi, dg <
Tj—1 j=1795-1

hold for each(o, s) € S;.

v(mt)

(SN

fodg+ = (6.8.5)
, : 0 J 2t
7j=1 =1 pJ,1

<
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(i) Assume thatZ =|J,_,[c;, d;] is a finite union of nonoverlapping intervals
in [a, 0] such that for each e [ thereis aj(i) € {1,...,v(x")} satisfying
i, di] C [t Tii)—10 ] (»)- Then the inequality

Z/ fot 99— o <Z/ fa dg (6.8.6)

i€l el

holds for eachn > /.

(iii)y Assume thatZ = J,.,[c;,d;] is a finite union of nonoverlapping intervals
in [a,b] such that for eache[ there exists gj(i) € {1,...,v(p")} satis-
fying [ci, di] C (031, Pj(s)]- Then the inequality

Z/ fndg<2/ fu,, dgt o (6.8.7)

i€l el

holds for eachn > /.

Proof. According to 6.8.9), the values of all sums
o)
Z/ fs, dg, where (a,s) €Sy,

are contained in a bounded subseRofThus, the existence of the couples’, p*)
and (p?, r) € S, having the properties from statement (i) follows from the defin:
itions of infimum and supremum.

To prove statement (i), consider the divisien= 7‘ U {ci, d;:iel} of [a,b].
For eachje{l,...,v(0)}, there exists ak(j)e{l,...,v(w*)} such that
[oj-1,05] C [y 1’7%( ]. Defines as follows: If j € {1,...,v(o)} is such that

l0j_1,04] CZ, let s; =n. Otherwise, lets; pk(J Then (0’,8)68@, and rela-
tion (6.8.5 holds. Obviously,

agj g

Z/ fodi= S [ pder S F,

je{l,..,v(o)} ¥ %i-1t je{l (o)} “ %71
[oj—1,05]CT loj—1,051¢T

D3] AR S A

iel je{l,..,w(o)} ¥ 91
loj-1,05]¢T

Furthermore, for each € {1,...,v(w%)}, we have

= | lomnal,
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and therefore

Lfdgzz

o

vio 0'.7'
fdo=>" [ty do
1 j=1 0j—1

m=1 je{l,.., 9
k(j)=m
DI AT / ) G
je{l,..v(e)} ¥ 9i-1 Je{1,....v( i
[oj-1,05]CT [oj—1 JJ]¢I
_Z/ P dg + Z pk(ﬂ)
i€l je{l,...,v(o)} V%9

[oj—1 UJ]§ZI
Now, by subtracting

Z pk(y)

je{1,...v(o)} 93
[0j—1,05]12T

from the first inequality inl6.8.5), we get6.8.9.
Statement (iii) can be proved in a similar way. O

The following convergence theorem is due to D. Preiss&richwabik. It is
a special case of Theorem 5.5 from J. Kurzweil's bo®¥ [ which is concerned
with a more general type of integral; see also Theorem 1.28 and Remark 1.3(
[1272.
6.8.5 Theorem.Let g € BV([a,b]) and let{f,} be a sequence of real valued
functions defined ofu, b] and satisfying the following conditions:

(i) The integral ff fn dg exists for eacn € N.
(i) lim f,(t)= f(t) for t €[a,b).
(i) There areB, C' € R such that the inequalities
v(o) o,
B<Y / fs,dg<C
j=1+%-1
hold for all divisionso of [a,b] and all 54, ..., 5,(¢) €N.

Then{f,} is uniformly integrable with respect tg, the integral fff dg exists,

and
b b
/fdgzlim/fndg.
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Moreover, we have

t t
lim (sup / fn dg—/ fng =0.
=0 \ tgad] |Ja a

Proof. According to Theorer.8.2 it suffices to prove thaf f,,} is uniformly in-
tegrable with respect tg. Choose an arbitrary > 0. For each/ € N, let (w*, p*)
and (p*, r*) be as in Lemm#®.8.4 Also, for each/ € N, there is a gaugé, on
la, b] such that for eacl,-fine partition P of [a, b], we have

’S(fg,dg,P)— ff dg <g, (688)
b

a

<gan Tori€ {1,....v(x"),  (6.8.9)

b

_ _c : ¢
‘S( -, dg, P) fre dg| < (") forie{l,...,v(p")}. (6.8.10)

a

Moreover, assume that(¢) < dist(t, (w‘ U p*) \ {t}) holds for eacht € [a, b].

Due to assumption (ii), for eache [a,b] we can choose aiV(t) € N such
that

|f(t) = fu(t)|<e forall n> N(t).
Let us put
0(t) =min{d:(t),...,0nw(t)} for tea,bl.

Let P=(a, &) be an arbitrary -fine partition of[a, b] andn € N. Our goal is to
obtain estimates for the terms appearingity,,, dg, P). If i {1,... ,v(a)} is
such thatN (&;) > n, thend(&;) <0,(&;). Thus, assumptiort(8.9 together with
the Saks-Henstock lemma imply

o

Y fal&) (glar) —glai) <D fodg+e. (6.8.11)
i€{L,...v(a)} i€{l,...p(a)} Y Vi1
N(&i)zn N(&)>n

It remains to estimate those terms3ii f,,, dg, P) for which N(&;) <n. To this
aim, consider afixede {1,...,n — 1} togetherwith allindices e {1, ... ,v(a)}
fulfilling N(&;) = ¢. Due to the construction of the gauge each corresponding
interval [«;_1, ;] contains at most one of the division pointsof and, in that
case, the tag; must coincide with this division point. If we split the interval
(i1, ;] into a pair of intervals[;_1,&;] and [¢;, «;] that share the same tag
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&;, the value ofS(f,, dg, P) remains unchanged. Thus, without loss of general
ity, we can assume that for every¥ {1, ..., v(a)} satisfyingN(¢;) =/, there is
aj(@)e{l,...,v(m")} suchthae, 1, oq] C [ 4, 75]. Then

Z fn(fz)( ( @) (Oézel))

ie{l,...v(a)}
N(&)=¢
= > (&)~ f, (6)) (9l0) — glai )
i€{l,...,v(e)}
N (&)=t
b Y (b -stac- [ gy, )
ie{l,...v(ax)} a1
N(&)=¢
+ Z ' pf(z) 9
ie{l,...v(a)} ¥ ¥i-1
N(&)=t
Since (7, p*) € Sy, we also havq) > /(. Hence, if N(&;) = < n, the defini-

tion of N(éz) gives
Fa(&) = (6] S &) = (&) +1£(6) — Fy (€] <2,

and consequently

(Fal€) = Fyr,, (6)) (9(0) = glai1))| < 22 vars_g.

Next, we notice that

> (e @) —sta= [ 5, )

i€{L, (@)}
N(&)=¢
1/(772) -
< > (@ e -stac- [ g0)
k=1 | ie{l,...v(a)} Q-1
N(EDZE, j(3)=k
l/(ﬂ'e)
< < _°
= 2. 90 (at) 20
k=1

where the last inequality is a consequence of the assum@tidrg)(and the Saks-
Henstock lemma.
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To summarize, for eache {1,...,n — 1} the previous estimates imply

> &) (glaw) —g(@inn)

g
< (/ fe_ dg +2¢evary! 1g)+?

< (/ Jndg+2evarg 1g>+2?,

where the last inequality follows fror(8.6. Summationovef € {1,...,n—1}
yields

(€7}

D ) (gla) —glaia)) < ) fodg+2evargg +2e¢.
ie{l,...,v(a)} ie{l,...p(a)} ¥ ¥i-1
N(&)<n N(&)<n

Adding the last inequality an@®(8.17J), we conclude that the estimate

b
S(fn, dg, P an &) (g9(ay) — g(ay—1)) </ fodg+2evarlg+3e

holds for alln € N. Proceeding in a similar way (using.8.7) and 6.8.1()), we
can show that also

b
S(fn, dg, P)>/ fn dg—25vang—35

holds for alln € N. As a consequence,

b
‘S(fn,dg,P) —/ fn dg‘ <25vargg+3€

for eacho -fine partition P of [a,b] and eachm € N, i.e., {f,} is uniformly inte-
grable with respect tg. O

A straightforward consequence of Theor&n®.5is the dominated conver-
gence theorem.

6.8.6 Theorem(DOMINATED CONVERGENCE THEOREN).

Let ¢:[a,b] — R be nondecreasing and l€tf,,} be a sequence of real valued
functions defined ofu, b] and satisfying the following conditions:
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e Theintegral [” f, dg exists for eacm € N.

. le fa(t)=f(t) for t € [a,b].

e There exist functions:, hs : [a,b] — R such that the integralsfab hi dg,
fab hy dg exist andh, < f,, < h, on [a, b] for eachn € N.

Then{f,} is uniformly integrable with respect tg, the integral f: f dg exists

and
b b
/fdg:lim/fndg.

Moreover, we have

t t
lim | sup / fndg— / f dg’ =0.
=00\ tefad] |Ja a

Proof. The statement is a consequence of Thedbert: To see this, let

b b

If o isadivision of{a,b] ands,. .., s, ) €N, then

Yo) o, Yo) o, 2GS
5= [ ma=y [ pde<> [T ma—c
=171 j=1 7731 =171

This shows that the assumptions of Theoi@®.5are satisfied, and the proof is
complete. O

6.8.7 Remark. In the previous theorem, the conditidn < f,, < hy, on [a, b] can
be weakened. It is enough to assume that for each intérwdlC [a, b] and each
n € N, we have

d d d
/hldgs/ fndgé/ hs dg.

In a similar way, we can derive the bounded convergence theorem. In co
parison with the dominated convergence theorem, the dominating hypothesis
{fn} is stronger. On the other hangl,is no longer assumed to be nondecreasing
but merely of bounded variation.
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6.8.8 Theorem(BOUNDED CONVERGENCE THEOREM.
Let g€ BV([a,b]) and let{f,} be a sequence of real valued functions defined o

la, b] and satisfying the following conditions:
e The integral fab fn dg exists for eacm € N.
o hm fa=1f onla,b.

e There exists a constant/ >0 such that|f,,(t)| <M for all neN and
tela,b].

Then{f,} is uniformly integrable with respect tg, the integral ff f dg exists

and
t
lim | sup / fndg— / fdg‘ =
N0\ tg(a,b]
Proof. If o is a division of[a,b] and sy, ..., s, €N, then

v(o) Lo v
S RNNTESS
j=1 "1 i—

@) | o,
/ s, dg
j=1[79i-1

Hence, the assumptions of Theorérf.5are satisfied with

<Y Mvary g=Mvarlg
=1

B=-Mvaryg,  C=Muvaryg,
and the proof is complete. O

Another important consequence of Theorérfi.5is the monotone conver-
gence theorem.

6.8.9 Theorem(MONOTONE CONVERGENCE THEOREMW

Letg: [a,b] — R be nondecreasing anflf,,} be a sequence of functions such that
the mtegralf fn dg exists for eachm € N, and hm fn=1F on [a,b]. Suppose,
in addition, that one of the following condltlons holds

b
e {f.} isanondecreasing sequence afich / frn dg < o0.

b
e {f.} isanonincreasing sequence anan / fndg > —o00.
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Then{f,} is uniformly integrable with respect tg, the integral f;’ f dg exists
and

b b
/fdg:hm/fndg. (6.8.12)

Moreover, we have

lim (sup / fndg— / fng =0. (6.8.13)
N0\ te(a,b]

Proof. Suppose that the first condition holds. Let

b b
B:/ f1dg, C:lim/fndg.

If o is adivision of[a,b] ands, ..., s, €N, then

Thus, the assumptions of Theor&n®.5are satisfied, an®(8.12), (6.8.13 hold.
If the second condition holds, it is enough to consider the sequengg}, which
obviously satisfies the first condition. O

The monotone convergence theorem has a number of useful corollaries, wt
will be needed later. The first result is an analogue of Levi's theorem for term-b
term integration of infinite series.

6.8.10 Theorem.Suppose thay : [a,b] — R is nondecreasingy; : [a,b] — R is
a nonnegative function for eadhe N, and f =", f on [a, b]. If the integral

J? fi dg exists for each: € N and if the sumd_ ;" , [ f dg is finite, then the se-
quence{s,} givenbys, =>",_, fr on[a,b] is uniformly integrable with respect
to g and

/fdg 2 afkdg-

Moreover, we have

o[ 1)

lim [ sup
=00\ te(a,b]
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Proof. The sequencés, } is nondecreasing, the integrﬁj’ s, dg exists for each
neN, and lim s, = f on [a, b]. Moreover, we have

b

lim Sy dg = lim (Z fk> dg
b
i > [ ra=Y [y
k=174 k=177

Thus, the statement of the present theorem follows from the monotone cony
gence theorem. O

6.8.11 Remark. Suppose thay: [a,b] — R is nondecreasing anfi=> 7", f
on [a, b], where eachf} : [a,b] — R is a nonnegative function such thﬁaf fr dg
exists. If we know thatf: f dg exists, then

n b b n b
Z/ fkdg:/ (ka) dgg/ fdg foreachneN.
k=174 @ \k=1 a

Hence,> f;’ fi dg is finite and equalsfabf dg by Theoren6.8.10 In other
words, we have established the following result:

[P fidg exists if and only ifS"3° | [ f, dg is finite; in this case, both
expressions have the same value.

The monotone convergence theorem also leads to the following result.

6.8.12 Lemma.lf g:[a,b] — R is nondecreasing and f;} is a sequence of
nonnegative functions such that the integﬁlfk dg exists for eachk € N, then
f;(/inzg fx) dg exists as well.

S

Proof. For eachn €N, let h, =min{f,..., f,}, and note that Theore®.7.5

guarantees the existence of the inteq%%\hn dg > 0. The sequencéh,,} is non-
increasing and pointwise convergentitd,cy f,. Hence, the monotone conver-
gence theorem implies the existence of the i”tegffff‘,ing fr) dg. O

€

Another useful corollary of the monotone convergence theorem is Fatol
lemma.

6.8.13 Lemma(FATOU’S LEMMA). Let g:[a,b] — R be nondecreasing and let

{f.} be a sequence of functions such that the integfafn dg exists for each
n € N. Then the following statements hold:
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(i) Assume there is a functiop:[a,b] — R such that fabapdg exists and
fn =@ on [a,b] for eachn e N. If liminf f,(z) <oo for eachz € [a, b]

and lim inf fab fn dg < oo, then f;(lim inf f,,) dg exists, and we have

b
/(hmlnf fn) dg<11m1nf/ fn dg.

n—oo

(i) Assume there is a functiog : [a,b] — R such that f:¢ dg exists and
fn<® for eachneN. If limsup f,(z) > —oo for each z € [a,b] and

n—oo

lim sup f: fn dg > —00, then f:(lim sup f,) dg exists, and we have

n—oo n—oo

b
/ (lim sup f,) dg>hmsup/ fn dg.

n—oo n—oo

Proof. Let us prove the first statement. Without loss of generality, we can assul
that o =0 (otherwise, it is enough to consider the sequefite— ¢}). For each
neN, let h, = ]iggf fr. The sequencéh,,} consists of nonnegative functions, it

is nondecreasing, and pointwise convergentioinf f,. By Lemma6.8.12 the

integral f: h., dg exists for eacm € N. Obviously, we have

b b
/ hndgé/ fn dg,

and therefore

b b b
lim h,, dg =1lim inf/ hy, dg <lim inf/ frn dg < 0.

n—oo a n—oo

The monotone convergence theorem implies the existence of the integ
[(lim h,) dg, and we get

b b b b
/ (liminf f,,) dg:/ (lim h,)dg= lim I, dggliminf/ fn dg.

To prove that the second statement holds, it is enough to consider the seque
{—f.} and apply the first statement. O

6.9 Integration over elementary sets

Up to now we have been discussing the integration over a fixed given interv
more precisely, integration from some lower bound to some upper bound. In 1
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theory of the Lebesgue integral one can meet also the possibility of integrat
over more general sets. The generality of the Kurzweil-Stieltjes integral (in tl
sense of a large domain of integrable functions) seems to be the source of trou
with defining the Kurzweil-Stieltjes integral over general sets, in particular in tr
cases when we do not want to restrict ourselves to continuous integrators.
reasonable compromise seems to be to restrict the considerations to elemer
sets (cf. Definitior2.8.10). In this case the following definition turned out to be
useful for our purposes.

6.9.1 Definition. Let f:[a,b] = R, g:[a,b] — R and an elementary subsgtof
la,b] be given. The Kurzweil-Stieltjes integral gf with respect tog over E is
given by

/Efdgz/ab<fXE) dg

provided the integral on the right-hand side exists.

According to Definition6.9.], the existence of the integrgl, f dg means
that there is an € R such that for every > 0 there is a gaugé on [a, b] such
that

|S(fxE,dg, P)—1I|<e forall 6-fine partitionsP on [a, b).

As we will see later, the value of the integrfl f dg can depend on the choice
of the intervalla, b] which containsE'. Hence, throughout this section the interval
la, b] is assumed to be fixed. Further, we use extensively the following conventi
mentioned in the point (x) of Conventions and notation: Functigrdefined on
the interval[a, b] are supposed to be extended to some open interval containi
[a, b] in such a way that

gla=)=g(a), g(b+)=g(b), ie. A7gla)=ATg(b)=0.

The basic properties of the Kurzwelil-Stieltjes integral over elementary se
given below are immediate consequences of the corresponding properties of
Kurzweil-Stieltjes integral presented in the previous sections.

6.9.2 Theorem.Let £ be an elementary subset pf, b]. Assume that the func-
tions f, f1, f2,9, 91, 92 : [a, ] — R are such that the integrals

/f1 dg. /fzdg, /Efdgl and /Efdgz

exist. Then for any;, c; € R,

dg = d d
/E(01f1+02f2) g Cl/Efl g+Cz/E f2dg

and



KURZWEIL-STIELTJES INTEGRAL 209

/ fdler g1 +cago 201/ fdlgi] +C2/ fdlgs]
E E E
hold.
Using Theoren®.9.2the following additivity result of the integral with respect

to elementary sets can be justified.

6.9.3 Theorem.Let F; and E, be disjoint elementary subsets of, b|. Assume
that f, g: [a,b] — R are such that both the integrals

fdg and fdg
E1 E2

exist. Then the integrafElUE2 f dg exists as well and

/ fdg= [ fdg+ [ [fdg.
FE1UE5 Eq Es

6.9.4 Remark. Note that if £' is an elementary subset ¢,b] and h=0 on
E, then obviously [, h dg=0 for eachg: [a,b] — R. Therefore, if the integral
[ f1dg exists, then the equality

/EfldQZ/Ef2d9

holds for each functiory, such thatf, = f; on E.

Later in this section we will provide conditions ensuring the existence of tr
integral over elementary sets (see Coroll@®.10). For now, let us simply high-
light the following result which is a consequence of TheofefMha

6.9.5 Theorem.Let f € G([a,b]) and g € BV([a,b]). If E is an elementary sub-
set of [a, b], then the integralf,, f dg exists.

Proof. It is enough to observe thgty g : [a, b] — R is a regulated function when-
ever f € G([a, b]) and E is an elementary subset pf, b]. O

Now we are going to consider the properties of integrals over arbitrary bou
ded intervals. For degenerate intervals, i.e., singleton sets, we have the follow
result.

6.9.6 Theorem.Let 7€ [a,b] and letg: [a,b] — R have finite one-sided limits
g(t—) and g(t+). Then the integraym f dg exists and

/[ S dg= 1) Agl). (6.9.1)



210

Proof. Note that(fx-)(t) = f(7)x-(¢) for all ¢ € [a, b]. Hence,

/mfdg:/abfx[ﬂ dg = f(7) /:Xm dg

and the result follows from Exampte 3.1 (iii). O

Integration over subintervals ¢4, b] is described by the following assertion.

6.9.7 Theorem.Let f:[a,b0] =R, g€ G([a,b]) anda<c<d<b. Thenifone
of the integrals

f dg, ) f dg,

[c,d] (c,d

d
g [ g / Jdg (6.9.2)

[C7d

exists, all the others exist as well. In this case, we have the following equalitie:

[c,d]fdg: f(e) Ag(c)WL/Cdf‘]'ngf(d) Atg(d), (6.9.3)
/<c,d> fdg=—f(c)Atg(c)+ /Cdf dg — f(d) A= g(d), (6.9.4)
o 97 f(C)A9(0)+/Cdfdg—f(d) A”g(d), (6.9.5)
» fdg=—f(c)ATg(c)+ /Cdf dg + f(d) A*g(d). (6.9.6)

Proof. Note that

c d b
[ }fdgz/(fx[c,d})dg+/ fdg+/(fx[c,d})dg~
c,d a c d

Clearly, the first and third integral on the right-hand side exist by Examples 6.:
(ii). Thus, the integral ovefc, d] exists if and only if the integrafcd f dg exists.
In this case,

c d b
}fdg—f(C)/a X[ dg+/c fdg+f(d)/d X(a) dg

[c,d

d
— f(e) A g(e) + / fdg+ f(d) A*g(d).

Since by Theorer®.9.6 both integralsf[c] fdg and f[d] f dg exist, the equiva-
lence between the existence of the integral qued] and the existence of integral
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over the open or half-open corresponding intervals can be easily derived from
relations

Xie,d = X[e] T X(e,d) T X[d] = X[ T X(e,d] = X[e,d) T X]d]-

The equalitiesd.9.4), (6.9.5 and 6.9.6) follow from (6.9.3 using Theorer%.9.6
The detailed proof is left as an exercise for the reader. O

6.9.8 Remark. According to Theoren®.9.7 given f:[a,b] = R, g€ C([a,b])
and a <¢<d<b, such that one of the integrals 16.0.2) exists, then

d
fdg= fdg= fdgz/ fdg= fdg.
[c,d) (e,d] (c,d) c [e,d]

We are now ready to evaluate integrals over elementary sets. To this end,
will make use of the notion of minimal decomposition of an elementary set (s
Definition[2.8.9).

6.9.9 Theorem.Let f: [a,b] = R, g€ G([a,b]) andletE be an elementary sub-
set of [a, b] with the minimal decompositiofJ,: k=1,..., N}. If the integral
[ [ dg exists, then also the integraj@k fdg existforallke{1,..., N} and

N
dg = dg. .9.
/Efg ;kag (6.9.7)

Proof. Fork=1,..., N, let ¢, =inf J, andd, =sup J;.. By the hypothesis, the
integral

/Efdgz/ab<fXE> dg

exists, and hence, by Theoréhil.1( so do all the integrals

dg,
/(fxE)dg for ke{l,...,N}.

Note that

d

fxg—xy,)dg=0, for ke{l,...,N}

Ck
(due to the fact thaf (x g — x,) vanishes orjc, di|) and, similarly, the integrals

b

/ (fxa)dg and [ (fys)dg

d
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are either zero or integrals over singleton sets (depending on whetleerd/or
d, belong toJ;). Since all of these integrals exist, we conclude that

/kadg:/ab(fx.]k) dg

exist for all k€ {1,..., N}. Having in mind that the intervals of the minimal
decomposition are pairwise disjoin6.9.7) follows from Theorent.9.3 O

Theoreni6.9.9means that once the integral over an elementary set exists,
do the integrals over subintervals of the minimal decomposition. This implie
immediately the following assertions.

6.9.10 Corollary. Let E' be an elementary subset [of, b] and let f:[a,b] — R
and g € G([a,b]) be such that the integral,, f dg exists. Then the integral
| f dg exists for every elementary subSeof £.

In particular, if the integral fab fdg exists, then[,, fdg exists for every ele-
mentary subset’ of [a, b].

Proof. Let 7" be an elementary subset 8fand let{/,:¢{=1,...,p} be its min-
imal decomposition. Assume that/,: k=1,..., N} is the minimal decompo-
sition of E. Fixed an arbitrary € {1, ..., p}, there existg, € {1,..., N} such
that I, C Ji,. By Theorem6.9.9 we know that the integray;’(f XJ,W) dg ex-
ists; thereforeffj(f XJ,%) dg also exists, whera, =inf I, and b, =sup I,. Ap-
plying Theorem6.9.7we conclude that the integrzjllz(f Xjkg) dg exists, while
XJi, X1, = X1, iImplies that

fdgz/ (f x,) dg
I, I,
Since/e{1,...,p} is arbitrary and the intervals of the minimal decompositior
are pairwise disjoint, using Theorei®. 3the existence of the integral ovérhas
been proved. O

6.9.11 Corollary. Let E; and E, be elementary subsets @f,b] and let f:
la,b] = R and g € G([a, b]) be such that both the integrals

fdg and /[ fdg
E1 E2
exist.

Then the integral f dg exists as well and

FE1UE>

/ fdg= fdg+ fdg —/ f dg. (6.9.8)
FE1UFE> FE1 Eo E1NE;
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Similarly, if the integraleluE2 f dg exists, then both the integrals

fdg and f dg

Ey Es

exist and the equalit{6.9.9 holds.

The following estimates are, in a sense, the analogues of the estimates f
Sectior6.3

6.9.12 Theorem.Let J be a subinterval ofa, b] and letc =inf J and d =sup J
be such thatc < d. Assume thatf : [a,b] — R and g € BV([a, b]) are such that
the integraIfJf dg exists. Then the following assertions are true:

(i) If J=]c,d], then

[ 1 ool (suplr(0)var(e, )+ F@IIA 9@+ F@DIIA g(a)]

teJ
(i) If J=[c,d), then

|| 1] < (supl5(0)) var(a. 1) + @] 1A7g(c).

teJ
(i) If J=(c,d], then

|| 1] < (suplr(0)) varta. 1)+ ) A" (a)

teJ
(iv) If J=(c,d), then
‘/fdg‘< sup|f )var(g,J).

Proof. (i) In the caseJ =|c,d|, the inequality is an obvious consequence o
(6.9.9 and Theoren®.3.4

(i) By (6.9.9 and Theoren®.5.3we get

f dg=f(c) A g(c) + / fdg— f(d) A g(d)

[c,d)

— 1) A7gle)+ lim [ re
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This together with Theorei®.8.4implies

[ Fal <1180+ lim (s 11(0)1vario)

~ t€le,s]

=1£(@) 1a~g()] + ( sup [£(0)]) var(g, e, d)).

t€le,d)

(iii) To obtain the corresponding estimate in the case whea(c, d|, we use
(6.9.69 and follow the same arguments used in the proof of (ii).

(iv) For an arbitrary but fixed € (¢, d), by (6.9.4 we have

fdg= / £ dg— F(e) A*g(e) — f(d) A g(d)
(c,d) c

—/deg—f(c)AJrg(C)—i-/ fdg—f(d) A”g(d).

Thus, applying Theoreifi.5.3we obtain

/ fdg:hm/ fdg+lim/ f dg,
(c,d) s—ct Jo s—d— [

and consequently

| / < Jim (s 170 varlg) + i (sup [7(9)|varg)

st Ciels,r] —  telr,s]

=(sup |f(t )])( lim varlg+ lim varig).
te(c,d) s—c+ s—d—

The estimate in (iv) then follows from TheorenB.4 O

As a consequence of Definitian8.1( Theorent.9.12and Theorer®.9.9we
have the following result.

6.9.13 Corollary. Let E be an elementary subset [of, b] and let f : [a,b] — R
and g € BV([a, b]) N C([a, b]) be such that the integralf,, f dg exists. Then

‘/fdg’< sup\f )Var(g,E).
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6.10 Integrals of vector, matrix and complex func-
tions

Let us recall that, by part (xiii) of Conventions and Notation, the norm of a matri
Ae z(R™ R") is denoted by the symbg¢H| and defined by

n
|A| = max Z!ai’ﬂ.
j=1,...m P

.....

Vectors fromR" are identified withn x 1 matrices (i.e., they are treated as col-
umn vectors). In other words, we identify the spat¥sand #(R",R). Conse-
guently, the norm of a vectar € R” is

n
o= lail.
i=1

Clearly, we havdA x| <|A||z| forall Ae 2(R™, R"), x € R". Itis also known
that

|Al=sup {|Az|:z e R", |z| <1}

Let F': [a,b] — 2(R™ RP) and G : [a, b] — #(RP, R™) be matrix-valued fun-
ctions with components

fir, i€{l,....m}, ke{l,...,p},

and

gk,j7 k€{17ap}7 je{la"'7n}7

respectively. Then, if all the integrals

b
/fl-ykdgk,j ie{l,...,m}, ke{l,....p}, je{l,...,n}

exist, the symbols

/abF(t) dG(t) or /adeG

stand for them x n matrix M € #(R™, R") with elements

P b
m;; = E fi,kdgk,j7 z':l,...,m, jzl,,n
k=172
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6.10.1 ExerciseVerify thatif [ F(t) dG(t) exists and equals/ € #(R™, R"),
then for eache > 0, there is a gaugé on [a, b] such that the inequality

v(P)

> (&) (Glae) = Glaw-r)) — M| <&

/=1

holds for eachj-fine partition P = («, &) of [a, b].

Analogously, we can define the integrg{lﬂfé dF' G, or fab F dG H, where the
values of F, G and H are matrices of appropriate dimensions.

The variation of a matrix-valued functiof': [a, ] — 2 (R™,R") is defined
by the same formula as in the scalar case, i.e.,

(o)

vart F= sup > |F(a;)— Faj_1)|-
acD [ab] j=1

One can easily verify the inequalities

max (var® f,;) <var’ F < Z Z vary f; ;.

i=1,...n =1 j=1

This means that a matrix-valued functidn: [¢, ] — 2 (R™,R™) has bounded

variation if and only if all its components have bounded variation. Simildrlys

continuous or regulated if and only if all its components have the same proper
The results obtained in this and in the preceding chapter are easily gene

ized for matrix or vector functions. One only needs to keep in mind that matr

multiplication is in general not commutative, i.e., it is not allowed to change tt

order of matrix-valued functions involved in various products. For example, tf

integration by parts formula (Theoref/.2) has to be formulated as follows:

If F:[a,b] — 2 (R™ RP) is regulated andG': [a, b] — 2 (RP,R™) has bounded
variation, then both the integrals

b b
/FdG and /dFG

exist, and we have

/deG+/b dF G = F(b) G(b) — F(a) G(a)

+3° (A‘F(m) A~G(z) — ATF() A+G(x)).

z€la,b]
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Similarly, the substitution theorem (Theoréh®. 1) for matrix functions reads as
follows:

Let H:[a,b] — 2 (R™ RP) be bounded and letF':[a,b] — «(RP,R?) and
G:la,b] — 2(R?,R") be such that the integraﬂ’F dG exists. If one of the
integrals

/abH(x)d:/;FdG:, /ab(HF)dG,

exists, then the other exists as well, and we have

/abH(x)d:/:FdG: :/ab(HF)dG.

Finally, let us consider Kurzweil-Stieltjes integrals of complex-valued func
tions. Given a pair of functiong, g : [a, b] — C with real partsf;, g; and imagi-
nary partsfs, g», we define

b b
/ fdg:/ (f1+1if2) d(g1 +ig2)

:/abfldgl—/abf2dg2+i(/abf1d92+/abf2dgl>

whenever all four integrals on the right-hand side exist.

Again, most results obtained in this chapter, such as the integration by pe
formula or substitution theorem, are still valid for complex-valued functions. W
leave the verification of this fact up to the reader; the proofs are straightforwe
and based on the decomposition of complex functions into the real and imagin
parts.

6.10.2 Exercise Given a pair of functions, g : [a, b] — C, verify that if f;’ fdg
exists and equals € C, then for eache > 0, there is a gaugé on [a, b] such that
the inequality

v(P

)
f(&) (9(ay) —gla1)) — 1| <e

=1

holds for eachi-fine partition P = («, &) of [a, b]. In this context, the symbdk|
denotes the absolute value of a complex number

6.10.3 Exercise.Let f,g:]a,b] — C be such that the integrafffdg exists.
Show that

/abfdg:/:fdg,

where the symbot denotes the complex conjugate of a complex number
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6.11 Relation between Lebesgue-Stieltjes and Kurz-
weil-Stieltjes integrals

The goal of this section is to clarify the relationship between Kurzweil-Stieltje
integrals and Lebesgue-Stieltjes integrals. We assume some basic familiarity v
measure theory and Lebesgue integration. Since the rest of the book make:
use of the results from this section, readers who are not interested in Lebesc
Stieltjes integrals can skip this part.

First, let us recall some facts about Lebesgue-Stielties measures. More de
can be found e.g. in Section 22 3.

Throughout this section, we always assume thak — R is nondecreasing.
Then the outer Lebesgue-Stieltjes measure of an arbitrari seR is given by

[ee)

py(E) :=inf {Z(g(bn—ir) —glan+)): EC U(an, bn]} :

n=1

The outer measure is either a nonnegative real numbex;.ofhe functiony; is
defined on the collection of all subsets &f but it need not ber-additive. By
restricting;, to a certaino -algebra of sets that are callgg-measurable, we get
the Lebesgue-Stielties measyig, which is o-additive. This measure has the
following properties:

e Each Borel set (in particular, each open or closed segt) isneasurable.

e The measures of various types of intervals are calculated as follows:

tg([a,b]) = g(b+) —g(a—),
f1g((a,b]) = g(b+) — g(a+),
tg([a,b)) = g(b—) —gla—),
f1g((a,0))  =g(b—) —g(a+).

In particular, the measure of a singletda} is 1,({a}) = g(a+) — g(a—).

e If ECR is iy -measurable and > 0, there exists an open sét such that
ECGandu,(G\E)<e.

e If ECR satisfiesu;(£) =0, then £ is u,-measurable ang,(£) = 0.

In Lebesgue’s integration theory, it is common to deal with functions who:
values can be not only real numbers, but alsec. For this reason, we set
R*=RU {£o0}.
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A function f:R — R* is called ;,-measurable if the sefz e R: f(x) > r}
is g-measurable for eache R. A function s: R — R is called simple if it can
be expressed in the form

n
s= g CiXAjs
Jj=1

wherec, ..., c, are distinct real numbers, andl, ..., A, are disjoint subsets
of R. Obviously, s is p,-measurable if and only if the setd,,..., A, are
ig-measurable. Ifs is u,-measurable and nonnegative (i.e.cif. .., c, >0),
we define its Lebesgue-Stieltjes integral by the formula

/ sdug, = Z ciphg(Aj).
R o

If ¢;=0andu,(A;)=o00 foracertainj € {1,...,n}, we use the convention that
0-00=0. The value of the integral is either a nonnegative real numbexor

For each nonnegative, -measurable functiorf : R — R*, there exists a non-
decreasing sequence of simple nonnegative functions which is converggnt tc
We define

/ f duy=sup {/ s du,: s is a simpleu,-measurable function with < s < f} .
R R

Finally, for an arbitraryy,,-measurable functiorf : R — R*, we define

/Rfdug—/Rﬁdug—/Rf‘dﬂg

whenever the difference on the right-hand side makes sense (i.e., it is not of
form oo — ).
If £CR isapu,-measurable set, we let

/EfdungfoE i,

whenever the last integral exists. Since the valueg ofitside £ are unimportant,
we can assume that is defined only onE (and extend it toR in an arbitrary
way).

If g(z)==x forall z€R, then y, is simply the Lebesgue measure, and the
Lebesgue-Stieltjes integral reduces to the ordinary Lebesgue integral.

Note that if [, f du, exists and is finite, ther| | f| du, also exists and is
finite, becausef| is u,-measurable}f| = f* + f~, and the integrals of * and
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f~ are finite. For this reason, we say that the Lebesgue-Stieltjes integiad is
solutely convergent

Our goal is to prove that Lebesgue-Stieltjes integrability implies Kurzweil

Stieltjes integrability. This fact will be a fairly straightforward consequence of th
next lemma.

6.11.1 Lemma.lf £ C [a,b] is a u,-measurable set, then the Kurzweil-Stieltjes
integral fab xr dg exists, and we have

b
/ v dg— /( | X i+ (0) A gla) £ xp(8) A1),

Proof. Let E = EN (a,b) and observe that

/ XE dﬂgz/XE dl‘gzﬂg(E)-
(a,b) R

SinceEnN{a} and EN{b} are either empty or singleton sets, we have

b b
/ XEn{a} d9=xE(a) ATg(a), / Xengy dg = xg(b) AT g(b).

Thus, it suffices to show that
b ~
| xedo=n(B) (6.11.1)

Let H = (a,b) \ E. Consider an arbitrary > 0. It is well known (cf. e.g. Lemma
22.10 in [L53) that there exist open sets;, Go C R such that

~ g
ECGi, pg(Gr)<pg(E)+e, HCGy, Hg(G2)<:ug(H)+§
Let § be a gauge oifu, b] with the following properties:

o §(z)<dist(x,R\ G,) for every z € E, and 6(z) < dist(z,R\ G,) for
everyz e H.

e )(z) <z —a foreachz € (a,b], andd(z) < b— x for eachz € [a, b).

o If x€(a,a+0d(a)), then g(z) —g(at+) <e/4; if e (b—46(b),b), then
g(b=) —g(x) <e/4.
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Let P= (e, &) be aé-fin~e partition of|a, b]. The first property from the definition
of § ensures thatif; € £, then[a;_1, ;] C Gy, and if §; € H, then [a;_1, ;] C
G». The second property guarantees that- a and¢,(p) =b. We can write

U -1, 050 = 1851, 8],
&eE jet

where the right-hand side is a finite union of disjoint intervals containe@in
(note that the intervals on the left-hand side are nonoverlapping, but in gene
not disjoint). Consequently, we get

S(xg: P)=_(g9(ai) —glaim) =) _(9(8)) — 9(6;-1))

&l jed
SZ(g(ﬂj ﬁ] 1_ Zlug ﬁ] 176]
jeJ jeJ

< g(Gh) <M9(E) +e

To obtain a lower bound fof(x g, P), we write

U [ai—la OZ,L] - U [’Yk—lu ’yk]a

§&EH keK
where the right-hand side is a finite union of disjoint intervals containe@.in
Recalling that{, =a ¢ £ and§,(p) = bE, we get

S(xg. P)=g(b) —gla)— Y (g(a:) — g(cviz1))

§i€la,b\E

= g(b) — g(a)

(g ao +€Z€;{ ai1)) + glaur) — glawp) 1))
= g(ow(p)-1) — glan) - ;(g(az) g(ai-1))
= g(aup)-1) — glar) — jz;((g(%) —9(-1))
>g(b—) - Z —g(a+) — ZE -~ ];((g(vﬁ) — g9(1-1-))
> g(b=) —gla+) — - —;(/;(ml,m)
> py((a, b)) — = —ug<G2>€ > p1y((a, b)) — iy (H) — & = iy (E) — 2.
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We have proved that

S(xe: P) = 1y(E)| <&

for eachd -fine partition P = («, ), which implies that the identityd(11.7) holds
and the proof is complete. O

Using the definition of a simple function and its Lebesgue-Stieltjes integre
we get the next result.

6.11.2 Corollary. If s:[a,b] —R is a u,-measurable simple function, then the
Kurzweil-Stieltjes integrayab sdg exists, and we have

b
/ sdg:/ sdu, + s(a) ATg(a) +s(b) A™g(b). (6.11.2)
a (a,b)

6.11.3 Theorem.If f:[a,b] — R and the Lebesgue-Stieltjes integrﬁttl1 b fdug
has a finite value, then the Kurzweil-Stieltjes integfé’llf dg exists, as well, and

[ o= [ e 1) A%gla) ) A5, 6.11.3)
It g(a+) = g(a) and g(b+) = g(b), then

/abfdg: T (6.11.4)
If g(a—) =g(a) and g(b—) = g(b), then

b
/ fdg= [ )f dig. (6.11.5)
a a,b

Proof. If the Lebesgue-Stieltjes integral exists, thérfwhich is considered to be
zero outside€a, b]) is necessarily, -measurable. Each of the functioris, f~

is nonnegative ang,-measurable, and therefore it is the limit of a nondecreasin
sequence of nonnegatiyg -measurable simple functions. The Kurzweil-Stieltjes
and Lebesgue-Stieltjes integrals of these simple functions exist and satisfy
relation £.11.2. Using the monotone convergence theorems for the Kurzwei
Stieltjes and Lebesgue-Stieltjes integrals, we get

b
/ Frdg= [T @ A gl ) A0,

b
/ P o= [Tl @) A gl + 0 A0,
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which immediately implies@.11.3.
If g(a+)=g(a) and g(b+)=g(b), observe that\*g(a) =0 and

f(0) A7g(b) = f(b) (g(b+) — g(b=)) = f(b) pe({b}) = /{b} S dug.
Similarly, if g(a—)=g(a) and g(b—) =g(b), then A=g(b) =0 and
fla) ATg(a) = f(a) (9(at) — g(a—)) = f(a) py({a}) =/{ } f dug.

These facts together wit(L1.3 imply (6.11.9 and £.11.5, respectively. O

6.11.4 Exercise.In Section6.2 we have introduced Kurzweil-Stieltjes integrals
of the form [, f dg, where f,g:[a,b] =R and E is an elementary subset of
la,b]. Suppose that we exteng to R in such a way thaty(a—)=g(a) and
g(b+)=g(b). Show that if I C [a,b] is an interval of an arbitrary type and the
Lebesgue-Stieltjes integraf, f du, exists, then the Kurzweil-Stieltjes integral
[; f dg exists as well and has the same value. Conclude that the same stater
holds if I is replaced by an elementary sBtC [a, b]. Let f: [a, b|—R, g: R—R
and a subinterval of [a,b] be given and lety(a—) =g(a) and g(b+)=g(b).
Assume that the Lebesgue-Stieltjes integfaf dg exists. Then the Kurzweil-
Stieltjes integralf, f dg exists as well, and both integrals have the same value.

Our next goal is to prove a partial converse to Theofehi.3and show that
for nonnegative functiong, Kurzweil-Stieltjes integrability implies Lebesgue-
Stieltjes integrability. We begin by establishing two auxiliary results.

6.11.5 Lemma.Let f: [a,b] — R be a nonnegative function such that the Kurz-
weil-Stieltjes integralfff dg exists, andE = {x € [a,b]: f(x) >1}. Then for
eache > 0, there exists gu,-measurable set C [a,b] containing £ and such
that fab xo dg<e+ fabf dg.

Proof. We havef = fx(a} + fX(ap) aNd E = £, U E,, where By = EN{a} and
Ey=EnN(a,b]. Note that bothf: fX{ay dg and f;’ [X(ap) dg exist. We will con-
struct measurable sefs,, G, C [a, b] such thatt); C Gy, Ey C Gy,

b e b
/X& dg§§+/ fX{ay dg,

b b
/ X, dg< -+ [ fXayp dg.

a

ThenG =G, UG, containsE, and

b b b
/XGdg§/<XG1+XG2)dg§€+/ fdg.
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If f(a)<1, itsuffices totake; =(). Otherwise, iff(a) > 1, find ac € (a, b]
such thatg(c) — g(a+) <e/2, and letGy =[a, c). Then E; C {a} C G; and

b
/ xer dg = g(c—) — g(a) = g(e—) — g(a+) + gla+) — g(a)

f(a) A7g(a)
f(a)

—9(0)—g(a+)+%/ fX{ay dg

/ fX{ay dg.

Note thatg is right-continuous ina, b) with at most countably many excep-
tions. Hence, there exists a sequence of divisiars} of [a, b] such that for each
neN, a" is arefinement ob™, |a"| < (b—a)/2", andg is right-continuous
at the division pointsyy, ..., a7, 4

Let § be a gauge offu, b] such that

<g(c) —glat+) +

[\.’)I(‘f)

b
1S(/ (s, g, P) — / S dgl < /2

for eachd-fine partition P of [a, b]. We now construct a collectiofi of interval-
point pairs of the form((u,v], 7). In the beginning, leZ =(. For eachn €N,
perform the following step: Find all intervals}_,, o] which are not contained
in any interval inZ and such that there exists a point [a} ,,a}|N E, sat-
isfying [a}_,a%] C (1 —6(7),7+6(7)); then add(( oy, J] 7) to Z. If there
are several possible choices offor a given [« take only one of these
interval-point pairs.

This procedure leads to a collectidn= { ((ux, vg], 7:): k € K}, where K C
N is either finite or countable. All intervals i are pairwise disjoint, and all
points 7, satisfy f(7,) > 1 (becauser, € E,). Moreover, we have

E>C U (up, vk

keK

]17 ]]

Indeed, ifz € E,, take n € N such that(b—a)/2" < d(z). Since z belongs to

(af_y,af] foracertainj € {1,...,v(a")}, and (recall thata”| < (b — a)/2")
b—a , b—a n_ b—a b—a
T — on <o — on <o <oy <o+ on <z+ on
we see that thaia} |, a%] C (v —d(x),z+d(z)). Thus, either(aj_ l,oz;‘] was

added toZ in the n-th stage of its construction, or it is contained in an interva
added earlier. In any case c [, s (ux, vi)-
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If L isan arbitrary finite subset df’, then the collectio ([uy, vi], 7) : kEL}
can be extended to &fine tagged partitionP of [a, b], and therefore

> (g(ve) —g(ur)) <D flm) — g(ur))

kel keL
b
15
< S(fX(@u, g, P) < 3 +/ fX(ap) dg.

It follows that

b
> (av) ~ g(w) <5+ | Friends

keK

Let Gy = U,c i (ur, vi]. Since G, is p,-measurable, the integrql;’ Xa,dg
exists by Lemm#&.11.J, and we have

/ XaG, dg<Z/ ukvk] dg

keK

If v, =0, then ff X(up,ve] 99 = g(vi) — g(up+). If v, <b, then g is right-conti-
nuous atv,, and

b
/ oo 9= 9000 — glunt) = g(or) — glut).

Thus, we get

5
/ Xe dg <> (g(on) — g(uet)) < (g(vr) — g <3 / fX(a) A9,
keK keK
which completes the proof. O

6.11.6 Lemma.Let f:[a,b] — R be a nonnegative function such that the Kurz-
weil-Stieltjes integralf:f dg exists. Then for each > 0, there exists a non-
negativey, -measurable functiop : [a, b] — R satisfyingf(z) < p(z) + ¢ for all

x € a,b], andffgodg§€+f;fdg.

Proof. Let € >0 be given. Suppose first thgta) = f(b) =0. For eachn e NU
{0}, let

0 if f(z)<n
fa(x)=q f(x) —ne iff(iﬁ)G[ (n+1)€],
5 if f(x)>(n+1)e,
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and observe that
flz)= i fn(z) forzx€la,b]. (6.11.6)
n=0

We claim thatf(f fn dg exists for eaclh e NU{0}. To see this, note that
fo(z) =min{max{f(z) —ne, 0},e} forxe€la,b].

Since|f(x) —ne| < f(x)+ne and bothff(f—ns) dg andff(erns) dg ex-
ist, Theorent.7.Zimplies thatfab |f —ne| dg exists as well. According to Theo-
rem6.7.5 this means thafab max{f —ne,0} dg exists and consequently

b
/ min{max{f —ne,0},¢} dg

exists, too; this proves the claim.
Using (6.11.6 and Levi’'s theorem (Theorei® 8.10and Remarl6.8.17), we
get

/abfdg:ni;o/ab £, dg. (6.11.7)

Foreachn e NU {0}, Lemme6.11.5implies the existence of a,-measurable
setG,, C [a, b] such that

(relab]: fule)=c} = {xclab): %fn(x) >1}ca,,

and

b 1 1 b
/a Xa, dg < onil + g/(; fn dg. (6.11.8)

Since f(a) = f(b) =0, we can assume that all the se&ts are contained in the
open interval(a, b). Denote

@ZJ(I)Z&ZXGn(:U) for x € [a, b].

Since the last sum need not be convergent, the funetidakes values ifj0, oo].
Using Levi's theorem for the Lebesgue-Stieltjes integral, Theofeii.3and
(6.11.9, we get

00 0 b b
/[ ]wd,ug:€Z/[ }Xgndugzez/ chdg§a+/ fdg.
a,b n=0 v la;b n=0"a a
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The finiteness of the integral implies thatmust be finite., -almost everywhere
in [a,b], i.e., if N={z€a,b]:¢(r) =00}, thenpu,(N)=0. It follows that the
function x f is u,-measurable. Consequently, the functipn[a, b] — R given
by

C=Xap\NY+ XN f=¢ Z XGa\N + XN f
n=0

IS uy-measurable, nonnegative, and everywhere finite. Let
H,={x€a,b]:ne < f(x) < (n+1)e} ={x€[a,b]:0< f,(v) <e} forne NU{0}.
Note that all the seté/,, are pairwise disjoint, and

fn(z) <e(xan (37) + XH, (37)) forz e [av b]'

Thus, if x € [a,b] \ N, we obtain

F@)=3" 1u@) <63 xeu(0) +e D xm, (@) < ol) e

On the other hand, it € N, then f(z) = p(z).
Sinceu,(N) =0, we havef(a » X f dug =0, and thus (by Theorei®.11.9

b
/ xnfdg=0.

Levi's theorem for the Kurzweil-Stieltjes integral ar@l 11.§ imply

b 00 b b o0 b b
/sodg=82/ XG,L\ng+/ fodgéez/ XGndg§5+/ fdg.
a n=0 v a n=0va a

Therefore, we have shown thathas all the required properties.

In a general case wheli(a) and f(b) are arbitrary, consider the function
fX@p- By the previous part of the proof, there is;g-measurable functiop
such that

b b
X <F+e and / Fdg<ct / X do.
Taking ¢ = ¢ + fXx{a}, We see that
F=FXp + Xfapy S@+e+ fXiapy =9 +¢,

and [ pdg<e+ [7 fdg. O
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6.11.7 Theorem.Let g: [a,b] — R be given and letf : [a,b] — R be a nonneg-
ative function such that the Kurzweil-Stieltjes integjé’l f dg exists. Then the
Lebesgue-Stieltjes integrgqa ) f du, also exists and is finite.

Proof. First, assume thafab f dg=0. Define
Ex={z€(a,b): f(x)>1/k} for keN.

For eache > 0, Lemma6.11.5implies the existence of @,-measurable subset
G of [a,b] containing the sefz € [a,b] : k f(z) > 1} and satisfyingfab X¢ dg <e.
Observing thatF, C G N (a,b) and using Lemmé&.11.], we get

ty(Er) < pg(G N (a,b)) :/( ) XGn(ab) Aty

b b
:/ XGN(a,b) dgﬁ/ Xa dg<e.

Sincee > 0 was arbitrary, we have’ (Ey) = 0. Hence,E}, is u,-measurable and
iy (Ex) =0. It follows that

(U%) = pg({z € (a,0): f(2) > 0}).

Consequentlyfx ) is 1g-measurable angf(a ) fdu,=0.

Next, assume thaff fdg>0. Using Lemmé5.11.6with e =1/k, k€N, we
get a sequence of nonnegative,-measurable functions{y,} satisfying
f<e¢r+1/k and

b 1 b
/@kdg§E+/ fdg, keN.

Hence,h =liminf,_. ¢ is p,-measurablef < h, and Fatou's lemma implies

b b 1 b b b
/hdgglilgninf/ gokdgglilgninf(z—i-/ fdg):/ fdgg/ h dg,

ie., [(h—f)dg=0.
By the first part of the proof, the Lebesgue-Stieltjes mted L (h—f)du,
exists and equals zero. For edck N, Theoren6.11.3implies

b
/ o dug S/ ¢y, dg.
(a,b) a
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Using Fatou’'s lemma for the Lebesgue-Stieltjes integral, we get

b b
/ h duy <liminf </ O d,ug> <lim inf (/ O dg) :/ h dg,
(a,b) k—o0 (a,b) k—o0 a a

which shows thatf(avb) h du, is finite. Consequently,

/ fdugz/ hdug—/ (h—f) dug
(a,b) (a,b) (a,b)

exists and is finite. O
Theorem&.11.3and6.11.7show that for nonnegative functions the Kurz-

weil-Stieltjes integral fab f dg exists if and only if the Lebesgue-Stieltjes integral
f(a ) f du, exists and is finite; the relation between their values is given by fo
mula 6.171.9.

6.12 Relation of the Kurzweil-Stieltjes integral
to other Stieltjes-type integrals

In Section6.2 we have already clarified the relationships between the Kurzwe
Stieltjes (KS) integral on one side and the Riemann-Stieltjes (RS) integrals (b
(0) and (o)), or the Perron-Stieltjes integral on the other side. We have touch
also the relation with the Newton integral. The relationship with the Lebesgu
Stieltjes integral was discussed in the previous section. Now, in addition, we w
briefly outline the relationship with some of the other known integrals of Stieltje

type.

YOUNG INTEGRAL
Let f:[a,b] =R andg € G([a,b]). Define

Sy (P)

v(P)

= Z (f(%’—ﬂ AT glaj_1) + f(&) [9(aj—)—g(aj_1+)] + f(Oéj)A_g(Oéj))

for every tagged partitiol® = («, £) of [a, b]. We say that th€o) Young-integral
(aY) fab f dg exists and has a valuec R if
for everye > 0 there is a divisiona. of [a,b] such that
’Sy(P) — [’ <&
holds for all partitionsP = (e, &) of [a, b] such thala D a. and

O./j_1<§j<a/j for all ]6{1,,1/(01)}
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Notice that the expressiaofiy, (P) can be equivalently rewritten as follows:
v(P)—-1 )

Sy (P)= f( a) + flaj) Aglay)+ f(D)A™g(b)
") = (6.12.1)

+> f(&) l9(aj—) — glaj1+)]

Jj=1

<.

Ve

Integral sums of the form6(12.7) were introduced by W. H. Young irilb7],
where related§) -type integrals were discussed, as well. To our knowledge,
systematic study of thés) Young integral was initiated by T. H. Hildebrandt in
[53]. More details are available in Section 11.19 of his monograBfl.[ The
(o) Young integral is more general than the corresponding RS-integrals. If t
function f is regulated orja, b] and g has a bounded variation dn, b], then it
is known that the integraloY) f(f f dg exists and coincides with the KS-integral

(KS)fab f dg (cf. Schwabik[L2(0 and [121]). However, proceeding similarly as
in the proofs of Theorem8.3.8and6.3.1], it is possible to extend this assertion
as follows.

6.12.1 Proposition.Supposef and g are regulated orfa, b] and at least one of
them has a bounded variation da, b]. Then both integrals

b b
(KS)/ fdg and (O’Y)/ fdg
exist and have the same value.

The proof essentially follows the ideas of Secti®fA and we leave it to the
reader as the following (somewhat more advanced) exercise. O

6.12.2 Exercise Prove Propositio®.12.1.
Hint:

o Verify that the formulas.3.1)—(6.3.10) from Example%.3.1hold also for
the (o) Young integral.

e Using Exercis@.1.12(ii) show that the estimate
Sy (P)] < || flloo varg g
holds for all partitionsP of [a,b] and all f, g : [a, b] — R.

e For f:[a,b] =R, g€ G([a,b]) and o, &, 5 € [a,b] such thate <a <E<
G < b, verify the equality

fla) [glat)=g(a)]+ (&) [9(B—)—g(a+)] + f () [9(8)—g(6-)]
= [fla)=f ()] glat) + [F(€)=F(B)] 9(B=) + f(B) 9(B) — fla) g(a).
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Having this in mind, it is easy to see that the estimate

[Sy (P)[ < (If (@) +1f(0)| +varg f) llglls
is valid for all partitionsP of [a,b] and all f, g: [a,b] — R.

e Notice that due to the previous two steps, the estimates

b
Mqu/'fdgLsnfnmvaig
and

b
Mﬂﬂfwmwmmww

hold whenever the corresponding integrals exist.

e Modify the proofs of Theorem§.3.7and6.3.10to show that their ana-
logues are true also for ther) Young integral.

e Finally, complete the proof of Propositidghl12.1by proceeding as in the
proofs of Theorem§.3.8and6.3.11

6.12.3 Remark. (i) If g is regulated ona, b] and
gla)=g(t—)=g(s+)=g(b) for te(a,b], s€a,b), (6.12.2)

then, by 6.12.7), Sy (P)=0 for every functionf : [a,b] — R and every partition
P of [a,b], i.e., (oY) fabf dg =0. In general, this is no longer true for the KS-
integral, as shown by the following example taken frard(] (see Example 2.1
there): Let

1
tr=—— for keN and ¢g(¢
’ g 0 for ¢t €[0,1]\ {tx: k €N},

(t) = 2k if t=t, forsomekeN,
E+1 N

and
f(t) = 2k if t=t¢, forsomekeN,
1o for te[0,1]\ {tx: keN},

Evidently, g has a bounded variation dfi, 1] and g(a) = g(t—) = g(s+) = g(b)
for t€ (a,b] and s € [a,b). (Notice that f is not regulated or0, 1] as f(0+)
does not exist.)

Consider an arbitrary gauge and let/ € N be such that, € (0,(0)). We
can choose a-fine partition P = (a, £) of [0, 1] in such a way that

ap=&6=0, y=&& =t and g(o;)=0 forje{2,....v(a)}.
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Then

S(P)= f(&) [9(aa) — glar)] = —f(te) g(te) = —1

On the other hand, we can choosé-éine partition P = («, €) in such a way that
an{t,}=0. As S(P)=0 for such partitions, it follows that the KS-integral

f: f dg does not exist.

(i) Of course, if g(z) =z, then the Dirichlet functionf, (cf. Remark6.2.4) is
not (o) Young integrable with respect tp Thus, the existence of the KS-integral
does not in general imply the existence of {lag Young integral.

SCHWABIK’S MODIFIED KS-INTEGRAL 5

To avoid the trouble illustrated by the first part of the above remari§chwabik

introduced in/L21] the notion of the modified KS-integral in the following way:
We say ! € R is the modified KS-integral of with respect tog if for each

¢ >0 we can find a gaugé such thatS(P) — I| < ¢ holds for eachy-fine parti-

tion P of [a,b] such that

a<& <ay,

a1 <& <a; foralje{2,...,v(a)—1}
and

Ay(a)—1 < Eu(a) <D

6.12.4 Exercises. (i) Show that in the example described in the first part o
Remark6.12.3 the modified KS-integral of with respect tog equals 0.

(i) Let g(a) =g(t+)=g(s—)=g(b) forall t € (a,b] and alls € [a, b). Prove that
the modified KS-integral of with respect tog equals O for eaclf : [a, b] — R.

So far, there exists no systematic treatment of the modified KS-integral. Ho
ever, it is evident that the modified KS-integral exists whenever the KS-integ
exists and in such a case they have the same value. The applications present
this book show that the KS-integral is sufficient for many purposes.

KREJXI’S KN-INTEGRAL
Recently (seefl]), P. Krejci modified the notion of the KS-integral so that his in-
tegral, called the KN-integral, fully covers not only the) Young integral but also
Schwabik’s modified KS-integral. His definition is based on a skillful reductio
of the set of permissible partitions. We can formulate it as follows:

Let f,g:[a,b] =R and I € R. We write

b
(KN)/ fdg=1I
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if for every > 0 there are a gaug& on [a, b] and a countable set C [a, b] such
that the inequality

IS(P)—1I|<e
holds for everys -fine partition P such that none of its tags belongs to the det

DUSHNIK (INTERIOR) INTEGRAL
We say that th€ o) Dushnik-integral(oD) ff f dg exists and equal$ € R if

for everye > 0 there is a divisiona. of [a, b] such that
|IS(P)—1|<e
holds for all partitionsP = (e, &) of [a, b] such thalo D a. and
a1 <& <a; forall je{l,...,v(a)}.
The Dushnik integral is also known as timerior integral, cf. Dushnik31].

6.12.5 Exercise Assume thatf is the Dirichlet function andy(z) =z on [a, b].
Show that the(o) Dushnik integral(cD) ff f dg does not exist.

Thus, unlike the modified KS-integral and KN-integral, tfag Dushnik inte-
gral does not fully cover the KS-integral. Still, this concept of integral is suffi
ciently general for many purposes, becays®) fab f dg exists if f, g are regu-
lated and one of them has a bounded variation. However, the value of the inte
is in general different from the KS-integral. This is evident from the next exercis
which should be compared with Examples 6.3.1.

6.12.6 Exercises. (i) For any function f € G([a, b]), show that the following
relations are true:

b
(oD) / fven = Fr4) i T€lab),

ab
(oD) / J vy = f(r—)  if T€(ab],

ab
(oD) / f dvn = —f(r4) i T€a,b).

ab
(0D) [ F dun=—F(7-) 1 7€ (@b,

and

, —f(a+) if 7=a,

(UD)/ de[T]: —Af(T) if TE(&,[)),
’ fo—) if T=b.
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(i) For any functiong: [a, b] — R, show that the following relations are true:

b
(oD) / Yoo dg=g(b) —g(r) i 7€ a,b),
b
(oD) / Nowy dg=g(B) —g(r) if 7€ (a.b]
(oD) / Xior dg=g(r) —gla) if 7€a,b),

b
(D) / N g =g(r) — gla) if € (ab],
and
b
(UD)/ Xr1 dg=0 for 7€ [a,bl.

The next result provides more information on the relation betweg¢Bushnik
and KS-integrals.

6.12.7 Proposition.Assume thaf and g are regulated ora, b] and at least one
of them has a bounded variation ¢m b]. Then both integrals

(UD)/abfdg and (KS)/abgdf

exist and the equality

(oD) / fdg+ (KS) / gdf = () g(a) — (a) g(a) (6.12.3)
holds.

Similarly to Propositiort.12.], the proof is left as an exercise to the reader.

6.12.8 Exercise. Prove Propositio®.12.7

Hint: Follow the steps of Exercisg 12.2with the (o) Young integral replaced
by the (o) Dushnik integral. Take into account the results of Exercisg&.6and
observe thatd.12.9 holds if one of the functiond, g is regulated and the other
is a finite step function.

Notice that, combining relatiorb(12.9) with the integration-by-parts formula
(6.4.2), we obtain the equality

(aD)/abfdgz(KS)/abfdg
-y (A‘f(x) A~ g(z) — AT f(z) A+9(%’))

a<z<b
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valid wheneverf and g are regulated ora, b and at least one of them has a
bounded variation offu, b|.

We point out that a relation between tte) Young and(o) Dushnik integrals
analogous to Propositich 12.7has been already known for a long time, cf. The-
orem B in MacNerneyd6] or Theorem 4.7 in lénig [61].

A noteworthy study of the Dushnik integral is contained in the monogi@agih [
by Ch.S. Hynig, who extended its definition to functions with values in Banacl
spaces and subsequently used it to develop the theory of abstract Volterra-Stie
integral equations.

INTEGRATION IN ABSTRACT SPACES

The extension of integration to vector and matrix functions was shown in Se
tion/6.10 One can act analogously even in the case of abstract functions,
functions with values in Banach spaces. Af is a Banach space an¢t( X ) is
the corresponding Banach space of continuous linear operataoks and

F:la,b)—»2(X), G:|a,b| - 2(X), g:[a,b] = X,

then we can define KS-integrals

b b b b
/ng, /ng, /dFG, /FdG.

For example,fab dFfg=1¢€ X ifforeverye >0 thereis agaugé on [a, b] such
that

H §F<sj> lg0y) = gloy0)] — 1 ||, <

holds for everyd-fine partition P = («, §) of [a, b]. The notion of the variation
can be easily transferred to abstract functions, too. For a fungtida, b] — X
and a divisiona: of the intervalla, b], we define

v(ox)
V(f,0)=>Y " Ilf(ay) = ;1) x
and 7=t
var® f=sup{V(f,a):a € 2[a,b]}.

It is also obvious how to define the spaGé[a, b], X ) of regulated functions with
values in X . Then e.g. both integrals

b b
/dFG and /FdG
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exist if '€ BV([a,b], 2(X)) and G € G([a,b], £(X)) and most of the state-
ments known for the integration of scalar functions (sE&]], [12§ and [107])
hold. There are some exceptions though: e.g. Coroliasy2 holds only if the
spaceX has finite dimension. This means that, inter alia, there are certain prc
lems with the transfer of e.g. the Substitution Theorem to abstract integrals.
this brief information, it is worth mentioning that if the spaée does not have a
finite dimension, it makes sense to consider, instead of variation, then in gene
weaker notion osemivariationwhich is defined as follows:

For a given functiont': [a, b] — #( X ) and a divisiona of [a, b], set first

v(@)
VI(E, @) =sup { || Y[F(a;) ~ Flay-0) | x |

where the supremum is taken over all choices of elemesX, je{1,.. ., v(a)}
such that||z;|| x- < 1. Then the number

(B)var’ F =sup{V’(F,a): o€ 7[a,b]}

is called thesemivariationof the function /' on [a,b] (see e.g. §0]). The as-
sumptions concerning bounded variation can be usually (not always) weakel
to bounded semivariation. It is known that ¥ has finite dimension, then the
notions of variation and semivariation coincide.

Finally, let us note that the integration of functions with values in Hilbert, o
reflexive Banach spaces, is useful e.g. in the theory of hysteresis (seéGd . [

[71).



Chapter 7

Generalized linear differential
equations

7.1 Introduction

Allintegrals in this chapter are KS-integrals whose definition is extended to mat
valued functions (i.e. the functions mapping the interab] into the space of
matrices) in the sense of Secti6ri( As we already explained in Sectiéril( all
properties of KS-integral as well as of both kinds of RS-integral, which we ha
proved so far for scalar functions, hold for the vector and matrix valued functior
too, if the original order of matrices is kept. Therefore, in the proofs, for an
needed properties of functions and integrals, we will refer to the correspondi
statements proved in the previous chapters for scalar functions.

The following definition introduces the spaces of vector and matrix value
functions that will be used throughout this chapter.

7.1.1 Definition. (i) G([a, b], R™) is a Banach space of the functiofiga, b] —=R",
which are regulated ofu, b]. The norm onG([a, b], R") is defined by

[f]l= sup [f(#)] for feG([a,b],R")

tela,b]

where|f(t)| is the norm of the vectoy(¢) in R".

(i) BV([a,b],#(R™)) is a Banach space of the functios: [a,b] — 2 (R")
which have bounded variation dn, b]. The norm onBV([a, b], #(R")) is de-
fined by

| F||gv =|F(a)|+var® F for FeBV([a,b], 2(R")),

where vaf F is defined as in Sectioh.10and |F'(a)| is the norm of the matrix
F(a) in 2(R™).

The spacesBV([a, b],R"), C([a,b], #(R™)) and C([a,b],R") and their norms
are defined similarly. A set of functiong: [a,b] — R"™ with a derivative that is
continuous on the intervak, b] is denoted byC*([a, b], R™). As usual, we define

fi(a)=F'(at) and f'(b)=f'(b=) for feC(la,b],R").

The topic of this chapter are the equations of form
t
x(t) —z(s) —/ dAz=f(t)— f(s) (7.1.1)

237
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wheret, s € [a,b], A isann x n-matrix valued functionf is ann-vector valued
function and we look forn-vector valued functionz satisfying the following
definition.

7.1.2 Definition. A function z: [a,b] — R™ is a solution of equatiori/(1.]) on
[a, ] if the integral f:dA:p exists and equatior/(1.]) is satisfied for allt, s €
la,b].

The equation{.1.]) is calledgeneralized linear differential equation

7.1.3 Remark. Let ¢, € [a, b] be given and let: satisfy the equation

o) alto) - | “dA= (1) = £(t) (7.1.2)

for t € [a, b]. Then for anys € [a, b], we have

x(s):x(to)—i-/ts dAz+ f(s)— f(to).

If we subtract this equation fror7(1.2), we will find out that 7. 1.7) holds for all
t,s € |a,b], i.e. z is a solution of equation/(1.1). Thus, the functionc: [a, b] —
R™ is a solution of equatior/(1.1) on [a, b] if and only if for some fixed, € [a, 0]
it satisfies{.1.2) on [a, b].

7.2 Differential equations with impulses

The motivation for studying generalized differential equations are among of
ers the problems with impulses. A range of practical problems actually invol
perturbations that have negligible persistence time compared to the time of
whole process which however significantly affect the studied process. The si
able model for describing such processes is usudiffgrential equations with
impulsesi.e. differential equations whose solutions does not have to be neitt
smooth nor continuous.

The source of the models with impulses is mainly physics (e.g. the descr
tion of clock mechanisms, oscillations of electromechanical systems, radiatior
electric or magnetic waves in the environment with rapidly changing paramete
stabilization of Kapitza’s pendulum, optimal regulation by bang-bang metho
but also medical science (distribution of medicinal substances in a body, strat
of impulse vaccination in epidemiological models, investigation of the effect
mass measles vaccination), population dynamics (models with rapid change
the amount of some populations) or economics (trade models which admit ra
changes of prices).
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The simplest idealization of impulse processes are the processes describe
the linear differential equations on which linear impulses act in finite amount
firmly given points.

Assume
reN, a<n<---<7.<b,
PeC([a,b], 2(R")), q€C([a,b],R"), (7.2.1)
Bre 2(R™), dp,eR™ fork=1,...,r.

(In this chapter, the symbols likB,., or d;, stand also for matrices, or vectors.)
Denote
D= {7’1,7'2,...,7}}, To=a, T,11=>=
and, for a given regulated function: [a, b — R", define
xp)(t)=x(t) for t€la, ]
and

o (f) = r(th1t) ift=m74, (7.2.2)
. (1) if ¢ € (741, 7]

forke{2,3,...,r+1}.
The linear impulse problem then consists of the linear differential equation
' =P(t) z+q(t) (7.2.3)
and linear impulse conditions
Atx(ry)=Brao(me) +dy, k=1,...,r (7.2.4)
while the solution is defined by the following definition.

7.2.1 Definition. We say that a functior: : [a, b] — R™ is a solution to the im-
pulse problemT.2.9), (7.2.9) if

33[]6}601([7}_1,7}]) for a”kE{l,...,T—l—l}, (725)
2(t)=P(t)x(t) +q(t) foralltela, b\ D (7.2.6)
and z satisfies the impulse conditiorig.2.4).

7.2.2 Remark. Notice that a solution to probler? 2.3, (7.2.4) always belongs
to the spaces([a, b], R™).
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Now we will show that problem7.2.9), (7.2.4 can be equivalently reformu-
lated as a generalized linear differential equation of the fafrm. ).

First, assume that=1, and letz: [a,b] — R™ be a solution of the impulse
problem 7.2.9, (7.2.4). Integrating equation/(2.€), we get

z(t)= z(a) —i—/ P(s)z(s) d5+/ q(s)ds for t€a, ]

and
x(t)—a:(ﬁ—i-)—i-/tp(s)x(s) d5+/tq(s) ds for te(m,b]
Substituting7.2.9) (wh(:rek: =r=1)Iinto tTrlle latter relation above, we get
az(t):a:(Tl)+Blas(71)+d1+/tP(s)9:(s) ds+/tq(s) ds
=x(a) —i—/t P(s)x(s) ds+ By z(m) —|—/tq(s) ds +d,
for t € (m, 0] and thearefore a
z(t)=x(a)+ /at P(s) x(s) ds + X(r, p)(t) B1x(71)

t
+ / q(s) ds + X (r 5](t) dy

Fort € [a,b], set

forte[a,b]. (7.2.7)

A(t):/tP(s) ds+ x(r )(t) By and f(t):/tq(s) ds + x(r 0 (t) di
Then A e BV(L[La,b],,,sf(R”)), f €BV([a,b],R") anda

A(t—)=A(t) and f(t—)= f(t) fort € (a,b].
Moreover,

A = [ P6) s xinn 0By and 4= [ a(s) st xinn (0,
that is

ATA(t) =y (1) B1 and AT f(t) = xpy(t) di for t€a,b).

By the Substitution Theorei®.6.1and formula6.3.7) from Example<.3.1 (i)
(see also Examplés5h.7), the equalities

t t
/ dA 2 — / P(s) 2(s) ds + x(01(t) B 2(m1)
and
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£(t)— f(a) = / a(s) ds + X o ()

hold for t € [a,b] and x € G([a, b], R™). Substituting to/{.2.7), we find out that
x satisfies ora, b] (7.1.2), wherety, = a.

Reversely, ifx € G([a,b],R™) verifies {/.1.2) on [a,b], then [7.2.7) surely
holds. Thus, if we define the functions,, as in [/.2.29), then {7.2.5) and [/.2.6)
will be true. Furthermore, by Hake’s Theorem (see also Exefcisé) x(t—) =
x(t) for eacht € (a,b] and

z(t+) =x(a) + lim s dAz+ f(t+) — f(a)

=z(a)+ [ dAz+ f(t)— fla) + ATAR) z(t) + AT f(1)
=2(t) + x(n)(t) (B1a(t) +dy) forevery t € [a,b].

In particular, puttingg = 71, we find out that: meets the impulse conditiofi.¢.4)
wherek =r=1.

Hence, by RemarK.1.3 the problem({.2.3, (7.2.4) is equivalent to general-
ized differential equation/(1.1) if r=1.

In the general case ofe N, we define

A(t) = / P(s)ds+ 3 xins)(t) Bi for t€[a,b],
‘ k=1 (7.2.8)

flt) = / q(s)ds + > X(ma)(t)di  for tela,b.
@ k=1

By induction, we verify the following statement easily.

7.2.3 Theorem.Assumg7.2.]) and (7.2.§. Then the impulse problei.2.3,
(7.2.9 is equivalent to the generalized differential equat(@éri.?), i.e. z : [a, b] —
R™ is a solution of problen{7.2.3, (7.2.4 on [a, b] if and only if it is a solution

of equation(7.1.1) on [a, b]. -

7.3 Linear operators

Now, let us briefly recall some basic notions and results from functional analy:
which we will need later. More detailed information can be found in the majorit
of the textbooks on functional analysis (see €/d) pr [115]). The basic overview

is also included in the introduction part df3]].
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Let X, Y be Banach spaces. The mappifig X — Y is acontinuous ope-
rator if

lim ||xn—:pHX:0 = lim ||T(xn)—T(x)HY:O,

where || - || x is the norm onX and || - ||y is the norm onY . The operator
L: X — Y iscalledlinearif

L(cy xo4co x2) =1 L(x1)+co L(x2) holds forxy, zo € X and ¢y, co €R.

Moreover, we say that the linear operatbris boundedif there is a number
K €0, 00) such that

IL(z)|y <K ||z| xy forallzeX.

If L isalinear operator, then, as usual, we wiite instead ofL(x). Itis known
that the linear operatok : X — Y is continuous if and only if it is bounded.

The set of linear bounded mappings of the spaceinto Y is denoted by
Z(X,Y). If X=Y, we write #(X) instead of#(X, X). On #(X,Y),
the operations of adding the operators and multiplying the operators by a r
number are established in an obvious way andX , Y') is then a Banach space
with respect to the norm

Le2(X,Y) = ||Lll ¢ xy,=sup {IILz|ly :z€X and ||z] x <1}.

Itis known that the space’(R") is equivalent with the space of matrices of form
nxn.

Finally, we say thatL. € #( X, Y") is compactif it maps every set bounded
in X onto a set which is relatively compact ivi, i.e. if for every sequence
{z,} bounded inX, its value{L z,} C Y contains a subsequence that is con:
vergent inY . It is known that every compact linear operator is simultaneousl|
continuous.

We will use the following two statements in the proofs of the main results «
this chapter. The former one is a generalization of one of Fredholm’s theore
known from the theory of integral equations. Its proof is included e.g. in th
monographs by N. Dunford and J. T. SchwalfiZ][or by M. Schechter11§].

7.3.1 Theorem(FREDHOLM ALTERNATIVE THEOREM). Let X be a Banach
space and let the operatdr € .#( X' ) be compact. Then the operator equation

r—Lx=g (7.3.1)
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has exactly one solution € X for everyg € X if and only if the corresponding
homogeneous equation

r—Lx=0 (7.3.2)
has only the trivial solutiont =0 € X .

The second statement is known also from the elementary theory of ma
ces. Let us recall its general form borrowed from the monograghi] [(see
Lemma 4.1-C).

7.3.2 Lemma.Let X be a Banach spacd, € #(X ) and HLHg(X) <1. Then

the operator[I — L] has a bounded inversgl — L] " and the inequality

1

—1
I—-L < —
H[ ] 2X) 7 1-||Lll ¢ x,

is true.

7.4 EXxistence of solutions

Let us start our consideration of generalized linear differential equations by a si
ple observation based on known properties of the KS-integral.

7.4.1 Theorem.Let A€ BV([a,b], #(R")) and f € G([a,b],R™). Then every
solution x of equation(7.1.1) on [a,b] is regulated on|a,b] and satisfies the
relations

A~z(t)=AA(t) z(t)+ A f(t) forte(a,b], }
(7.4.1)
Atx(s)=ATA(s)x(s)+ AT f(s) forse]a,b).

Proof follows from Corollary6.5.40f Lemma6.5.1(Saks-Henstock Lemma).
O

Thus, by virtue of Theorerii.4.], it is appropriate to look for solutions of
generalized linear differential equations in the clé§$a, b|, R").

The problem

o) —F— /tt dAz = f(t) — f(to), (7.4.2)

where the point, € [a, b] and the vectoft € R" are given beforehand, is an ana-
logue of the initial problems for linear ordinary differential equations.
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7.4.2 Definition. A function z: [a, b] —»R" is said to be a solution to the initial
problem [7.4.2) on [a, b] if equation [7.4.2) is satisfied for every € [a, b].

7.4.3 Remark.Due to Remark.1.3 itis obvious that the functiom is a solution
to the initial problem((.4.2) on [a, ] if and only if it is a solution to equation
(7.1.)) on [a,b] andz(ty) = .

For a given function: € G([a, b], R") and a pointt, € [a, b], let the function
,x be given by

(,x)(t) :/t dAxz for t€]a,b. (7.4.3)

By Corollary6.5.4all the functions <, = are regulated offu, b]. The mapping
- x € G([a,b],R") — a,2 € G([a, b], R")

is obviously linear. Moreover, by Theore®n3.4we have
[ y]| < (var’ A) ||| for all = € G([a, b], R™).

Thus, for everyt, € [a,b], 4, IS a continuous linear operator on the spac
G([a,b],R™), i.e

o, € Z(G([a, b], R")).

Next, we will prove that7.4.39) defines simultaneously a linear continuous opera
tor mappingG(|a, b], R™) into BV({[a, b], R™).

7.4.4 Lemma.Let A€ BV([a,b], Z(R"™)), to € |a,b] and let the functione;,
be defined for: € G([a, b], R") by (7.4.9.
Thene;,x € BV([a, b],R™) for everyz € G([a, b], R") and the operator

z € G([a,b],R") = a,x € BV([a,b],R")
is bounded.

Proof. Let o be an arbitrary division of the intervéd, b]. By Theoremt.3.4

v(e) UD) o
> (et o) = (o)) =3 | [ dae

a
Z varys | A) ||z|| = (var) A) ||z|

and
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(o) (a)| = / dAx‘ < (var’ A) |z].

to

hold for everyx € G([a, b], R™). Hence,x € BV([a, b], R") and
Izt By = |(,2) (a)| + var, (e,2) < 2 (varg A) ||z
for every z € G([a, b], R"). O

Using the operatorz, from (7.4.39, we can rewrite the initial problen?(4.2)
as the operator equation

r—a,r=g, Whereg=1z+ f— f(to).

Unfortunately, we do not have tools that would enable us to prove the compactn
of the operator € #(G([a, b], R™)). Therefore, we cannot apply the Fredholm
Theorem (Theorerni.3.J) directly and we have to proceed by a kind of indirect
route. In the following theorem, using the Helly Choice Theorem (The& &)
and the Bounded Convergence Theorem (Theo?&n we will show that the
operator;, generates compact mapping of the spBadg [a, b], R") into itself.

7.4.5 Theorem.Let t,€[a,b], A€BV([a,b],2(R")) and Lz =,z for
x €BV([a,b],R"). ThenL is a compact linear operator oBV ([a, b], R™).

Proof. Since||z| < ||z||gv for eachz € BV([a, b], R™), it follows by Lemmé/.4.4
that L € #(BV([a, b],R")).

Next, we will prove that for an arbitrary sequenge, } bounded inBV ([a, b], R™).
the set of its value§ L x,,} C BV ([a, b],R™) contains a subsequence that is con:
vergent inBV ([a, b], R™).

Thus, let the sequender,, } € BV([a, b]) and the numbes: € [0, co) be such
that

|zn|lBy <2 <00 forevery neN.

By the Helly Choice Theorem (Theorei/.4) there are a function € BV ([a, b], R™)
and an increasing subsequereg, } C N such that

|z]|pv <2 and klim xn, (t)=x(t) foreverytea,b.
Setzy(t) =z, (t) —z(t) for ke N andt € [a, b]. Then

|21,(t)| <4 > and klim 2(t)=0 for keN andtea,b)].
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Since the integralgcddA 2z, and fcdd[varg Al |z (s)| exist for all ¢, d € [a, b] and
k € N, Theorem6.3.4guarantees that the inequalities

(o) v(a)

DL a(e) - (L)) = | / idAzk\

Jj=1

v(a) a; b
gz/ d[vars A] |zk(s)|§/ d[vars A |2,(s)|
j=1"7aj-1 a

hold for every divisiona of [a,b] and everyk € N. We thus have
b
var,, (sz)s/ d]var; A] |2(s)| for keN.

By the Bounded Convergence Theor@m)

b
lim d[var} A] |z(s)|=0,

k—o0 a

and hence

lim var’(Lz,, — Lz)= lim var(Lz,)=0.

k—o0 k—o0

Similarly,

lim |(Ly,(a) — Lz(a))] :]}Lrgo |(L z)(a)| = lim

k—o0 k—o0

/ dAZk’
to

< lim [var; A] |z (s)] =0.

k—oo to

This completes the proof of the theorem. O

The following statement is a corollary of Theorem8.1and7.4.5

7.4.6 Theorem.Let A€ BV([a,b], #(R")) andt, € [a, b]. Then the initial value
problem

l‘(t)—/t dAz=g(t) (7.4.4)

has exactly one solution ofa, b] for every g € BV([a,b],R") if and only if the
corresponding homogeneous problem

x(t) — /t dAz=0 (7.4.5)

to

has only trivial solutionz =0 on [a, b].
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Proof. Equation7.4.9) is equivalent with the operator equation
r—Lx=g
where L z = o, « for z € BV([a, b],R"), i.e.
t
(Lz)(t) :/ dAz for z€BV([a,b,R") and t € [a,b].
to

By Theorem7.4.5 L is linear compact operator oBV ([a, b], R"). Hence, the
proof can be completed by using Theorérfi. 1. O

Now, assume that € (o, b] and that the functiorr € G([a, b], R™) satisfies
equation 7.4.2) on [ty, 7). Clearly, z(to) =7 and, using Hake’s theorem (The-
orem6.5.5 see also ExampleS.5.7 and Exerciseéb.5.5), we easily verify the
following relations

z(t—)=7+ lim S dAz+ (f(r=) = f(t))

=7 Jt,
:f+/ dAz+ f(r) — f(tp) — lim dAz — A" f(7)
to s—=T— Jo

—§+/T dAz+ f(1) — f(to) = A" A(T) z(1) = A™ f(7).

to

Thus, if the functionz should satisfy1.4.2) also in 7, the valuex(7) has to be
such that the equality

[ —ATA(r)] 2(r)=a(r—) + A" f(7) (7.4.6)

is true, wherel stands for then x n-unit matrix (see Conventions and Nota-
tions (xiv)). From this, it is obvious that the solution to the initial problémi(2)
on [tg, T) can be extended to the pointin an unique way if and only if

det [T— A~ A(7)] #0. (7.4.7)

Similarly, we can conclude that a functianc G([a, b], R™) satisfying {.4.2 on
(1,t0], wherer € [a, ;) can be extended to the pointif and only if

[[+AYA(m)] 2(r) =a(r+) = AT f(7), (7.4.8)
which will be true just if
det [+ AT A(7)] #0. (7.4.9)

Thus, we can expect that the conditiosi(7) and [7.4.9 should be essential for
the existence of the solution to the probleni(?).
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7.4.7 Lemma.Let A€ BV([a,b], #(R")) and ¢, € [a, b]. Then problen(7.4.4
has exactly one solution for every functigre BV ([a, b], R™) if and only if

det (I — A™A(t)) #0 forall ¢ € (to, b] (7.4.10)
and
det(I+A*TA(s)) #£0 forall s€(a,tp). (7.4.11)

(Here (to,b] =0 if to=b, and [a, to) =0 if to=a.)

Proof. a) Assume that, € [a, ), A satisfies/{.4.1() and {7.4.1)) and z satis-
fies (7.4.9 on [a,b]. By Remark7.1.3 z is a solution of([{.1.]) on [a, b] while
x(tp) =0. By Theorem7.4.], = is regulated ona,b] and the second equation
in (7.4.1) yields

Atz(te) = AT A(ty) z(ty) =0,

i.e. l‘(t0+) =0.

Seta(t) =var; A for t € [to, b]. Then the functiony is nondecreasing on the
interval [y, b]. Thus, there is afinite limit.(¢,+) and we can choosed&e (0, b —
to) suchthat0 < «(ty + d) — a(to+) < 1/2. From this and using Theorerfis3.2
and6.5.5 we derive fort € [ty, tp+d] the inequalities

t t
)] < [ Jol da=a"a(to) la(to)] + Jim, [ folda

to

= lim /Tt || dov < [u(to+0) — a(to+)] < sup |x(t)|>

T—to+ te[to,to+9)

<5 (s ).

te[t07t0+5]

Hence

sip ))<= (s @),
( )<3

tE[to,toJr(s] tE[tQ,t0+5]
which is possible if and only if: =0 on [¢y, to + ¢].

Now, sett* =sup{7 € (to,b]: 2 =0 on [ty, 7]}. Obviously, z=0 on [ty, t*)
and hencex(t*—) =0. Moreover, by [7.4.7) we have0 = [I — A~A(t*)] ().
However, thanks to assumption.4.10), that is possible if and only if:(¢*) = 0.

Finally, assume that* <b. Using the same arguments as those we used
prove that there is @ € (0,b—¢,] such thatz is zero on[ty, ¢y + J], we would
now show that there is ame (0, b — t*) such thatr vanishes orjt*, t* + n]. This
being in contradiction with the definition of, it must bet* = b. Thus, we proved
that every solution of the problen 4.5 vanishes orjtq, b |.
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Similarly, using the assumptioiY @4.17), we would prove that ifty € (a, b],
then the solution: of the problem7.4.5) vanishes also offu, ).

To summarize, we have proved that whenewe#.(L() and (7.4.1)) are sat-
isfied, problem/[{.4.5 will have only trivial solution onfa,b]. Consequently,
by Theorem7.4.6 problem {7.4.4 has exactly one solution ofu, b] for each
g €BV([a,b],R").

b) Assume that e.g.7(4.1() does not hold. By Lemma.3.2
det [I — A~A(t)] #£0 if [A”A(t)| <1/2.

On the other hand, by Corolla@.1.7, the reverse inequalityA~A(t)| >1/2
holds for at most finite number of pointsc (¢, b]. Thus, the matrixt: — A~ A()
is not regular for at most finite number of points (ty, | and therefore we can
choose a* € (¢, b| such that

det [T — A~ A(t)] #£0 for t € (to,t*) and det [/ — A~ A(t")] =0.

Now, it is well known from linear algebra that in such a case there exist®”
such that

[I—A"A@t")] c#d forevery ce R™. (7.4.12)
Define
0 whent#t,
g(t) =
d whent=t*.

Theng € BV([a,b],R") andA~g(t*) = d. Assume that equatio (4.4 has a so-
lution = on [a,b]. Then by the first part of the proaf =0 on [a,t*), and thus
alsoz(t*—)=0. By Theoreni7.4.1 [I — A~ A(t*)] z(t*) =d has to hold. This
is however in contradiction with the statement4.12 and hence problen¥(4.4)
cannot have a solution.

If (7.4.17) does not hold, then we will analogously find a paiht [a, t,) and
a functiong such that

[I+ATA(t")] c#£ATg(t*) forevery ceR",
which again leads to the contradiction with Theorém. 1. O

7.4.8 Theorem.Let A € BV([q, b], #(R™)) andt, € [a, b]. Then the initial prob-
lem (7.4.2) has exactly one solution for every functighe BV ([a, b], R") and
every vectorr € R™ if and only if (7.4.10) and (7.4.1J) hold.

Proof. The theorem is a corollary of Lemnad.7if we set

gt)=x+ f(t)— f(ty) for t&]a,b]. 0
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7.5 A priori estimates of solutions

An important role in the theory of ordinary differential equations (e.g. for th
proof the uniqueness of a solution to the initial problem or for the proof of th
continuous dependence of solutions on some parameters) is played by the a
tion called Gronwall lemma. Below we recall its statement. Its proof can be foul
in the majority of textbooks on ordinary differential equations, see. e.g. Auxiliat
Theorem 4.3.1 ind2].

7.5.1 Lemma(GRONWALL). Let the functions: and p be continuous and non-
negative ona, b], let K> 0 and let

u(t) <K+ /t (p(s)u(s)) ds for tela,b].
Then
u(t) < K exp (/tp(s) ds) for ¢€[a,b].

For our purposes, the generalization of Gronwall lemma to the Stieltjes setti
will be likewise important. To deduce it, we need the following auxiliary result.

7.5.2 Lemma.lf h:[a,b] — [0, 00) is nondecreasing and left-continuous, then

b hk—H b) — hk+1
/ h¥ dh < (li+1 (@) for everyk e NU {0}.

Proof. The existence of the integr@ﬂf h* dh follows from Theoren®.3.& Con-
sider an arbitrary > 0. There exists a gauge: [a, b] — (0, co) such that for each
d-fine partition P = («, £) of [a, b], we have

b
/ R dh—S(P)’ <e.

Moreover, using the left-continuity of, we can assume thatis chosen in such
a way that

R (1) —h'(t)<e foric{0,...,k}, 7€(a,b],t€(r—5(7),7]. (7.5.1)
Now, let P = («, &) be an arbitrary) -fine partition of[a, b]. Then
b b
/ h* dh:/ h*dh — S(P)+ S(P) <e+ S(P)

a

v(P) (7.5.2)
=c 3 (H(&) (o) = h&)) + (&) (&) = hlay-1).
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Note that for eacly € {1,...,v(P)}, we have

(fj) k‘—l—l th ' (a; hl(ﬁ])

(sinceh is nondecreasing, the right-hand side corresponds to the average bf
terms, which are all greater than or equahtq¢;)). Consequently,

PH(E5) (hay) = h(€))) sk—Z ay) H'(&) (hlag) = h(&;)

_ 1 k+1 N k1 )
= k+1(h (o) = h"(E))).
Foreachje{1,...,v(P)}, the inequality7.5.]) implies that

) kHth (&) (M (aj1) +e) .

Furthermore, sincé is nondecreasing, we havé—(¢;) < M, where
M =max{h'(b), i=0,...,k}.
Consequently,

R () (A(E;) = hlay 1))
W) (W (aj-1) +e) (h(E) = hlay-1))

<

7
+ |~

1

)

ES|

1 ki i
o1 2o ) P(as) () = hlay-1))

1=0

. m (S i)~ e

=0

< g (€)= 1 05 0) 2 M (hly) = Bl )

By substituting the previous inequalities inf0%.2), we get

v(P)

[z oy ; (1 (ag)=h**(ay-1) + & M (h(&)~hla; 1))

hk—l—l(b) _ hk+1 (a)
<
<e+ 1
which completes the proof. O

+e M (h(b) — h(a)),
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7.5.3 Exercise.Prove the following complementary statement to Lenhiaz
If h:la,b]— [0, 00) is nonincreasing and right-continuous, then

b k+1/7\ _ 7 k+1
/ h* dh > h (bll +]I @ for everyk e NU{0}.

7.5.4 Theorem(GENERALIZED GRONWALL LEMMA ). Assume that:: [a, b] —
[0, 00) is bounded/ : [a, b] — [0, c0) is nondecreasing and left-continuous,>
0, L>0, and

t
u(t)gKJrL/ wdh for tela,b] (7.5.3)

Then
u(t) < K exp (L[h(t) — h(a)]) for t€]a,b]. (7.5.4)
Proof. Let x>0 andw,(t) =r exp (L [h(t) — h(a)]) for t € [a,b]. Then

/ w, dh = m/ exp (L [h(s) — h(a)]) dh(s)

:,{/; (i % [h(s) —h(a)]k> dh(s) for t€la,b].

k=0

Since, as is known, the serigs Lk—'f [h(t) — h(a)]* converges uniformly on
la,b], we can change the order of the operations of integrating and adding.
we now use Theorem.5.2, where we replace the functiol by the difference

h — h(a), we get

/at W dh = i (% / t [h(s) = h(a)] k) d[h(s)]

< ﬂg (L [h((t]ij)(f” H) :% (exp(L (1) — h(a)]) — 1)
_ wy(t) — K
L

for t € [a, b]. This means that the functiom,, satisfies the inequality
t
w,(t) 2/<;+L/ w,, dh (7.5.5)

for every k >0 andt € [a,b]. Let £ >0 be given and lets= K +¢ and v, =
u — w,. By subtracting the inequalitie§ 5.3 and (7.5.5, we find out

t
va(t)§—5+L/ ve dh  holds for t € [a, b]. (7.5.6)
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Specially, v.(a) < —e < 0. The remaining part of the proof will resemble the
method used in the proof of Lemn¥a4.7. The functionsu and w, are evi-
dently bounded ona, b] for every x > 0. Hence, the function. is bounded on
la, b], too. By Hake’s theorerfi.5.5(ii) we have fort € (a, b]

t

t
/ v. dh=v.(a) A*h(a)+ lim ve dh
a 6—0+ a+d

< —e ATh(a) + [Jvc|| [A(t) — h(a+)] < [Jve]| [2(t) = h(at)],

and therefore
t
v(t) <—e+ I / ve dh < —& + L|[o.]| [h(t) — h(at)] for ¢€ (a,0)].

Choose am; > 0 in such a way that
L ||ve|| [h(t) — h(a+)] <e/2 holds for ¢ € [a, a+ 7).

Thenwv. <0 on [a,a+n]. Set t* =sup{7 € [a,b]:v. <0 onla,7]}.
We see that* >a andv. <0 on [a,t*). By repeated using Hake’s theorem
6.5.5(i), we get

o
ve(t") < —e+ L/ ve dh
’ —
=—c+L (Ug(t*)A_h(t*) + lim Ve dh) <—e<0,

0—0+ J,

from (7.5.9 asA~h(t*) =0 and [ . dh <0 for everyd>0.

If t*<b, we would repeat the previous method and show that there exis
6 € (0,b—t*) such that. < 0 on the intervala, t* + 6] which is in contradiction
with Definition ¢*. Hencet* =b, v. <0 on the whole[a, b] and

u(t) <w,(t) =K exp (L (h(t)—h(a))) +e exp (L (h(t)—h(a))) for t € [a, b].
Sincee > 0 was arbitrary, it means thaf 6.4 holds. O

7.5.5 Exercise.Prove the following variant of Theoreih5.4
Letw:[a,b] — [0,00) be bounded otu, b], h:[a,b] — [0, 00) be nondecreas-
ing and continuous from right ofw, b, K >0, L>0 and

b
u(t)gK+L/ wdh for t€a,b]. (7.5.7)
t

Then
u(t) <K exp (L[h(b) — h(t)]) for t€a,b]. (7.5.8)
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7.5.6 Remark. More general versions of generalized Gronwall lemma are ir
cluded in the monographs I8y Schwabik127] (see Theorem 1.40) and J. Kurzwei
[85] (see chapter 22).

In the following theorem, we will use generalized Gronwall lemma for deriv
ing an important estimate for the solution of the probl&mi(2).

7.5.7 Theorem.Let ¢, € [a,b] and A€ BV([a,b], #(R")) meet the conditions
(7.4.10 and (7.4.1)), fe€G([a,b],R"), z€R" and letx be a solution of the
initial problem(7.4.2) on [a, b]. Then

var® (z — f) < (var’ A) ||z|| < oo, (7.5.9)

Y

(Ato)—max{l, sup ‘[ AA)]

tE(to b
sup |[I+AYA(t)] ™ }<oo,
t€la,to)
(7.5.10)
2(8)| < cia) (1Z]+2]1F1]) exp (2caq) vari, A) fort € [ty, b],
2(t)] < cane) (IZ]+ 21| f1) exp (2 cia var? A) for t € [a, to).
(7.5.11)

Proof. a) For any divisiona of the intervalla, b], we have

v(a)
Z ‘x(aj) — flay) — (e 1) + f(a;1)

_Z/ Z (vares_ A) [lo]] = (var’, 4) ]| < oo.

This gives immediately7.5.9).

b) Lett e (ty,b] be such thafA~A(t)| < 1. Then, using Lemma.3.2 we get
1

=1 |A=A()|

Since the seft € [a, b]: [A~A(t)| > 5 } has at most finitely many elements, Corol-

lary'4.1.7implies that

sup |[I—ATA®)] | < oo

te(to,b]

I —AA(@)]” <2.

Similarly, we would argue to prove that

sup ’I+A+A( )] < o0

tE[a to
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To summarize,{.5.10) is true.
c) Letx satisfy (7.4.2). Set
B(t) = {A(t) ?f t € [a, to],
A(t—) if t€(to,b].
Obviously, A(t) — B(t) = A~ A(t) and
var, (B—A)= > |A"A(s)|<varj A
s€(to,t]
for t € (to,b] (see Corollan2.3.9. Hence
A—BeBV([a,b,R") and vaj B<2var, A.
Furthermore A™ B(ty) = A™ A(ty) and hence, using Corollafy3.16 we get

/t dA—Blaz=A"A(t)2(t) for t€ (to,b].
to
The equation{.4.7) is thus reduced to
[I—ATA®)]z(t) =T+ /tt dB]x+ f(t) — f(te) forte(to,b].
From here and having in mind (1[ha(tA,t0) > 1 we easily derive the inequality
|2(t))] §K+L/t lz| dh for ¢ € [to,b],
to

where
K =cage) (|Z|+2[f1I), L=caz, and h(t)=var; B.

The functionh is nondecreasing ofiy, b |. Moreover, sinceB is continuous from
the left on(¢y, b], the functionh is by Lemma2.3.3also continuous from the left
on (tg,b]. Now, applying the Generalized Gronwall Lemm&.4we get finally
the former inequality in{.5.17).

For the proof of the latter inequality i7(5.1J) we can argue in a similar way,
while using the variation of the generalized Gronwall inequality from Exercis
(5.9 O

7.5.8 Exercise.Under the assumptions of Theorénb.7, prove the inequalities
0< sup [[[+ATA®)] <00

t€la,to)
and

(1)) < caey (17]+ 2 [1F]]) exp (2 vare A) fort € [a, o]

in details.
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7.6 Continuous dependence of solutions on parame-
ters
Let ¢y € [a,b] and A € BV([a, b], #(R™)) meet the conditions/(4.1() and (7.4.17),

zeR" feG([a,b],R™) and letz be a solution of problen¥(4.2) on [a, b]. Also,
let y be a solution of

v -7~ | "dAy—g(t) — g(to) (7.6.1)

on [a, b], whereg € G([a, b],R") andy € R". Then

(z(t) —y(t) = (T —7) + /t dA (z —y) + (f(t) —9(t)) = (f(to) — g(to))
for t € [a, b]. Thus, by Theoreni.5.7we have

lz =yl < ca) (]5—@\ +2 Hf —gH) exp (2 c(AvtO)varZ A),

wherec(4,,) € (0,00) is defined in[(.5.1(). We see that the ,,distance” between
the solutions of initial problems/(4.2) and (7.6.]) is proportional to the ,,dis-
tance” between the input data (i.e. the initial valuesrof; and the right hand
side f, g) of these equations. This phenomenon is described in more details
the following theorem.

7.6.1 Theorem.Let ¢, € [a,b] and A€ BV([a,b],.#(R")) satisfy(7.4.1() and
(7.4.1)). Further, let f, fr € G([a,b],R™) and z, 7, ¢ R" for k€N are such
that

lim £ = f| =0 (7.6.2)
and
klim Tp=1. (7.6.3)

Finally, let for eachk € N the initial problem

() — —/ Az = fult) — fulto) (7.6.4)

have a solutionz;, on [a, b]. Then problen{7.4.2) has a solutionz on [a, b] and

lim ||z, — 2| =0. (7.6.5)

k—o0
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Proof. a) As a consequence 6f.6.2 and (/.6.9, there exists ark, such that
el <IFI+1 and [F] < [7]+1 for k> k.
Thus, by Theorerii.5.7 we have
|xk|| <29 <oo  for k> ko, (7.6.6)
where
0= Cian) (|2 +2[|f]| +3) exp (2¢(az,) var, A)
does not depend ok. Furthermore, by the same theorem, we also have
var (z — ) <sgvar A< oo for k> k.

Now, by Helly’s Selection Theorem (Theoréi/.4) there arey € BV([a, b], R")
and an increasing sequenfk } C N such thatk, > ky,

lylley <2 max{sqvar A, s+ || f|| + 1}
and

Ellrgo (21, (1) = fr, (1)) =y(t) for t€a,b].
Having in mind {7.6.2), we see that the limit

x(t) :zzlijg x, (1)

exists for everyt € [a, b]. By (7.6.6 the sequencgzxy,} is uniformly bounded.
Hence, using the Bounded Convergence Theorem (The@®&nwe get

t t
lim / dAx,w—/ dAz foreacht € [a,b)].
to to

{—00

Moreover, lettingl — oo in (7.6.4) (and therefore using assumptiosd.2) and
(7.6.9), we find out thatr is a solution to problemi/(4.2) on [a, b].

b) If for every k € N we repeat the arguments from the introduction to this sectio
with y replaced byz, ¢ replaced byf, andy replaced byz — &, we will find
out that

o — || < K (|2 — 2| + 2| f = fil)
holds for everyk € N, where
K =c(az) exp (2 ciaun) var’ A) <0
does not depend ok. Therefore, 7.6.5 holds, too. O
Now we are ready to extend Theor&m.&to the general case ¢fe G([a, b], R").

The existence results, which we have up to now at our disposal, applies only
the cases when the right hand sifidnas a bounded variation dn, b].



258

7.6.2 Theorem.Let A € BV([a, b], Z(R™)), to € [a, b] and let(7.4.10) and(7.4.1J)
hold.

Then the initial problen(7.4.2) has exactly one solution ofa, b] for every
function f € G([a, b], R™) and every vector: € R".

Proof. a) If we have two solutions:, y of the problem7.4.2 on the interval
[a, b], their difference orja, b] will be a solution of homogeneous problem4.5
which however has only trivial solution by Lemnial. 7 Therefore,x =y has to
hold on[a, b].

b) Setz, ==z for k € N. By Theoren.1.5there exists a sequendg;} of step
functions (therefore of functions froMV ([a, b], R"™)) which converges uniformly
on [a,b] to f. By Theoreni/.4.8there exists exactly one solutian of the prob-
lem (7.6.9 for every k € N and by Theorer?.6.1the sequencéz;} converges
uniformly to the solution of probleni/(4.2). O

In the remaining part of the section, we will investigate the initial problem

() —%—/t dAz = f(t) — f(to) (7.6.7)

as the limit of the problems

n(®) =T~ [ dm= fult) - fult) (7.6.8)

where the kernels!, depend on the parametgr= N. This case is slightly more
complicated than the one we dealt with in Theorér.l. First, we will prove
convergence theorem for KS-integrals for the situation which is not covered
the theorems from the Chapter 6.

7.6.3 Theorem.Let f, fr € G([a,b],R"), A, A, € BV([a,b], #(R")) for k€ N.
Assume that condition§.6.2),

klim |Ax — Al =0 (7.6.9)
and
o :=sup var’ A, < oo (7.6.10)
keN

are satisfied. Then

/atdAkfk—/:dAfD:O.

lim | sup
k=00 \ tefa,b)
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Proof. Let £ >0 be given. By Theoreni.1.5 we can choose a functiop:
la,b] — R™ such that its every component is a step function@rb] and at the
same time || f —¢l||<e. Moreover, by 7.6.2 and [/.6.9 we can choose &, € N
such that

Ife — fll<e and ||Ax — Al <e for k> k.

For givent € [a, b] and k > ko, using Theorem§.3.4and6.3.5 we get

‘/atdAkfk—/atdAf‘

t t
/dAk(fk—so)h /d[Ak—A]sa - )\
< (varg Ap) [|fi — ¢l + 2[| A = All llollpy + (varg A) [lp — |

<o (IIfx = FII+11f = ell) + 2114 — Al lelly + (var, A) [l — f]]
< (2(1* +2||¢llBY +varZ A) e=Ke,

K=(2a"+2|¢llsv +var? A) € (0, 00)
does not depend neither édnnor ont. This completes the proof. O

The following auxiliary statement will be useful, too.

7.6.4 Lemma.lf A, Ay € G([a,b],R") for k € N are such thatd, =2 A on [a, b],
then the following statements hold:

1. If I —A~A(t) is invertible for eacht € (¢, b], then there exists &, € N
such thatl — A~ A,(t) is invertible for all k > kg, ¢ € (o, b] . Moreover,

sup |(I—A7AL() 7" <2 sup |(I—AA(t)] (7.6.11)

tE(to,b) tE(to,b]
for eachk > k.

2. If T+ ATA(s) is invertible for eachs € [a, ty), then there exists &, e N
such thatl — At A, (s) is invertible for all k > ko, ¢ € [a, to) . Moreover,

sup |(1+A%Au(s)) "' <2 sup |[(I+ATA(s))™" (7.6.12)

t€la,to) t€la,to)

for eachk > k.
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Proof. We prove the first statement; the proof of the second one is similar and
left to the reader.
According to the proof of Theorem5.7 the quantity
c= sup |(I—AA(t)|

te(to,b)

is finite. By Lemme#.2.3 we haveA~ A, = A~ A on [a,b]. Thus, there exists
a ko € N such that
1

(7.6.13)

forall t € [a,b], k> ky. Fort e (ty,b], we can write

IT—A"A(t) =1 —A"A(t)) — (A7 Ax(t) — A7 A())
(1 — A AW) (1-Tult).

where
To(t) = (I — A=A(1)) " (A~ Ag(t) — A= A(1)).

To prove that! — A~ A,(t) is invertible, it suffices to show that— 7},(¢) is in-
vertible. By {7.6.13 we have

1

| Ty (t |<|([ ATA(t ) \ \A Ag(t) — A‘A(t)\<1
for all ¢t € (ty,b], k>ko. Thus, Lemmé/.3.2 guarantees thaf — Tk( ) and
consequently alsd — A~ A, (t) are invertible; moreoverl I—Ty(t |<2

Hence, it follows that

(1= A" A(1)) |<|([ Ti(t)) }|(I ATA(L)) \<2|I ATA(t)™

which proves the estimat&.6.1)). O
7.6.5 Exercise.Prove the second part of Lemriigb.4

Now we are ready to formulate and prove the main result of this section.

7.6.6 Theorem.Let A, A, € BV(|a,b], #(R")), f, fr € G([a,b],R"), T,7\ €
R™ for all keN, where A, = A, fi,=f, 7, —x for k— oco. Furthermore,
assume thatup,.y var? A < oo and conditiong7.4.10), (7.4.17) hold.

Then there exists &, € N such that for every: > k, the equation

Ik(t):5k+/ dAy zy, + fi(t) — fr(a), t€la,b], (7.6.14)
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has a unique solutiony, : [a, b] — R™. Moreover,z, =z, wherez : [a, b] — R"
is the unique solution of the equation

x(t)zf%—/t dAxz+ f(t) — f(a), te€]a,b]. (7.6.15)

Proof. By Lemma7.6.4 there is ak, € N such that ifk > ko, I — A~ Ax(¢) isin-
vertible for all ¢ € (o, b], and I + AT A, (t) is invertible for allt € [a, t) . Hence,
Theoreni/.6.2implies that equation/.6.14 has a unique solution, : [a, b] — R™
for every k > ky, and equationd.6.15 has a unique solution : [a, b] — R™. Let

wy=(zx, — fr) —(x—f), keN

Then z, — z = wy, + (fk — f), and the theorem will be proved if we show that
wy, = 0. Observe that

t
wk(t):@k+/ dAy wy + hi(t) — hi(a) for k€N andt € [a, ],

wherewy, = (zy, — fr(a)) — (2 — f(a)), and

hk(t):/at d[Ay, — A] (m—f)+</at dAkfk—/at dAf). (7.6.16)

If we denotea” = sup,cy Vart Ay, then it follows from Theorerii.5.7that
lwi(t)| < e (|0k] +2 [|hn]]) exp (2era*), t€[a,b], keN
where

ck:max{l, sup |([—A‘Ak(t))_1|, sup ‘(I+A+Ak(t))_1} }

te(to,b] t€la,to)

The sequencéc,.} is bounded, because Lemma&.Zimplies

ckgmax{l,Q sup ‘(I—A‘A(t))_1 ,2 sup ’(I+A+A(t))_1’}'
)

te(to,b) tela,to

Next, notice thato, =z, — = + f(a) — fx(a) — 0. Hence, to show that, =0,
it is enough to prove that, = 0.
By Theorem?.6.3 we have

t t
lim sup ‘/ dAkfk—/ dAf‘:O. (7.6.17)
] a a

k—004c(ab
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From Theorent.3.5 we have the estimate
t
| [ diAe= A - | <2 4= Al o= flwy for te o8]

Since(z — f) € BV([a, b], R™) by Theoreni/.5.7, it follows that

t

lim sup ‘ / d Ay — Al (x — f)‘ =0. (7.6.18)
k—oo t€[a,b] a

Taking into account{.6.17)—(7.6.18, we see from{.6.1€) that h, = 0, and the

proof is complete. O

7.7 Fundamental matrices

The equation

x(t) —x(s) — /t dAz=0 (7.7.1)

is a generalization of a homogeneous system of linear ordinary differential eq
tions. Assume thatd € BV([a, b], Z(R")), to € [a,b], and conditions[{.4.10)
and (7.4.1)) are satisfied. For every € R", Theorem7.4.8 (with f=0 on
[a,b]) implies that equation7(7.]) has a unique solution:: [a, b] — R™ satis-
fying x(ty) =z. By the first part of Corollar$.5.4 the solutionz is a regulated
function. Thus, the second part of the same corollary implies:ithzds bounded
variation.

Clearly, the relation between solutiomsof (7.7.]) and their values at the point
to is a one-to-one correspondence. It is easy to verify thatif are solutions of
(7.7.3) on [a,b] and ¢, co €R, then ¢, x +coy is also a solution of {.7.1) on
[a, b]. These observations are summarized in the following statement.

7.7.1 Theorem.Let A€ BV([a,b], #(R")) and let(7.4.10) and (7.4.1) hold.
Then the set of all solutions of equati¢n?7.J) on [a,b] is a linear subspace of
BV([a, b],R™) having dimensiom.

We now introduce an analogue of the classical notion of a fundamental mat:

7.7.2 Definition. A matrix-valued functionX : [, b] — #(R") is called a funda-
mental matrix of equation/(7.1) on the intervalla, 0] if

X(t)=X(s)+ /t dAX forallt, sela,b (7.7.2)

anddet X (¢) #0 for at least one € [a, b)].
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7.7.3 Remark. If a matrix-valued functionX satisfies the relation/(7.2), then
it is easy to verify that for any: € R", the functionz(t) = X (¢)c is a solution
to (7.7.J).

7.7.4 Lemma. Assume thatd € BV([q,b], £(R")), t € [a,b], and conditions
(7.4.10 and (7.4.1)) are satisfied.

Then for every matrixX € #(R"), there exists a unique matrix-valued func-
tion X;, € BV([a, b}, Z(R™)) such that

t
Xto(t):XJr/ dAX, foralltc(a,b]. (7.7.3)
to
Proof. For eachk € {1,...,n}, let 7, denote thek-th column of the matrix

X. Thus, 7 €R" for k=1,...,n, and X = (T1,%,,...,%,). For eachke
{1,...,n}, Theoren/.4.8implies the existence of a unique functiep: [a, b] —
R"™ satisfying the equation

t
xk(t)—ffk—/ dAiL'kZO for tE[a,b].
to

By Corollary6.5.4 x; has bounded variation dia, b]. The function

Xiy(t) = (z1(t), 2(2), . . ., w0 (1))

(i.e., the matrix-valued function with the columng, k=1,...,n) is therefore
a unique solution of{.7.3 and has bounded variation ¢ b)]. O

7.7.5 Remark. If toe€a,b], X €.2(R") and X,, is the function defined by
Lemma7.7.4 then the functionX = X;, obviously satisfieg?(.?.E). Therefore,
X is a fundamental matrix of equation.?.1) wheneverdet X # 0.

For simplicity, we will now assume that

(7.7.4)

det(I — ATA(t)) #0  foreveryte (a,b],
det(I+ATA(s))#£0  forevery s € [a,b).

7.7.6 Lemma.lf A€ BV([a,b], #(R")), condition(7.7.4) holds, andX is a fun-
damental matrix of(7.7.1) on [a, b], then

det X (t)#0 for eacht € [a, b]. (7.7.5)

Proof. If X is a fundamental matrix of7(7.]) and (7.7.5 does not hold, then
there exist pointsy, 7, € [a, b] such that

det X(19)#0 and det X(m)=0.
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The latter equality implies that the columnsg(7 ), zo(71), . .., z,(71) of the ma-
trix X (m,) are linearly dependent. Hence, there are coefficients, . .., ¢, € R,
not all zero, such that

n

Z cxry(m) =0.

k=1

Setxz(t) =3 ,_, cx zx(t) for eacht € [a,b]. Thenz is a solution to[(.7.7) (see
Remark?.7.9 with z() =0, i.e.,  is a solution of the initial-value problem

t
:E(t):/ dAz for tea,b).

However, the same equation also has the trivial solution. Since Theobrefh
guarantees uniqueness of solutions (note that4) implies that conditions4.4.10)
and (7.4.1]) are satisfied fot, = 7, ), we necessarily have=0 on [a, b]. In par-

ticular,

.CE(T()) = Z C .Clﬁk(To) = O,

which contradicts the assumption thit X (7) # 0. O

For functions of two variables, we use the following notation.

7.7.7 Notation. Consider a functiorU : [a, b] x [a, b] — Z(R™). For each fixed
T € [a, b], the symbolU(, -) stands for the functior — U (7, s) of a single vari-
ables € [a, b]. Similarly, the symbolU (-, ) denotes the functioh— U (¢, 7) of a
single variable
t € [a,b]. Finally, we let

U(r,s+)= alir& U(r,s+96), U(r,s—)= élir& U(r,s—9),

U(t+,T):61_i)%1+U(t+(5,T), U(t—,7)= lim U(t—0,7)

- 60—0+

whenever the limits exist.

The following assertion follows from Lemmas7.Zand7.7.6

7.7.8 Theorem.If A€ BV([a,b], 2(R")) satisfieq7.7.4), then there exists a uniqu
matrix-valued functiorU : [a, b] x [a, b] — 2 (R™) such that

Ult,s)=1+ /t dlA(T)]U(r,s) forallt,sé][a,b] x [a,b]. (7.7.6)

For eacht, € [a, b], the functionU (-, t,) is a fundamental matrix o{7.7.1) on
la, b]. Furthermore,U has the following properties:
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(i) U(-,s)eBV(a,b],z(R")) foreverys € [a,b].
(i) U(t,t)=1 foreveryt € [a,b].
(i) detU(t,s)#0 forall ¢,s € [a,b].
Proof. For eacht, s € [a,b], let U(t, s) = X(t), where X, € BV([a, b], Z(R™))
is the unique matrix-valued function satisfying

t
Xs(t)—l+/ dA X, for t€(a,bl.

(see Lemm&.7.4). ThenU satisfies equatiolY(7.6) andU (t,t) = I for t € [a, b].
By Remark?7.7.5 this means that for every, € [a, b], the functionU(-,t,) is
a fundamental matrix of/(7.1) on [a, b]. Finally, the fact thatlet U(t, s) # 0 for
all t, s € [a, b] follows from Lemmé/.7.6 O

7.7.9 Theorem.Assume thatd € BV([a, b], #(R")), to € [a,b], T€R", (7.7.9
holds andU is the matrix-valued function defined by Theorém.& Thenz:
la, b] — R™ is a solution of the initial-value problem

t
x(t) —EE—/ dAz=0 (7.7.7)
to
on [a, b] if and only if
z(t)=U(t, ty) x fortea,b. (7.7.8)

Proof. The functionz given by the relationd.7.9 is a solution of [{.7.7), be-
cause7.7.6) implies

t t
/ dA:c:/ dA(U(r,s)T=(U(t,to) — 1) 2=x(t)—= fortea,b).
to to
By Theorem?.4.§ this solution of [{.7.7) is necessarily unique. O

7.7.10 Definition.If A€ BV([a,b], #(R")) and conditions{.7.4) hold, then the
matrix-valued function/ defined by Theoreri.7.8is called theCauchy matrix
of equation(.7.1) on [a, b].

7.7.11 Corollary. Let A e BV([a,b], 2(R")), to € [a,b] and X € #(R"). Fur-

ther, assume that conditiorf$.7.4 hold and U is the Cauchy matrix of7.7.1)
on [a, b]. Then a matrix-valued functioX : [a, b] — #(R") satisfies the equation

. t
X(t):X+/ dA X
to

if and only if X (t) = U(t, to)X forall ¢ € [a, b].
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Proof. Foreachk =1, ... n, if x; isthek-th column of the matrix-valued func-
tion X, we know from Theorernd.7.9that

x(t)=U(t, to)z, foralltela,bl,
whereZ; is the k-th column of the matrixX. This completes the proof. O

7.7.12 Theorem.If A€ BV(|a,b], #(R")), the condition7.7.4) are satisfied
and U is the Cauchy matrix o{7.7.J) on [a, b], then the relations

Ut,r)U(r,s)=Ul(t,s), (7.7.9)
U(t,r) ' =U(rt) (7.7.10)

hold for any triplet of points, s, r € [a, b].

Proof. Let r, s € [a, b] be given. Using the definition df/, we have

t

Ult,s)=1 +/ dlA(7)]U(r, s)
=1+ /T dlA(7)|U(r, s) +/ d[A(T)|U(T, s)
=U(r,s) +/ dlA(T)]U(T, s)

for all t € [a, b]. Hence, the relation/( 7.9 follows by Corollaryi7.7.11
Insertings =t, we get

Ut,r)U(r,t)=U(t,t) =1,
which implies relation{.7.10). O

7.7.13 Remark.If U is the Cauchy matrix for equatiof7.(/.J) on [a, b], then,
by Theorem/.7.12 we have

U(t,s)=Ul(t,a)U(a,s)=U(t,a)U(s,a)”" forallt,sca,b].
Thus, if we setX (t) =U(t, a) for t € [a,b], then
Ut,s)=X(t)X(s)*
for all ¢, s € [a, b]. Obviously, X is a fundamental matrix fof7(7.]) on [a, b].

In the rest of this section, we will describe some additional properties of tl
Cauchy matrix of 7.7.7) on [a, b].
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7.7.14 Theorem.Let A € BV([a,b], 2(R™)), let (7.7.9 hold and letU be the
Cauchy matrix of(7.7.1) on [a, b]. Then there exists an/ € (0, o) such that

\U(t,s)| +vart U(-,s) +vart U(t,-) <M forallt,scla,b]. (7.7.11)

Proof. a) Forke{1,...,n}, let e, stand for thekth column of the unit matrix
I. Then|ey| =1 for every ke{l,...,n}. By Theorem?.5.7 for ¢, s € [a,b] and
ke{l,...,n}, we have

lug(t, s)| < My:=ca exp (2cavar, A) < oo, (7.7.12)

where, thanks to assumption.7.4), we can set

cA ::max{l, sup |[I—ATA()] ™, sup |[[T+ATA®@)] | }
te(a,b] tea,b
Thus,

\U(t, s)|— max lug(t, s)| < My for t,s€la,bl. (7.7.13)

-----

b) Letty,ts, s € [a,b] andt; <t,. Then

) u(r, )| < Mjvary? A

[up(ta, 8) — ur(ty, s)

t1

foreachk € {1,...,n}. Hence, foralls € [a,b], k€ {1,...,n} and all divisions
« of [a,b], we have

(o)
V(up(-,s),0) <My > varys A= M;varh, A=: M, < oo.
7=1
Therefore
var’ U(-,s) < max var? uy(-,s) <M, forall s¢la,b]. (7.7.14)

k=1,...,

c) Letsy, so € [a,b] ands; < s,. Then, foreveryt € [a, b and anyk € {1,...,n},
we have

k(t, s2) — ug(t, s1)

/d | ug (7, s2) /d )] ug(T, 1) /d ) ug (T, s1)

/ dlA(7)]ug(T, s1) / d[A(7)] (ur(T, 52) — uk(T, 51)).
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Hence, the functiomn: () = u (¢, s2) — uk(t, s1) is a solution of the initial problem

() = — / dLA(P) (7, 51) + /t dA

S1 S2

on [a, b]. Consequently, by Theoreim7.9we have

wp(t, $2) — ug(t, 51) = —U(t, 52) ( / A s, 31)>

S1
for t €[a,b] andk e {1,...,n} and, thus,
lug(t, s2) —ug(t,s1)| < Mpvar* A forke{l,....,n} andt€[a,b]. (7.7.15)
As aresult, for allt € [a,b], k=1, ...,n and all divisionsa of [a, b], we get

(o)
V(ur(t,-), ) < M? Z vargs A= M?2var’ A < co.

j=1
Consequently

var® U(t, 1)< max vart ug(t,-) < M2 var’ A <oo fort e a,b]

-----

and hence

vart U(t,-) < M2 var? A=: Ms < oo fort e [a,b]. (7.7.16)

d) By virtue of (7.7.11)—(7.7.19, the statement of the theorem holds with
M = M, + My + Ms. O

7.7.15 Remark.Considering an arbitrary subinterv@al, s,] of [a, b] in place of
[a, b], one can see that also the following estimates are true

vars? U(t,-) < M7 vars A

for all s1, s € [a, b] such thats; < s, and allt € [a, b].

} (7.7.17)

7.7.16 Theorem.Let A€ BV([a,b],2(R")), let conditions(7.7.4 be satisfied
and letU be the Cauchy matrix of equati€i.7.J) on [a, b]. Then

U(t+,s)= [I—i—A*A( UL, s) for t€[a,b), s€(a,b], )
Ut—,s)=[I-A"A®t)] U(t,s) for t € (a,b], s€]a,b,

1 (7.7.18)
Ut,s+)=Ul(t,s [I+A+A s)| for t€[a,b], s €[a,b),
U(t,s—)=Ul(t,s) [I —ATA(s)]"  for te(a,b], s (a,b]. |
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Proof. First, notice that, by the previous theorem, the functiéns, s) and
U(t,-) have bounded variations dn, b] for all ¢, s € [a, b]. Thus, all one-sided
limits appearing in the relationshipg.7.1¢ are well justified.

a) The first two relations in/. 7.9 can be derived if we substitute successively
the columns of the functio® for x into relations|{.4.1) from Lemme7.4.7

b) Lets€[a,b) andd € (0,b— s) be given. Then from4.7.6 we deduce that

Ut,s+6)—=Ul(t,s)= dA(TN|U(1,s+6) — / dlA(T)] U(T, s)

s+0

t s+0
_ / dA(T)] (U(r,s +8)— Ulr,s)) - / d[A(7)] U(r, 5)

+4

hold for eacht € [a, b]. Thus, the functionY (t) =U(t,s+ ) — U(t, s) satisfies
the equation

Y(t):f/+ t dlA(T)]Y () for te€]a,b],
s+0
where

s+46

V- / dA()] U(r, s).
Then, Corollary7.7.11yields

U(t,s+0)—U(t,s)=U(t,s+6)Y

s+4
— Ut 5+0) / AR U(r,s) fortelab]

Letting § — 0+ and using Hake’s Theoref5.5 we get fort € [a, b]

Ut,s+)—Ul(t,s)=—-U(t,s+) ATA(s)U(s,s)=—U(t,s+) At A(s),
that is

U(t,s)=U(t,s+) [T+ ATA(s)].

Therefore the third relationship frond.(/. 1§ is true, as well. The remaining one
would be proven analogously. a

7.8 Variation of constants formula

Let us now go back to the nonhomogeneous initial value problem

o) —F— /tt dAz = F(t) — f(to) (7.8.1)
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(cf. (7.4.2). We will assume thatd € BV([a, b], #(R"™)) satisfies conditions
(7.7.9. By Theorem/.6.2, for anyz € R” and f € G([a, b], R"), there is exactly
one solutionz of the initial value problem4.8.1) and this solution is regulated
on [a, b].

The aim of this section is to show that this solution can be expressed in a fo
resembling thevariation of constantormula known from the theory of ordinary
differential equations. To establish this result, we need several auxiliary lemm:

7.8.1 Lemma. Consider a functionk : [a, b] x [a, b] — 2 (R") such thatK (-, s)
is regulated for eachs € [a, b]. Moreover, suppose there exists a nondecreasin
function
h:la,b] — R such that
|K(t,s9) — K(t,s1)] <h(sa) —h(s1) for t€a,b] and [sq,s2] C|a,b].
(7.8.2)

Then, for eachy € G([a, b]) the function

b
W(t) :/ ds[K (¢, )] g(s) for t € [a, b], (7.8.3)

is regulated, and

(i) = / d,[K(1—,5) g(s) forte (a,b],

¢(t—|—):/ ds[K (t+, )] g(s) forte]a,b).

Proof. Let g € G([a,b], R™) and lety be given by(7.8.3. Obviously, is then
well defined ona, b], because(.8.2 implies thatK (¢, -) has a bounded variation
for eacht € [a, b].

a) First, let an arbitrary € (a, b] be given and lef{¢,.} be an arbitrary sequence
of points from [a,7) such thatklim t, =7. Having in mind 7.8.2), it is easy to

verify (cf. also Exercis2.1.12) that

var® K (t,) <h(b) — h(a) forevery k€N, (7.8.4)
klim K(ty,s)=K(r—,s)  forevery s€a,b (7.8.5)

and, by Theorer.7.2, also
var’ K (r—,-) < h(b) — h(a),

ie. K(r—,-)€BV(la,b],Z(R™)). Furthermore, thanks td/(8.2) the conver-
gence



KURZWEIL-STIELTJES INTEGRAL 271

in (7.8.5 is by Corollary4.3.10uniform. Therefore, Theorem.6.3 where we
put

Ap=K(ty,"), A=K(r—,-) and fy=g for k€N,

ensures that the relations
b
klim z/;(tk):klim dy[K (tg, s) / ds[K Jg(s)
are true. In particular,

- :/b dy[K (7=, )] g(s) forall 7€ (a,]

b) The proof of the relation

b
W(T+) :/ ds[K(7+,s)]g(s) forallT€la,b)

is analogous and may be left to the reader.
All this together leads us to conclude thatis regulated. O

Next result is a corollary of the previous lemma.

7.8.2 Corollary. Lett, € [a,b], A€ BV([a,b], 2(R™)) satisfy conditiong7.7.4
and let U be the Cauchy matrix of equatidii.7.1) on [a,b]. Then, for each
g € G([a, b], R™) the function

W(t) ::/t d,[U(t,s)] g(s) fortela,b
is regulated ona, b].

Proof. The functiony is obviously well defined o, b]. Furthermore,
/ ds[K lg(s) if te]a,to,

/ ds[K(t, s)] g(s) if t€lto, ],
where
—U(t,t) if a<s<t<t,,
Ka<t78): .
=Ul(t,s) if a<t<s<t
and
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Ult,s) if tg<s<t<b,
Ki(t,s) = .
U(t,t) if ty<t<s<b.
By (7.7.1)), there is a constant/; € (0, c0) such that for every € [a, t;] and
every subintervals, so| of [a, ] we have
|Ka(t, s2) — Kot s1)| < vars? K,(t,-) <var2 U(t,-) < M var? A,
le.,
|Ka(t, 82) — Ka(t, 81)| < hQ(SQ) — ha(Sl) for te [CL, tg] and [81, 82] C [CL, to],
whereh,(s) = M?varé A for s € [a, to]. Similarly,
’Kb(t, 82) — Kb(t, Sl)‘ < hb(SQ) — hb(Sl) for te [t07 b] and [81, 52] C [to, b],
wherehy(s) = M var; A for s € [to, b].
Now, taking eitheH[a, to], K4, ha} OF {[to, b], Ky, hy} inplace of{[a, b], K, h},

we can apply Lemm@.8.1to justify that« is regulated orfa, t,] or [to, b], re-
spectively. O

Next auxiliary assertion deals with adjusting an iterated integral which will b
useful for the proof of the main result of this section.

7.8.3 Lemma. Let t, € [a,b], A€ BV([a,b], #(R")) satisfy conditiong7.7.4
and let U be the Cauchy matrix of equatidii.7.]) on [a,b]. Then, for every
g€ G([a,b],R") andt € [a, b] we have

/d . [U(r,5)] 9(s))
34Mmmmmnﬁﬁwwm@

Proof. The fact thatU has bounded variation in both variables together witl
Corollary7.8.2imply that all integrals in7.8.6) have a sense.

(7.8.6)

a) Given an arbitrary > t,, we will consider the intervalt,, t] fixed along
the proof (the casé<t, can be treated in similar way). Recalling that regulatec
functions can be uniformly approximated by finite step functions, let us first pro
(7.8.9 for functions g of the form

9=X11& 9=xr11 & 9=x1 &, Wwherere[ty,t) and £ € R" can be arbitrary
(7.8.7)

So, let7 € [ty, t) and{ € R™ be given and lety = x(, &. First, having in mind
Example.3.1(cf. (6.3.6), we can see that the relations

[ damlat)= [ daelgl) =140 - Are (7.88)
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hold. Like in Corollary7.8.2put
Ww(r) ::/ ds[U(r,s)] g(s) for r € [to,t].
to

Using again Example.3.1and having in mind that/(r, ) = I for all r, it is not
difficult to verify that

V(r)=xeg(r) [ =U(r,7+)] € for r e to, t]. (7.8.9)

Further, applying Theore/®.5.3 we get

/ A= [ damve) =i [ damve)

o—T+

= lim d[A( N =U(r, 74)]¢,

O’—'T+ o

/tt dlA(r)](r) = (A(t) — A(T+)) € — lim t dlA(r)|U(r,7+) €. (7.8.10)

o—=7+ /o

Next, applying Theoreifi.5.3again, and then Theoreim/.16and relation{.7.6),
we deduce

Ulirgr d[A( NUr,74) €= (/ dlA(r)| U(r,7+) — AT A(T) U(r, T-I—)) §
~ ( / dAM) UG, 7)[T+AF AR = A A7) Ulr,7) [T+A* A()] )¢
— ((U VI +ATAT)] = ATA(T) [T+ NA(T)]“) §
— (U VI + AT A = [+ AT A(7)] [I+A+A(T)]_1)§

= (Ut - 1) e=—v(d),
wherefrom we conclude using 8.9 — (7.8.10) that the relations
[ dAmI o) = (40 — A=) v =60 + [ dAGale)

are true, that is;4.8.6 holds.

Analogously, we can show that relation .6 holds also fort <t, and for all
other functionsy from the set/{.8.7).
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b) Assume thay is an arbitrary regulated function da, b] and let{g, } be a
sequence of finite step functions converging uniformlyton [t,, t]. By the first
part of the proof we have

/t:d[A(r)]< t:ds[ /d (t,5)] gn(s /d

for eachn € N. Furthermore, by Theore® 3.7

¢
lim dA / dA
and
lim d [U( / ds[U(t,s)] g(s). (7.8.11)

It remains to show that
t
lim dA / dA (7.8.12)
n—oo tO

where

T

b(r) = / A, [U(r, )] g(s) and () = / A, [U(r,5)] gu(s),

to to

for ne N andr € [to, t]. Note that, by Theorerfi.3.4
[ (r)| <vary U(r,-) [lga|| for neN and r € [to, t].

The fact that the sequendgy,} is uniformly bounded, together with Theorem
7.7.14implies that the sequende),, } is also uniformly bounded. Sinc&.g8.1))
guarantees thatim ¢, (r) = (r) for eachr € [t, t], the convergence i17(8.19)

is a consequence of Theoré&fand this completes the proof of the assertian.

Now we can state and prove the promised analogy of the classigation of
constants formuléor solutions of nonhomogeneous linear generalized differenti:
equations.

7.8.4 Theorem.Let ¢y € [a,b], A€ BV([a,b], Z(R™)) satisfy conditiong7.7.4
and letU be the Cauchy matrix of equati¢n.7.]) on [a, b]. Then problen{7.8.1)
has for everyr € R" and everyf € G([a, b], R") exactly one solutiom: on [a, b].
This solution is given by the formula

x(t)=Ul(t, to) T+ f(t) — f(to) / ds[U(t, s)] (f(s) — f(to)) fortea,b].
(7.8.13)
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Proof. Let an arbitraryt € [a, b] be given.
By Corollary7.8.2 the function

x(s)=Ul(s,to) z+ f(s) — f(to) / d.[U(s,7) — f(to))

is regulated orja, b]. Inserting it into the integraulftod[A(s)] x(s), we get

J, st = [ atacs St®%+/¢wA@nQﬂ@—ﬂm»
/d U“ (s (7))

where both sides have a sense. Further, by The@Grériwe have

/t dLA(s) | Us, to) F = Ult,t0) T — 7,

while Lemme7.8.3with g(s) = f(s) — f(to) yields

A}[ (/d (r,5)] ﬂmo

/to (U 9)] F(to)) /d (t).
Therefore,

/d Ul(t, to) x—x—/ dy[U (¢, 5)] — f(t))

=a(t) 3~ (f
which proves the result. O

In the case thatd is left-continuous on(a,b] and ¢ty =a, formula (7.8.13
can be somewhat simplified, if we defidé(t) = U(t, a) for t € [a,b] and

Y(s)=

Ula,s+), if a<s<b,
(7.8.14)

Ula,b), if s=b.

7.8.5 Corollary. Letto=a and let A € BV([a, b], #(R")) be left-continuous on
(a,b]. Furthermore, let

det[I + ATA()]#0  forte[a,b)
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and letU be the Cauchy matrix fo(7.7.7),
X(t)=U(t,a) pro tela,b

and letY be given by(7.8.19.
Then equatior{7.6.7) have for eachz € R™ and eachf € G([a, b],R"™) left-
continuous on(a, b| a unique solutionz on [a, b]. This solution is given by

2()=X ()T +X(t) (/t Y df) for t € [a,b]. (7.8.15)

a

Proof. Let z € R™ and letf € G([a, b], R™) be continuous from the left ofu, b |.
By Theorem7.8.4 equation [{.6.7) has a unique solution: on [a,b] and for-
mula (7.8.13 can be rewritten as

o(0)= X (07 + (7(0) ~ @) = X(0) ([ dX 1) (565) - f1a) ),
where X ~!(s)=U(a, s) for s € [a, b]. Due to [/.8.19, we have
X~1(s)=Y(s) = A*X1(s) for s€[a,b).

By Lemma6.3.19 the relation
/ dIX ()] (f(s) — f(a))
- / Ay ()] (f(s) — f(a)) — A*X (1) (F(8) - f(a))

holds for everyt € [a, b]. Since f is continuous from the left oifie, b] and Y is
continuous from the right of, b), using Integration by parts Theoreint.2, we
get

o(0)= X0 7+ (£(0) ~ ) = X0 [ X9 ()~ f(a))

= X7 (1) S@) + X0) [ v s
+X(O) ATXTH ) (f(t) = fla) =X (@O V(@) (f(t) — f(a))
for everyt € [a, b]. Finally, as
X(O)ATXTHE) (f(1) = f(a)) =X (@) Y (t) (£(t) - f(a))
=X(t) (X7 (t+) = X7H(t) (f(t)—f(a)))
— X(t) X Ht+)
=—(f(t) — f(a))

for eacht € [a, b], we get [{.8.15). O
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7.8.6 Remark. Thanks to Theorer7.8.4 or rather to its Corollarny.8.5 it is
already possible to successfully investigate for example the boundary value pr
lems in which one looks for the function satisfying equati@n/(7) on the in-
terval [a, b] and, simultaneously, some other conditions, for instance two-poi
conditions

M z(a)+ N z(b)=0

where M, N € #(R").

7.9 Generalized elementary functions

We now show that the theory of generalized linear differential equations can
used to extend the definitions of the exponential, hyperbolic and trigonomet
functions.

One possible way of introducing the classical exponential function is to defi
it as the unique solution of the initial-value problem

Z(t)==2(t), =2(0)=1.

More generally, for every continuous functign defined on the real line, the
initial-value problemz/(t) =p(t) z(t), z(to) =1, which can be written in the
equivalent integral form

z(t):1+/ p(s)z(s) ds, (7.9.1)

to
Rt
has the unique solution(t) = e ©”*)%. Using Substitution Theorei®.6.], we

can rewrite equation/(9.]) as the generalized linear differential equation

t
z(t):1+/ z(s)dP(s) (7.9.2)
to
with P(s) = fjo p. In this section, we study equaticih.f.2) for an arbitrary func-
tion P with bounded variation (not necessarily differentiable or continuous). TF
solution of this equation will be called the generalized exponential function al
denoted byeyp. If P is a real function, theryp is simply a special case of the
Cauchy matrixU introduced in Definitior/.7.10with n=1. In this scalar case,
we will be able to obtain a much more detailed information about solutions
equation[.9.2 than in then -dimensional case studied in Section. Moreover,
we will focus on the more general case whenis a complex-valued function.
To this end, we need an existence and uniqueness theorem for generalized li
differential equations with complex coefficients.
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7.9.1 Theorem.Consider a functionP : [a, b] — C, which has bounded variation
on [a, b]. Lett, € [a, b] and assume that+ AT P(t) 0 for everyt € [a, t,), and

1 — A~ P(t) #0 for everyt € (¢, b]. Then, for every € C, there exists a unique
function z : [a, b] — C such that

z(t):5+/t z(s)dP(s), te&la,bl. (7.9.3)

The functionz has bounded variation ofu, b]. If P and Z are real, thenz is
real as well.

Proof. We decompose all complex quantities into real and imaginary parts
follows: P=P +iP;, z=2z +iz, and z=72z; +1iz,. Now, we see that equa-
tion (7.9.9 is equivalent to the following system of two equations with real coef
ficients:

St =7 + / Cr(3)dPy(s) — / ' oa(s) dPy(s)

to to

2o(t) =72 + /t 21(8) dPy(s) + /t 22(s) dPi(s)

to to

The system can be also written in the vector form

u(t)zﬂ%—/ d[A(s)]u(s), te€]a,b] (7.9.4)

to
with

= (2) o= () 0= (50 7). ek

Since P has bounded variation ofa, b], it is clear thatA has the same prop-

erty. The conditionl + A* P(t) # 0 implies

1+ATP(t)#£0 or ATPy(t)#£0 for t€]a,to),
and similarlyl — A= P(t) #0 implies

1—ATP(t)#£0 or A™Py(t)#0 for t e (to,b)].
In view of this, we have

det(I+ATA®#)=(1+ATP(t)*+ (AT Py(t))*#0 for t€]a,ty),

det(I —A~A(t)=(1—A"P(1))* + (A Py(t))*#0 for t € (to,b].
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Hence, existence and uniqueness of solution to equatiéiy) follows from The-
orem7.4.& By Corollary6.5.4 the solution has bounded variation @nb|.
If P andz are real, the equation fag, simplifies toz,(t) = fti 29 dP;, whose

solution is identically zero and therefoteis real. O

The previous existence and uniqueness theorem guarantees that the defin
of the generalized exponential function is meaningful.

7.9.2 Definition. Consider a function” : [a,b] — C, which has bounded varia-
tion on [a, b]. Let ¢y € [a,b] and assume thdt+ AT P(t) #0 for everyt € [a, to),
and 1 — A~ P(t) #0 for every t € (to,b]. Then we define the generalized expo-
nential functiont — eqp(t, to), t € [a, b], as the unique solution: [a,b] — C of
the generalized linear differential equation

z(t):1+/ z(s)dP(s).

to

To explore the properties of the generalized exponential function, we need
following auxiliary lemma, which can generalizes the formula

b . . B hk—i—l(b) _ hkﬂ(a)
/h(t)h(t)dt— "

a

to the case when is continuous but not necessarily differentiable. (Recall the
Lemma’.5.2and Exercis@.5.3deal with the situation when is discontinuous.)

7.9.3 Lemma.lIf h:[a,b] — C is a continuous function with bounded variation,
then

for everyk e NU{0}.

/b hk U — hk—H (b) _ hk—i—l(a)
] k—+1

Proof. Sinceh has bounded variation arid is continuous for each € NU {0},
the integral fab h* dh exists as a Riemann-Stieltjes integral (see Thedighd).

The statement of the lemma obviously holds fo£ 0. Let us assume that it
holds for a certaink e NU {0}, and show its validity fork + 1. Using first the
substitution theorem (Theoref4.3) and then the integration by parts formula
(Theoremb.5.]), we get

/ab RFL(t) dh(t):/abh(t)~hk(t) dh(t):/abh(t)d (/t h’“dh)

-/ ity d (hkﬂ“) - W(“)) i/ b ant )

k41 k41

_ %H (h’““(b) _ B 2(q) — / " ) dh(t)) .
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By equating the first and the last term in the previous chain of equalities a
solving for [” h¥+! dh, we obtain

/b hk+1 U — hk+2(b) o hk+2(a)
] B k42 ’

which completes the proof by induction. O

The next theorem summarizes the basic properties of the generalized ex
nential functions. Some of them were already established in Sectioim the
context of Cauchy matrices, but we repeat them here for reader’s convenience
each of the eight statements, we assume that the funétiosmsuch that all ex-
ponentials appearing in the given identity are defined. For example, in statem
(v), itis necessary to assume that

1+ ATP(t)#£0 forevery t € [a, max{s,r}),
1-A"P(t)#0 foreveryte (min{s,r},b|.

7.9.4 Theorem.Let P:[a,b] — C be a function with bounded variation. The
generalized exponential function has the following properties:

(i) If P is constant, themqp(t,to) =1 for everyt € [a, b].
(i) eqp(t,t)=1 for everyt € [a,b].

(iii) The functiont — eqp(t, to) is regulated ona, b] and satisfies

Ategp(t,tg) = A1 P(t) eqp(t, to) for t €a,b),
A~ eqp(t,to) =A™ P(t) eqp(t, to) for t € (a, b,
eap(t+,t0) = (1 + AT P(t)) eap(t, to) for ¢t €la,b),
eqp(t—,to) = (1 — A7 P(t)) eap(t, to) for t € (a,b].

(iv) The functiont — eqp(t,to) has bounded variation ofu, b].
(V) eap(t,s)eqap(s,m)=eqp(t,r) fOr everyt,s,r € [a, b].
(Vi) eqp(t,s)=eqp(s,t)~! for everyt, s € [a,b].

(Vii) eap(t,to) =eyp(t,to) foreveryt € [a, b], whereZ denotes the complex con-
jugate ofz € C.

(viii) If P is continuous, theryp(t,ty) = e~ for everyt € [a, b].



KURZWEIL-STIELTJES INTEGRAL 281

Proof. The first two statements are obvious. Statement (iii) is a consequer
of Corollary6.5.4(extended to complex-valued case), and statement (iv) follow
from Theorem/.9.1.

To prove statement (v), note that, given arbitrary € [a, b], we have

edp(t,r)zl—i—/ edp(T,T) dP(T)
:1+/Sedp(7,r) dP(T)+/ eap(7,7)dP(T)
:edp(s,r)+/ eap(T,r)dP(T)

for everyt € [a, b]. Hence, the functiony(t) = eqp(t,r) is a solution onja, b] of
the generalized linear differential equation

x(t):§+/tx(s)dp(s), where 7 =eqp(s,r).

On the other hand, it is not hard to see that) =eq4p(t,s)z for t€a,b] is
also a solution of the same equation. By the uniqueness of solutions, we h
y(t) =z(t) for all ¢ € [a,b], which proves statement (v).

Statement (vi) is a direct consequence of statement (v). Indeed sfer(a, 0],
we obtain

edp(t, S) €dp(8, t) = edp(t, t) =1.

By the definition of the exponential function, we have

eap(t,to) =1+ /t eap(s,ty) dP(s).

to

Taking the complex conjugate of both sides, we get

t
de(t, to) =1 + / edp(s, to) dP(S),
to
which proves statement (vii).
To prove statement (viii), assume thiatis a continuous function with bounded
variation. LetP(t) = P(t) — P(t,) and z(t) =e"® for all ¢ € [a,b]. Using the
uniform convergence theorem (Theorérb.]) and Lemm&/.9.3 we get

1+/ z(s)dP(s)zl—l—/ 2(s) dﬁ(s):H/ (Z Pf!) )dﬁ(s)

to to to \ k=0
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> (% / P<S>’“d15<s>) -1+ %P@) H— P(t)*

pr kE+1
o ~(t)k:+l
=1+ Z =z(t)
—~ (k+1)!
forall ¢ € [a, b]. It follows thategp(t,ty) = z(t) = e F (), O

As an immediate consequence of parts (iii) and (vi) of Theare®nd we
see that the generalized exponential function is regulated with respect to b
arguments; this fact will be used in the proof of the next result.

We now derive an explicit formula for the value @fp (¢, ¢) . Itis sufficient to
focus on the case when> ¢, ; the formula for the case< ¢, then follows easily
from the identityeqp (¢, to) = eqp(to, t)

The next theorem involves infinite products of (possibly complex) number
Recall that if ;7| ) is an absolutely convergent series of complex number:
then the infinite producf[,-, (1 + a;) is also absolutely convergent; in particu-
lar, the product converges to the same value after an arbitrary rearrangemer
the sequencda,}. Now, suppose thaP:[a,b] — R is a function of bounded
variation with infinitely many discontinuity points itu, b), which are arranged
in a sequencé s }. By Theoren2.3.6 the sum)_,~ | (|JATP(sy)| + |A™P(sy)])
is finite. Hence, the product],> , (1 + AT P(sy)) and[[,~,(1 — A~ P(sy)) are
absolutely convergent. Since the order of the factors is unimportant, we introdt
a similar convention as in Reme#3.7, and write

I[ @+A7P) ﬁ1+A+Psk
k=1

z€(a,b)
I] @—A"P) ﬁl—A P(sy))
z€(a,b) k=1
The symbols
IT II. and ]
z€la,b) xz€(a,b] z€[a,b]

should be understood in an analogous way.
7.9.5 Theorem.If ¢ > t,, then

(P -Plto) [T o (1+ATP(7))

tty) =P .
eap(t,to) o rctn AP() HTe(to,t](l_Aip(T))

(7.9.5)
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Proof. We begin by verifying the formula in the case whéhhas only finitely
many discontinuities irjty, t|. Let a be a division of|ty,t] containing all dis-
continuity points of P. Then P is continuous on each intervél;_1, o), where
ke{l,...,v(a)}. Parts (ii), (iii), (v), (vi), (viii) of Theoreni7.9.4imply

(
eap(t, to) = eap(a, ag_1)

N
L

N
o |
~— =

Il
—

eap(ou, a—)eap(og—, ap_1+)eap(ag_1+, ax_1)

N
o
L~

(1= A~ P(ay)) " teP@)=Psat) (1 4 A+ P(ay_y))

e
Il
—_

eP(t=)—P(to+) HZ(:?(lJrA*P(ak_l))
e (ST AP T4 (1 A= P(ay))
which agrees with{.9.5).

Now, assume thaP has infinitely many discontinuities ift,, ¢, and letD =
{sx} be a sequence of all discontinuity points containedtint). According to
Theoren®.6.1and its proof (which remains valid for complex functions), we have
the Jordan decompositioR = P¢ + P8, where

PB(1) = P(to) + AT P(to) X(t0,0 (T) + A7 P(t) X(0(7)

I

) (ATP(s1) Xt (1) + A7 P(s1) Xjop (1))« 7€ [to, 8],

k=1

is the jump part ofP, and P¢ = P — P8 is the continuous part oP. For each
neN,let P,=P°+ PB, where

P2 (1) = P(to) + AT P(to) X(to,0(7) + A7 P(t) x1g(7)

+ Z (A+P(3k) X (s1,t] (1) + A7 P(sk) X[sk,t}(T)) , T E[lo,t].
k=1
For eachn e N, we have A" P,(ty) = AT P(ty) and A~P,(t)=A"P(t);
moreover AT P, (s;) = A1 P(s) andA~P,(sx) = A~ P(sy) forall K <n. Since
the discontinuities of?,, are contained in the finite séty, s, ..., s,,t}, we ob-
tain
ePn(t=)=Pn(tot) 1 1 A+Pn(t0) HTE(to,t)<1 + A+Pn(7'))

t,ty) =P
eap, (t; to) e et AP 1 — A= P,(t) HTe(tO,t)(l—A*Pn(T))

epyét—)—Pn(to-‘r) 1 +A+P(t0) HZ=1<1 +A+P(5k))
e AP 1 A=P(t) [[1_,(1—A=P(sp))
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According to the proof of Lemm@a.6.5 the sequencg P, } is convergent
to P in the BV norm. It follows that the variations a?,, n € N, are uniformly
bounded, and P,} is uniformly convergent ta?. Hence, Theoreri.6.6(con-
tinuous dependence of solutions to generalized linear differential equations w
respect to the right-hand side) implies

eap(t,to) = lim eqp, (¢, to)
PP 1 A% Plty) T2, (1 + A P(sy)
e =1 AP 1 A-P(t) [[2,(1—A-P(s))

The seriesy - | AP(s;,) and the two infinite products on the right-hand side are
absolutely convergent, which proves that formi&(5 holds. O

To obtain some additional properties of the generalized exponential functic
we need the following auxiliary result, which is a fairly straightforward conse
guence of Lemm&.3.18

7.9.6 Lemma.lf f:[a,b] — R has bounded variation ang: [a, b] — R is regu-
lated, then

b
[ atrag= Y a%5(a) Agla) + A" a) Atgla), (7.9.6)
a z€(a,b)
b
[ arag= Y A ra) Agla) + A F0) A g ), (7.9.7)
a z€(a,b)

with the convention thaf\~ f(a) =0, At f(b)=0.

Proof. Since f has bounded variation, it has only finitely or countably man
discontinuities. Moreover, by Corollai.3.§ the sums

Y 1ATf(@)] and ) [ATf(x)]
]

z€la,b z€la,b]

are finite. This means thak™ f and A~ f are step functions with bounded vari-
ation. The formulas4.9.6 and (7.9.7) are now an immediate consequence O
Lemma6.3.18with c=0 andh=A*f or h=A"f, respectively. O

In the next theorem, we prove that the product of two exponentiglsand
eqq equals the exponential of a certain function denotedfby ). We have
PaQ=P+Q if P, Q are continuous, but the general definition Bfd Q) is
more complicated and takes into account the jump®adnd Q. We make the
following agreement: Ifc > d, then a sum of the fornd___. , %(s) should be
interpreted as-}_ __, 4 h(s), and the sumd___ . , h(s) should be understood

as Zse[d,c) h(S) :
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7.9.7 Theorem.Assume thaP’, @ : [a, b] — C have bounded variation and
(1+ATP(t) (1+A*Q(t)) £0 foreveryt e [a,to)
(1-A"P(t))(1—-A"Q(t)) #£0 foreveryte(ty,bl.

Then

de(t, to) edQ(t, to) = €d(PeQ) (t, t()), te [CL, b],
where
t t
(PEBQ)(t)ZP(t)+Q(t)+/t ATQ(s) dP(S)_/t AT P(s)dQ(s), (7.9.8)
with the convention that\ ™ Q(¢) =0, A~ P(ty) =0. Equivalently, we have
(PeQ))=PO)+QM)+ Y ATQ(s)ATP(s)— Y A Q(s)AP(s).
s€lto,t) sE(to,t]

Proof. By Lemma7.9.6 we have

/tA+Q(3)dP(s)—/t A™P(s)dQ(s)
= Y (A*Q(s) AP(s) — A™P(s) AQ(s))

s€(to,t)

+ATQ(to) ATP(to) — A™P(t) A™Q(1)
= Y (ATQ(s) (ATP(s) + AT P(s)) = A7 P(s) (ATQ(s) + A7Q(5)))

s€(to,t)
+ATQ(to) AT P(to) — A*P( ) A*Q(ﬂ
= ) ATQ(s)ATP(s)— Y ATQ(s) AT P(s).

s€[to,t) s€(to,t]
Hence, the two formulas foP @ ) are equivalent. Fot € [a, ], let
= ) A Q(s)AP(s) and T(t)= Y  A'Q(s)ATP(s).
s€(to,t] s€E|[to,t)

Using the definition of variation together with Corolla?y3.§ it is not difficult
to check thatk, T have bounded variation. Furthermore, the definitiong:of’

imply

AR(t)=A"Q(t) A P(t), NR( )=0,
ATT(t)=0, ATT(t)=A"Q(t) ATP(t).
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In view of this, itis clear that? @ @ has bounded variation da, b]. Moreover,
I1-AT(PeQ)(t)=1-A"Pt)—A~Q(t) —AT(t) + A™R(t)
=1-ATPt)—A"Q(t) + A~ Q(t) A™P(t)
=(1-A"P@®)(1-AQ(t)) #0 for t e (to,b].
Proceeding in a similar way, one can show that
1+ AT(PaQ)(t)=(1+ATP1))(1+A*Q(t)) #0 for t€[a, to).
Therefore, the exponential functiagn- eq(paq)(t, to) is defined.

For ¢ € [a, b], integration by parts gives

eap(t, to) eaq(t, to) =eap(to, to) €aq(to, to)
t

—I—/ edp(s,to)d[edQ(s,to)]—i-/ eaq (s, to) dleap(s,to)]

to to
+ > Ateqp(sto) Aeag(s,to) — > Aeqp(s,to) Aeag(s, to).
sE|to,t) s€(to,t]

Let us examine the terms on the right-hand side. Obviously,

ear(to, to)eag(to, to) = 1.

Using the substitution theorem, we have

[ earts o) dfeagts.t) = [ cartsito)a [1+ [ eugtuto) a0

to to to

:/ ear(s,to)eaq(s,to) dQ(s),

to
and

/t eaq(s, to) dleap(s,to)] = /t eaq(s,to)d {1 + /s eap(u,to) dP(u)}

to to to
t
_ / cao(s.to) cap(s, to) AP(s).
to

Finally, by performing an algebraic manipulation and using subsequently Lah$n
part (3) of Theoren?.9.4and the substitution theorem, we get

Z A+€dp(8,t0> A+€dQ(S,t0)— Z Aiedp(S,t()) AiedQ(S,to)

s€([to,t) s€(to,t]
=ATeqp(to, to) ATeaq(to.to) + > [ATeap(s,to) + Aeap(s,to)] ATeaq(s, to)
s€(to,t)

— Z A_edp(s, to) [A‘edQ(s, to) + A+€dQ(S, to)] — A_edp(t, to) A_edQ (t, to))

sE€(to,t)
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:A+€dp(t0,t0) A+€dQ(t0,t0>+ Z Aedp(s,tg) A+€dQ(8,t0)

s€(to,t)

— Y Aeap(s,to) Aeag(s, to) — A”eap(t, to) A eaq(t, to))

s€(to,t)

_ /t A eaq(s, to) dlean (s, to)] — /t A=eap(s, o) dleag(s, to)]

:/ A+Q(s)edQ(s,t0)edp(s,to)dP(s)—/ AT P(s)eap(s, to) eag(s,to) dQ(s)

to to

:/t: eaq(s, to) eap(s,to) d {/t: AT Q(u) dP(u) _/t:A‘P(u) dQ(u)} .

By combining the previous results, we obtain

eap(t, to) eag(t,to) =1+ / ear(s,to) eag(s,to) d[(P B Q)(9)],

to
with P & @ given by ([7.9.9). O

7.9.8 Exercise.Obviously, the binary operatio® introduced in the previous
theorem is commutative. Verify that

(POQ)®R)(t)=(P®(Q®R))(1)=P(t)+ Q)+ R(t)
+ ) (ATQ(s)ATP(s) + ATR(s)ATP(s) + ATQ(s)AT R(s))
sE€|to,t)

+ ) ATP(s) ATQ(s) AT R(s)

se€ to t)

- ) (A “P(s)+ A R(s) A"P(s) + A"Q(s) A"R(s))

sE to t]

+ ) ATP(s) AQ(s) A"R(s),

s€(to,t]
i.e., the operatiorp is also associative.

The next result shows that the reciprocal value of an exponential function
again an exponential function.

7.9.9 Theorem.Assume thaf”: [a, b] — C has bounded variation and

1+ AT P(t)#£0 foreverytea,b),
1—-A"P(t)#0 foreveryte(a,b.
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Then
(eap(t,t0)) ' =ear(t,to) for t€la,b], (7.9.9)
where
B (A+P (A (5))?
(OP)O)==PH)+ 3 1+A+P 1-A-P(s)’
s€(to,t) s€(to,t]

Proof. Fort € [a, b], we have(©P)(t) = —P(t) + Ry (t) — Ra(t), where

(ATP(s)” (A" P(s)”
Rat)= Z HA—JFP(S)’ R2(t)_se(tot]T_P(S).

s€[to,t)
These functions have bounded variation[er)| and satisfy

(A*P(1))”

A Ri()=0, AYRi(t)= AP

Py ( ) (7.9.10)

Thus,©P has bounded variation da, b] and

1+ AT (eP)(t)=1—-ATP(t)+ ﬁ;]i(]i)()) 1+A1+P()7£0 fort e la,to),
)2 1

| — A~ (@P)(t) =1+ AP+ L L0

1— A- P() 1_A_P(t)7é0 forte(to,b],

which implies that the exponential functieqs p) is defined.
Using the relations4.9.1() together with the definition of> given in Theo-
rem7.9.7 we obtain
(P& (eP))(t)=P(t) — P(t) + Ri(t) — Ra(t)
+ Y AN(=P+ Ry — Ry)(s) AT P(s)

sE€|to,t)
— ) AT (=P+Ri—Ry)(s) A" P(s) =Ry(t) — Ry(t)
s€(to,t]
At prenz . (ATP()T N A-prene . (ATP(s)
+{Z)( (A*P(s)) +1+A+P(S)) s%ﬂ( S
AT P(s))? A~ P(s))?
= Rat) ~ Rolt) - [Z)l(JrAfP)()S)jL (Z] f—A—(P)()S):O'
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Now, it follows from Theorenv.9.7and part (1) of Theorem.9.4that

ear(l,to) ea@p)(t; to) = earpa(ory) (t; o) =1,
which proves the relatiorv(9.9. O
Our next goal is to investigate the sign of the generalized exponential functi
corresponding to a real functioh.
7.9.10 Theorem.Consider a functionP: [a, b] — R, which has bounded varia-

tion and

1+A*P(t)#£0 foreverytela,b),
1—-A"P(t)#0 foreveryte (a,b|.

Then, for every, € [a, b], the following statements hold:
(i) eap(t,to)#0 forall t € [a,b].
(i) If te(a,b) and 1+ AT P(t) <0, theneqp(t,ty) eap(t+,to) <O0.
(i) If te(a,b) and1— A~ P(t) <0, theneqp(t,ty) eap(t—, to) <O.

(iv) If te(a,b), 1+ ATP(t)>0andl — A~ P(t) >0, thent — eqp(t, ty) does
not change sign in the neighborhoodof

Proof. If eqp(t,to) =0 for a certaint € [a, b], we can use Theoreih9.4to obtain
L=eqp(to, to) = eapr(to, t)ear(t, to) =0,

which is a contradiction. This proves statement (i). Statements (ii) and (iii) follo
immediately from part (iii) of Theorem.9.4 Finally, if 1+ AT P(¢) >0 and1 —
A~P(t) >0, thenegp(t+,ty) andeqp(t—,to) have the same sign asp(t, o),
which proves (iv). O

According to the previous theorem, the exponential function changes sign
all pointst such thatl + A*P(t) <0 or 1 — A~ P(t) <0. Since P has bounded
variation, we conclude that the interval b] can contain only finitely many points
where the exponential function changes its sign.

The next theorem describes the class of all real functiBn®r which the
generalized exponential function remains positive.

7.9.11 Theorem.Let P, be the class consisting of all functior: [a, b] — R
that have bounded variation and satisfy- A* P(¢) > 0 for everyt € [a,b), and
1—A~P(t) >0 for everyt € (a, b]. Then the following statements hold:
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(i) PePy ifandonlyifl+ A*P(t)#£0 foreveryt € [a,b), 1 — A~P(t) #0
for everyt € (a,b], and the inequalityeqp(t,to) >0 holds for all ¢,t, €
a,b].

(i) If P,QeP,, thenP®QeP,.
(i) If PeP., thenePeP,.

Proof. The first statement follows from Theorén®.10and the fact thatqp (%o, to)
is positive. Statement (ii) is a consequence of the formulas

1-A"(PeQ)(t)=(1-A"P@1)) (1-AQ(t)),

1+ AT (P®Q)(t)=(1+ATP(1)) (1+ATQ(1)),
which were obtained in the proof of Theoréh®.7 Similarly, the last statement
is a consequence of the formulas

1

L+AT(ER) TIA P

= 1+A—+P(t)’ 1-A"(eP)(t)

which were obtained in the proof of Theorén®.9 O

Using the exponential function, we can now introduce the generalized hyp
bolic functions.
7.9.12 Definition. Consider a functionP : [a, b] — C, which has bounded varia-
tion on [a,b]. Let ty € [a, b] and assume that
1—(ATP(t)*#0 forevery t €[a,ty) and 1 — (A~ P(t))*#0 forevery t € (ty,b

Then we define the generalized hyperbolic functionshy» andsinhgp by the
formulas

ear(t,to) +ea—p)(t, to)

coshqp(t, to) = 5 for t € la, b,
t,to) —eq—py(t,t
sinhap (¢, to) = ear(t, to) 2€d( P)( ;o) for ¢ € [a, b].

Note that the condition — (AT P(t))?#0 is equivalent to
(1+ATP)(1+ AT (=P)(t) #0,
and1— (A~ P(t))* #0 is equivalent to
(1-A"P@)(1=A"(=P)(t) #0.

Therefore,eqp andey—py are well defined.
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Obviously, the two hyperbolic functions are reaHfis real, and forP(s) = s,
we obtain the classical hyperbolic functions:

coshqp(t,ty) =cosh(t —ty), sinhgp(t,to)=sinh(t —ty).
More generally, if P is continuous, then
coshgp(t,ty) =cosh(P(t) — P(ty)) and sinhgp(t,tg) =sinh(P(t) — P(tg)).
In the next theorem, we obtain the analogues of the well-known formulas

(coshz)' =sinhz, (sinhz)' =coshz and cosh® z — sinh® = 1.

7.9.13 Theorem.Consider a function” : [a, b] — C, which has bounded varia-
tion and

1—(ATP(t)*#0 foreveryt € [a,ty),
1— (A P(t)*#0 for everyt € (t,b].

The generalized hyperbolic functions have the following properties:
() coshap(to,to) =1, sinhgp(to,to) =0.
(i) coshgp(t,to) =1+ ftz sinhgp(s,ty) dP(s) for t € [a, b].
(iii) sinhgp(t,to) = fti coshgp(s,ty) dP(s) for t € [a, b].

(iv) cosh?p(t,to) —sinhip(t, o) = eqq(t, to) for t € [a, b], where

Q(t)Z(P@(—P))(t)I/t (A™P(s) = ATP(s)) dP(s)
=Y (ATP(s)*= Y (ATP(s))?

s€(to,t] s€to,t)
with the convention that\™ P(t) =0, A~ P(ty) =0.

Proof. The first statement is obvious. Using the definition of the generalized e
ponential function, we obtain

t

coshap(t, to) = = (1+ / t eap(s, to) dP(s) + 1+ / ea(_p) (s, to) d(—P)(s))

2 to to
t

:1—|—%/ (edP(Sato)—ed(—P)(Sato))dP(S):1+/ sinhap(s, to) dP(s),

to to
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which proves statement (ii). Similarly we ca prove statement (iii). To verify th
last one, observe that

cosh?,(t,t9) — sinh3 (2, to)

_ (edP(t’ to) + ea—p) (2, to))2 - <edp(t, to) — eap)(t, to))2

2 2
=eap(t, to)ea—p)(t, to) = eacpa(—pry) (t, to).
From TheorenY.9.7 we have

(P@(—P))(t):—/ A*P(s)dP(s)—l—/ AT P(s)dP(s)

to

=— S (ATPE)P+ Y (AP(s)?

SE[to,t) SE(to,t]

which completes the proof. O

Finally, we introduce the generalized trigonometric functions.

7.9.14 Definition. Consider a functionP : [a, b] — C, which has bounded varia-
tion on [a, b]. Let ¢; € [a, b] and assume that

1+ (ATP(t)*#0 foreveryt € [a,t,) and 14 (A~ P(t))*#0 for everyt € (to, b].

Then we define the generalized trigonometric functions,» andsingp by the
formulas

eaip)(t, to) + eair)(t, to)
2

€d(i t,t — €4(—i t,t L.
Sindp(t,to): A P)< O> o d P)( O) = —1 Slnhd(ip)(t,to) for te [a,b].

Note that the conditionl + (AT P(t))?#0 is equivalent to
(1+ AT(P)(1) (1 + AT (~1P)(1)) £0,
and1+ (A~ P(t))?#£0 is equivalent to
(1 - A(P)(1))(1 — A~ (~iP)(t)) £0.

cosqp(t, ty) = = coshqp)(t, to for t € la,b],
(iP)

Therefore,eqipy andeq—ipy are well defined. IfP is a real function, both con-
ditions are always satisfied.

Again, it is easy to see that faP(s) = s, our definitions coincide with the
classical trigopnometric functions:

cosqp(t,to) =cos(t —tg), singp(t,to) =sin(t —ty).
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Also, if P is continuous, then
cosqp(t, tg) =cos(P(t) — P(to)) and singp(t,t) =sin(P(t) — P(to)).

If P isreal, the trigonometric functions are real as well: By part (7) of Thec
rem/.9.4

€4(iP) T €d(-iP) = €d(iP) T €d(iP);

which is purely real. Similarly,

€4(iP) — €d(—iP) = €d(iP) — €d(iP),

which is purely imaginary.
We now derive the analogues of the well-known formulas

(cosz) = —sinz, (sinz)'=cosz and cos®z +sin® = 1.

7.9.15 Theorem.Consider a functionP: [a, ] — C, which has bounded varia-
tion and

1+ (ATP(t)*#0 for everyt € [a, ty),
1+ (AP(t)*#0 for everyt € (t, b].

The generalized trigonometric functions have the following properties:
(l) COSdp(to, to) = 1, Sindp(to, to) =0.

(i) cosap(t,to)=1— ftl; singp (s, to) dP(s) for t € [a, b].

(iii) singp(t,to) = ftl; cosqp(s,ty) dP(s) for t € [a, b].

(iV) cos2p(t,to) +sinip(t, to) =eag(t, to) for t € [a,b], where

Q) = (iP® (—iP))(t) = / (A*P(s) — A P(s)) dP(s)

to

=D (ATP(s)*~ Y (ATP(s))?

s€[to,t) s€(to,t]

with the convention that\™ P(t) =0, A~ P(ty) =0.
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Proof. The first statement is obvious. Using the definition of the generalized e
ponential function, we get

t

cosap(t,to) = ; (1+/t eair)(s, to)d[iP(s)]+1+/

to to

6d(—iP) (S, to) d[—IP(S)])

. t
1
:1+§/ (eair) (s, t0) — ea-ir)(s,t0)) dP(s)
to
t

:1+% / (21 singp(s, fo)) AP(s) = 1 — / sinap(s, to) dP(s),

to to
which proves statement (ii). The proof of statement (iii) is similar. To prove th
last one, we observe that
cosiip(t, to) +sing p(t, to)

B (ed(ip) (t,to) +ea—ip (L, to) ) ? n <6d(ip) (t,to) — eq—ir (L, to) ) 2
B 2 2i

= eq@ip)(t, to) ea—ir)(t, to) = eaira(—ir)) (t; to)-

From TheorenY.9.7 we have

(iP @ (—iP))(t) = / A*P(s)dP(s) — / A~P(s)dP(s)

to to
= Y (ATP(s)* = > (ATP(s)),
s€E[to,t) s€(to,t]
which completes the proof. O

As far as an additional literature to this chapter is concerned, we can recc
mend for example the monograp@s]], [85], [127], [147] or the articles/1], [46],
(103, [124, [127).



Chapter 8

Miscellaneous additional topics

In this chapter we present selected applications of the Kurzweil-Stieltjes integr

The following two sections are concerned with topics in functional analy
sis, namely, the general form of continuous linear functionalsC¢ja, b)) and
G([a, b]), respectively.

8.1 Continuous linear functionals on the space of
continuous functions

One of the most important tasks of functional analysis is to find explicit represe
tations of continuous linear functionals on function spaces.

Recall thatinear functionalson a spaceX arelinear mappings ofX into R.
The set of all linear functionals oX is a linear space when equipped with the
usual operations of addition and scalar multiplication (defined pointwise). Ft
ther, if X is a Banach space equipped with a ndfmi| y-, then it is well known
that a linear functionafb on X is continuous if and only if it is bounded, i.e., if
there is a numbef € [0, co) such that|®(x)| < K ||z|| x- holds for allz € X .

The space of continuous linear functionals on the Banach spacge denoted by
X * and is called thelual (or adjoint) spaceto X . Furthermore, X * is a Banach
space with respect to the norm given by

|| o =sup {|®(x)]: z€ X, [|z]|x <1} for &€ X

It is known that continuous linear functionals on the spécé:, b]) are well
described by means of the Riesz representation formula involving the classi
Riemann-Stieltjeqd) -integral. In b5, we can find a proof of the Riesz theo-
rem based on the Bernstein polynomials approximation of continuous functiol
Herein, following the standards of many books in functional analysis, we rely ¢
the Hahn-Banach Theorem to obtain the general form of continuous linear ful
tionals onC([a, b]).

8.1.1 Theorem(HAHN-BANACH). Let X be a Banach space, and l&f C X
be its subspace. b € Y * is an arbitrary continuous linear functional o¥, then
there exists a continuous linear functionblon X such that

B(y)=d(y) for yeY and [|P] - =]y~ (8.1.1)

295
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Note that our formulation of the Hahn-Banach Theorem is not the most ge
eral one (see e.g3(0)]). However, it is quite sufficient for our purposes.

Now we present a general form of continuous linear functionals on the spe
of continuous functions.

8.1.2 Theorem(RIESZ). @ is a continuous linear functional of([a, b]) if and
only if there is a functionp € BV([a, b]) such thatp (a) =0 and

(I)(x):(é)/bxdp for any functionz € C([a, b)). (8.1.2)

In such a case||®|| (c(jap)))+ = Var p.

Proof. a) Letxz € C([a,b]) andp € BV([a,b]) be given. Then by Theore6.3
the integral(d) fab x dp exists and, by Lemma.1.17, the inequality

) [ var) < (var) o

is true. Hence, the mapping, : C([a, b]) — R given by

b
By(2)=(0) [ wdp
is a continuous linear functional ddi([a, b]), and
19| (c(lap- < varep. (8.1.3)

b) Let an arbitrary® € (C([a, b]))* be given. Denote byX the set of all
bounded functions ona, b]. Obviously, X is a Banach space with respect to
the supremum norm and(|a, b]) is a closed subspace of . For the rest of the
proof, putY = C([a, b]).

By Theoreni8.1.], there is a functiona € X * such that||®|| y - = |||y -
and ®(y) =®(y) forall ye Y. Put

p(a)=0 and p(t)=B(xy) for te(a,b]. (8.1.4)

We will prove thatp € BV([a,b]). To this aim, leta be an arbitrary division
of [a,b]. Denotem =v(«). Then
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wherec; =sgn[p (a;) —p (a;_1)] for j€{1,...,m}. Hence, with respect to the
definition 8.1.4), we obtain

m

V(pv a) =C CI)(X[a,al]) + Z Cj [$(X[G7O¢j]) - cD(X[a,Oéjfﬂ)}

=2

:Cl aal] + E C] X(ej— 1oz]]

= &S <C1 Xa,a1] -+ Z Cj X(aj_l,aj]) = (5(h)7

Jj=2

where

h(t) = c1 Xja,on] (t +chxa7 Lay)(t)  fortela,b].
Obviously ||h||x =||h]|=1 and hencéV (p, o) < ”E’HX* = ||®]|y-~ for any di-
vision « of [a,b]. This means that

var, p < ||®||y - (8.1.5)

It remains to show thaiB(1.2) is true or, in other wordsp = ®,,. Let x € Y and
e >0 be given. Since the functiom is uniformly continuous orja, b], there is
a6 >0 such that

|z(t) — xz(s)| <e whenevert,s € [a,b] and |t —s| <.

Without loss of generality we can assume that 0 is such that

‘S(x,dp, P)—(9) /abxdp‘ <e

for all partitions P = (3, n) of [a, b] with |3| <. Let a be an arbitrary division
of [a, ] such thaf«| < d, and consider the function

ralt) = {x((xl) if t€la,a],

N a(ag) if te(aj1,a] and j€{2,3,...,v(a)}.
Itis easy to see thatr — 7./ y <e and

v(a)

Ta(t) =2(1) Xa.o) () + O 2(05) X(a, 1.0, (t)  fOr t € [a,b].

Jj=2
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This together with@.1.4) implies that

v(a)

CI)(xa) = (L’(Ozl) (D(X[a,al]) + Z x(aj) [@(X[aﬂj}) - ®(X[a70¢j71])j|

= o) [plen) =p(@)] + 2 wa) [p () = p )]
(o)
— Z l’(CkJ) [p (CKJ) —p (C(jfl)} = S(.T, dp; (a7 5))7

1

<

where{ = {ay, ..., a,)}. Therefore

\@(m)—<6>/abxdp\=1%<x>—<5>/abxdp\

< ’&)(1:) —@(xa)( +

Boe) =) [ v

<12l x~

b
o~ gallx + [S(z.dp,(@,€) = (6) [ xc)
<||®| x-e+e=(|[@y-+1)e

Sincee > 0 can be arbitrarily small, we conclude that

@(x):q)p(a:):((S)/ vdp for zeC(la,b).

Finally, by 8.1.3 and B.1.5, we have||®|| () = |2y - = var) p. O
The correspondence
® € (C([a, b]))" —peBV([a,b])

is not uniquely determined by the relatidh 1.2). Indeed, ifp; andp, are func-
tions such thaip, = p, except for a countable set ar@l1.2) holds for p,, then
the relation is also satisfied f@s. This is a consequence of the following lemma.

8.1.3 Lemma.Let g € BV([a,b]). Then

b
(6)/ fdg=0 holds for any functionf € C(a, b]) (8.1.6)

if and only if there is an at most countable getC (a, b) such that

g(t)=g(a) for tea,b]\D. (8.1.7)
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Proof. Without any loss of generality we may assume tht) = 0.

a) Assumel@.1.7). Let f be an arbitrary continuous function da, b]. We will
show that

b
(5)/ Fdg=0. (8.1.8)

Clearly, if D=, the integral is zero. LetD)={d}, whered e (a,b), and let
e >0 be given. Chooseé > 0 in such a way that

|f(t)— f(s)|<e whenevert,se[a,b] and |t —s|<24.

Consider an arbitrary partitio® = (o, &) of [a,b] such that|a| <. Clearly,
S(f,dg, P)=0if d ¢ a. Otherwise,d =, forsomej € {1,...,v(a)— 1} and
we have

S(f,dg, P)|=[£(&) = f(&+1)] lg(d)| <e|lgll,

which proves thatd.1.9 holds in the case whep is a singleton set. From the
linearity of the integral with respect to the integrator, it follows thafl.(§) holds
if the setD is finite.

Now, assume thab is countable, i.e.D = {d}. For eachn € N, put

g(t) if te{dy,ds,...,dp},
gn(t){ .
0 if t€fa,b]\{d1,dy,...,d,}

Clearly, the sequencfy, } is pointwise convergent tg and vafg, <var’g for

all n € N. Furthermore, by the previous part of the proof we h&iﬁ: fdg,=0

for everyn € N. Equality 8.1.9 is then a consequence of the Helly’s convergenc
theorem (Theorerf.7.6).

b) Let (8.1.6) hold. Insertingf(t) =1 into (8.1.6) we find thatg(b) = g(a) =0.
Put

F(t) = (6) /tg(s) ds for tela,b.

Then f € C([a,b]) and, by Integration by parts Theorem (Theorérf.J) and
Substitution Theorem (Theorefid.3), we obtain

(6) / fdg=F(5) g(b) — f(a) g(a) — (6) / gdf
a b a
——(9) / (1) dt.
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Let ¢, € (a,b) be such thay is continuous at,. Then, if it wereg(ty) #0, we
could find ann > 0 such that

g*(t) >0 for te(tg—mn,to+n).

This leads to

to—mn

b b
(5) / fdg=—(0) / 2(t)dt < — () / (1) dt <0,

to—n

which contradicts the assumptic@.1.6). Therefore,g(¢) can be nonzero only
if ¢ is a discontinuity point ofy. By Theorem?2.3.2there are at most countably
many such points. This shows th&t1.7) is true. O

8.1.4 Remark. From TheorenB.1.2and LemmeB.1.3we deduce that for any
continuous linear functionab on the spacé([a, b]), there exists a unique func-
tion p € BV([a, b]) such that

p(a)=0, p(t+)=p(t) for t€ (a,b)

and . (8.1.9)
CIJ(:E):(5)/ xdp forany z e C([a,b]).

Functionsp € BV([a,b]) that are continuous from the right ofu,b) and
such thatp () =0 are callednormalized function of bounded variatioriThe
set of all such functions will be denoted by the symbdsV ([a, b]). Obviously,
NBV([a,b]) is a closed subset dBV([a,b]). Moreover, by Theorer®.1.2and
Lemmas8.1.3 the spacesC([a,b]))* and NBV([a,b]) are isomorphic, i.e., the

mapping
® € (C([a,b]))" —peNBV([a,b]) (8.1.10)

is one-to-one. Note that the same statement hol®&3# ([a, b]) is replaced by
the space of functions of bounded variation [anb] that are left-continuous on
(a, b) and vanish in some fixed poirte [a, b].

Let & € (C([a,b]))* be given and lep € NBV([a, b]) be determined by&(1.10).
The following theorem shows that then the equali®y/| ¢ (...« = ||p||sv is true,
i.e., the space&C([a, b]))* andNBV([a, b]) are isometrically isomorphic.

8.1.5 Theorem.If p € NBV([a, b]) and ®(x) = (9) fabx dp for z € C([a, b]), then

19| (cany = Ipllev = varp.

More precisely, the mappin@ € (C([a, b]))* — p € NBV([a, b]), wherep is de-
termined by relatior{8.1.9, is an isometry.
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b
Proof. By Lemma5.1.11we have’(é)/ zdp ’ < (var’p) ||z|. This means that
the inequality ‘
12l c(apy < Ipllsy (8.1.11)

is true. We will prove that for every > 0 there exists a functiorr € C([a, b])
such that

I7|=1 and |®(F)|>vartp — . (8.1.12)

Let an arbitrary= > 0 be given. Choose a divisioax of [a,b] in such a way that
v(a)>2 and
V(p, B)>vartp — % for any its refinemenis. (8.1.13)

Set m=v(a). Recall that the right-continuity op on (a,b) implies that the
function v(t) = var’ p is right-continuous or{a, b) (Corollary2.3.4). Therefore,
foranyje{l,...,m—1} thereis a point; € (a;, a;4+1) such that

Varfljjp:v(tj)—v(ozj)< 3(7;—1)' (8.1.14)
Put
H0) = {sgn (p(c (a)) if t€fa,a]
sgn (p(ayji1) — p(t])) if telt;, o], je{l,...,m—1},

and extend the functio@ to a continuous function oifu, b| in such a way that
it will be linear on the intervalsa;,¢;], j=1,...,m
Moreover,

b m—1 m—1 t;
®) [ Fdo=|pan) ~pla)| + 3 [pase) )|+ S0 [ Fap.

Since|z(t)| <1 for t € [a, 1], it follows by (8.1.19) that

m—1
> |p(ar) =p(a)] + > [p(ajs) }—Zvar
=1
— ] 2¢e
>V(p,a)—2) varip>V(p a) 5
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wherea={a,ay,t1, 9 ..., 1,tm_1,b}. By (8.1.13 we get
b ~. 2¢ b
‘(5)/ xdp‘>V(p,a)—?>Varap—8,

that is, 8.1.12 holds. Hencesup |®(x)|>var’ p, wherefrom by/8.1.1)) the
lzl<1
assertion of the theorem follows. O

In view of Theoreni8.1.5 the spaceNBV([a, b]) can be identified with the
space(C([a, b]))".
8.1.6 Exercise.Prove the following assertion :

For a given continuous linear function&l on C([a, b)), there exists a unique
function p € BV([a, b]) such that

p(b)=0, p(t-)=p(t) for te(a,0)
and

O(r) = (5)/bxdp for any = € C([a, b]).

Furthermore, in Theorer®.1.5, the spaceNBV([a, b]) can be replaced by the
space of functions left-continuous ¢ b) and such thap (b) =0.

8.2 Continuous linear functionals on spaces of re-
gulated functions

For continuous linear functionals on the space of regulated functions, an analo
of the Riesz representation (Theorem 8.2.1) requires a more general notion t
the Riemann-Stieltjes integral. Results of this type are availab[&Gh [67],
where the Dushnik integral was used, andli][ where the Young integral was
used. Herein, we show that continuous linear functionals@f{a, b]) are well
described by means of the Kurzweil-Stieltjes integral. To this end, we introdu
the following notation:

8.2.1 Definition. We will say thatf : [a, b] — R is a summable function if van-
ishes except for a countable set ald_ | f(#)| < co. For simplicity, we denote

slf1= 3 1) -
a<t<b

It is not difficult to see that a summable functigit [a, ] — R has bounded
variation. The following lemmas concerning summable functions will be usef
later.
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8.2.2 Lemma.lf r: [a, b] — R is a summable function and: [a, b] — R is bounded,
then the sum

U, (x)= Y r(t)a(t) (8.2.1)

a<t<b

converges and¥..(z)| < s[r| ||z||.

Proof. By the definition of a summable function, the SUE |r(t)] is finite.

Therefore ast<b
T (2)[ < D Ir@ e <zl D @)l
a<lt<b a<t<b
is also finite and the result follows. |

8.2.3 Lemma.If & is a continuous linear functional ofx([a, b]), then the func-
tion r:[a,b] — R, given byr(t) = ®(x) for t € [a, b], is summable.

Proof. For eachn e N, let M,, ={t €[a,b]: r(t) > 1/n}. Assume that there ex-
ists N € N such thatM is infinite. LetT C My be a finite set withn elements.
Then||xr||=1 and

(xr) =Y Blxu) = Y ()= 1.

teT teT

Note thatm € N can be arbitrarily large (by taking a sufficiently large §é},
which contradicts the fact thab is bounded. Hence, M,, is finite for every

n €N and, consequently, the sét e [a,b]: r(t) >0} = U M,, is countable. In

n=1
a similar way, we can show that € [a, b : r(t) <0} is also countable.
Assume{t, } is anon-repeatingequence of points ifu, b] such that-(¢) #0
if and only if t =¢, for somek € N. If {t;} is finite, thenr is clearly summable.
Otherwise, for each. € N we get

PG OIE ‘ > r(ty) Ak‘ = )‘P ( R Xm) ) < @l s
k=1 k=1 k=1

where\, =sgn(r(t;)) for k€ {1,...,n}. Thus the seried _ |r(t;)| converges,
and we conclude that is summable. k=1 O
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Let pe BV([a,b]), ¢ €R, and letr: [a,b] — R be a summable function. For
eachz € G([a, b)), define

Byp(@)=qa(a)+ [ pdat Y r() A%l
y (8.2.2)
@;qT( ):qa:(a)+/ pdx + Z r(t) A" z(t).

Lemmal8.2.2together with the results of Chapter 6 ensures that igth, and
®, . are well-defined and linear. Moreover,

|55 (@) < (lal + [p(a)] + |p(b)] +vargp + 2 s[r]) ||| for = € G([a, b]),

and similarly for®_ . In summary, for each triplép, ¢, ), the identities§.2.2)
define continuous linear functionals 6#[a, b]).

The following theorem shows that any continuous linear functionals on tt
space of regulated functions can be described by an identity of the [foEn2)(

8.2.4 Theorem.If ® is a continuous linear functional of(|[a, b]), then there
existp, p € BV([a,b]), ¢ € R and a summable function: [a, b)) — R such that

@(x):qx(a)—I—/ pdz — Z r(t) AtTz(t) for z€G([a,b]) (8.2.3)

a<t<b
and

<I>(x)zq3n(@)+/ pdz+ Z r(t) A"z(t) for x € G([a,b]). (8.2.4)

Proof. Let p,r:[a,b] — R be given by

p(t) =P(xpe)) and r(t)=2(xy) for tefa,b].

By Lemmas8.2.3 the functionr:[a,b] — R is summable. We will prove that
p € BV([a, b]). To this end, consider an arbitrary divisien of [a, b]. Taking

¢;=sgn(p(a;1) —p(ay)) for je{l,...,v(a)},

we get

Vip, —‘ZCJ p(ej-1) —p (o) }_’ZCJ Xlay_1.05)) | =P (ha)l,

v(a)
whereha =" ¢; Xja,_1.a,)- Since||hall <1, itfollows that va, p < ||| (au))-
j=1
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Further, puty = ®(x(.,) and

@p,qﬁT(x):qa:(a)—l—/ pdz — Z r(t) Atxz(t) for z€G([a,b]). (8.2.5)

a<t<b

To show that® =, , ., it is enough to verify that
O(z)=,,,.(x) foreveryzeS([a,b]) (8.2.6)

(the result then follows from the continuity of both functiondisand ¢, , ., to-
gether with the fact tha$([a, b]) is dense inG([a, b])). Let z € S([a, b]) be given

by

m m
r= Z Cj Xit;) T Z dj X(t;-1.5)5
=0 j=1

or equivalently,

m—1
xr = (C] - d]+1) X[t]-] _'_ Cm X[b} + Z d] X[tj_l,tj)ﬂ
j=0 j=1
where{to, t1,...,ty,} is a division of[a, b] andc;, d; € R for all j. Then
m—1 m
)= (¢j—di) r(ty) + cmr () + Y d; [p(tj-1) — p(t;)].
7=0 7=1

On the other hand, by Examplés3.1we have

m

/ pdz = p(b) — copla) + 3 ds [plti 1) — p(L;)].

j=1

Noting that p(b) =r(b) and Atz (t;) =d;41 —¢; for j€{0,...,m—1}, from
the expressions above we obtain

O (x) :cgq—l—/ pdx — X_: At x(t;)r(t;)

therefore 8.2.6) holds.
In order to provel8.2.9), put p(t) =p(t) —r(t) for t € [a,b]. Noticing that
p € BV([a,b]) and applying Lemm&.3.18we get

b
/ rdrz=r(a) ATx(a) + Z r(t) Ax(t)+rb) A"z(b) for xeG([a,b)]).

a<t<b
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This combined with&.2.3 yields

@(x):qx(a)—i—/ ﬁdx—i—/ rdz— Z r(t) Atx(t)
b

a<t<b
:qaj(a)+/ pdr+ Y r(t) Ama(t),

that is, B8.2.9 holds. O

The identities in Theorelfi.2.4depend on the value of the regulated functior
at the initial pointa. With a dependence on the end pointtwo other represen-
tation formulas for continuous linear functionals 6it[a, b]) can be derived.

8.2.5 Theorem.If ® is a continuous linear functional of(|[a, b]), then there
existp,p € BV([a,b]), ¢ € R and a summable function: [a, b] — R such that

@(x):qx(b)—/ pdr— 3 1) A*a(t) for 2€G(la,b]). (8.2.7)
a a<t<b
and

Q)(m):qm‘(b)—/ Pt S r(t)Aa(t) for 2€G(a,b]).  (8.2.8)

8.2.6 Exercise.Prove Theorer®.2.5
Hint: Considerp, p: [a,b] — R given respectively by

p<t) _ {@(X[mt)) if te (a, b],

0 if t=a,
andp(t) =p(t) +r(t) for t € [a,b].

In the case when the functione G([a, b]) is left-continuous on(a, b], the
identity (8.2.4 reduces to

®(z) =qz(a) +/ pdz,

while (8.2.9) yields

@(x):qx(b)—/ pdz.

Analogous expressions hold if we consider functiersG(|a, b]) right-continuous
on [a,b), and use identities3(2.9 and B.2.7). Therefore, from Theorenfs2.4
and8.2.5we obtain the following representation formulas for continuous linee
functionals defined on certain subspaces:Qfa, b]).



KURZWEIL-STIELTJES INTEGRAL 307

8.2.7 Theorem.(i) ® is a continuous linear functional of¥g([a, b]) if and only
if there existp, p € BV([a, b]) and ¢ € R such that

b
¢@)==qu%h/de
@ (8.2.9)

o (x) :qmwj/ﬁm,

for everyz € Gg([a, b]).

(i) @ is a continuous linear functional ok ([a, b)) if and only if there exist
p,0€BV([a,b]) and ¢ € R such that

b
®@)==qxw%ﬁ/pd%
a (8.2.10)

o (x) =quwj/5m,

for everyz € G ([a, b)).

Proof. (i) Given p,peBV([a,b]) and g € R, it is not difficult to see that each
identity in (8.2.9 defines a continuous linear functiondlon Gg([a, b]).

Now, consider an arbitrary functiond € (Gg([a, b]))* and, forz € G([a, b]),
define

() =

z(t+) if t€]a,b),
x(b) if t=0.

and ®(z) = ® (7). By Corollary4.1.9 % € Gg([a, b]), and hence the mapping:
G([a,b]) — R is well defined and linear. Furthermore,

|@(2)] <[Pl (crtann)”

7| < 12l cgasn- Izl for =€ G(la,b]),

thatis, ® is a continuous linear functional a#([a, b)). Applying Theorems.2.4
and8.2.5 the equalities in§.2.9 follow from the fact thatd = & on Gg([a, b)).

The proof of (ii) is analogous. a

Next we show that Theorefh2. {i) infers an isomorphism betweds\V (|a, b))
and the dual space @#g([a, b)).

8.2.8 Theorem.For p € BV(]a, b)), let

b
(Pp(x):p(a)x(a)—l—/ pdz for z e Gg([a,b]).
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Then, the mapping
peBV([a,b]) — ®, € (Gr([a,b]))* (8.2.11)
is an isomorphism.

Proof. Clearly, 8.2.1]) defines a linear mapping and, by Theor@®) it is also
surjective. Now, considep € BV([a,b]) such that®,=0. Since by Examples
6.3.1we have

Py (X(ap)) =p(a),
Q, (X)) =p (1) if 7€ (a,b],

we conclude thap = 0, showing that the mapping is one-to-one.
Finally, from Theorent.3.5it follows that

19l (@b <2 p (a)| +[p (b)] + varip < 3 |Ip[v,

which implies that/§.2.17) is continuous. O

Similarly, one can show thaBV([a, b]) is isomorphic to the dual space of
Gy ([a, b]).

8.2.9 Theorem.For p € BV(]a,b]), let

CIDP(J:):p(b)x(b)—/ pdz, xeGy(a,b]).
Then, the mapping
p€BV([a,b]) — P, € (GL([a,b])*

is an isomorphism.
8.2.10 Exercise.Prove Theorernd.2.9

8.2.11 Remark.lItis worth highlighting that the representations given&?2(10)
differ from the one presented i6{] not only in the integral used but also in its
form. According to B0], a functional® € (G ([a, b]))* can be described by the
equality

@(x):(aD)/ vdp for zCy([a b)),

wherep € BV([a, b]), p(a) =0, and the integral is understood as tfag Dushnik
integral, cf. Sectioi®.1Z On the other hand, the representation by means of tt
Kurzwelil-Stieltjes integral, besides adding an extra term, has regulated functic
x in the role of integrators.
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Regarding continuous linear functionals Gp([a, b)), éreg([a, b)), Gi([a,b])
and Gg([a, b]), their general representations can be obtained by following tt
same arguments as those used in the proof of The@r@ni For example, for
Greg([a, b]) we have the following statement.

8.2.12 Theorem. ® is a continuous linear functional oﬁ}reg([a, b)) if and only
if there existp € BV([a, b]) and ¢ € R such thatd =&, ,, where

b ~
®, ,(x)=qx(a) +/ pdx for x e Gug(a,b]).
Moreover, the mapping
(p,q) € BV([a,b]) x R— &, € (Greg([a, b]))"

is an isomorphism.

8.2.13 Exercise.Prove Theorer®.2.12
Hint: Consider the functiomp: [a, b] — R given by

(I)<X(a,b]) if t=a,
pt) =3 Gx@+xes) If tE(a,b),
(I)(X[b]) if t=0.

8.3 Adjoint classes of KS-integrable functions

In mathematical analysis, to understand classes of functions which are integrz
(in some sense) is fairly crucial for applications to differential equations. Whe
the integration process is of the Stieltjes type though, there are two possible w
of addressing the question of integrability. First, for a fixed integratanve can
ask for which functionsf the integral| f dg exists. Second, for a fixed integrand
/. we can ask for which class of functiogsthe integral [ f dg exists. To put it
another way, in Stieltjes-type integration a class of functiBrdetermines a class
A so that the integraf f dg exists providedf € A and g € 5. Related notion is
that of adjoint classes defined as follows (see alsh |

8.3.1 Definition. Let A and B be two classes of functions defined pnb], and
consider an integration proce$s We say that4 is adjoint with B regarding the
integral 7" if the following three conditions are satisfied:

b
(i) The integral ”] fdg exists for everyf € A and everyg € B.
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b
(i) If the integral wy fdg exists for everyy € B, then f € A.

b
(i)  If the integral ”7 fdg exists for everyf € A, theng € B.

Notice that in Definition8.3.1the order of sets4 and B is important as it
refers to the classes of integrands and integrators, respectively. Further, notice
that if A and B are adjoint with respect to a given integf@l then neither4 nor
B can be enlarged so that the integrability condition (i) is preserved. Moreov
conditions (ii) and (iii) mean that the integrability with respect to a given integr:
can be regarded as a tool to characterize some particular properties of functio

In light of the definition above, we can see that Theorérfis3 5.8.3and5.8.5
imply that C([a, b]) and BV ([a, b]) are adjoint classes of Riemann-Stieltjes inte-
grable functions. From this, we know that the existence of the Riemann-Stielt
integral with respect to every function of bounded variation ensures continui
Obviously, we cannot expect such a property to hold in the theory of Kurzwe
Stieltjes integration. Indeed, the following result, based on a simple applicati
of the bounded convergence theorem, indicates a whole class of discontinu
functions for which the Kurzweil-Stieltjes integral with respect to functions o
bounded variation always exists.

8.3.2 Proposition.Let D = {d} C [a,b], ce R andletf : [a,b] — R be bounded
and such that

f(t)=c fortela,b]\ D.
Then the integra[[f f dg exists for allg € BV([a, b)).

Proof. If D is finite, the assertion of the corollary is obvious. So, Ietbe
infinite. For eachn € N, put D,, ={d,,ds, ... ,d,} and define

c if t €[a,b]\ Dy,

fn(t>: )
f(t) ifteD,.

Since f,, is afinite step function, the integrﬁ’ fndg exists for everyy € BV([a, b])
(cf. Corollary6.3.2). Itis easy to see that the sequerdg} is uniformly bounded
by K =max{||f||,|c|} and f,(t) tends tof(¢) for everyt € [a, b]. Hence the re-
sult follows from Theoren®.8.8(bounded convergence theorem). O

Adjoint classes of integrable functions have been studied in connection
a variety of integration theories in a handful of papers. Among those deali
with some generalizations of the Riemann-Stieltjes integral we can mention, |
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instance, 19, [20] and [13§]. In what follows we will address the question of
adjoint classes regarding the KS-integral. Having in mind Theor@®$ and
6.3.1], we investigate adjoint classes of KS-integrable functions in two direction
First, we show that the class of regulated functid@sla, b)), together with func-
tions of bounded variationBV ([, b]), cannot be called adjoint with respect to
the KS-integral. Alternatively, the reverse order, thati¥]([«, b]) and G([a, b)),
yields a pair of adjoint classes of KS-integrable functions.

Next example shows that condition (ii) of Definiti@r3. 1fails to be true when
A=G([a,b]) and B=BV([a,b]).

8.3.3 Example.Let ¢ € R and consider a functiof : [0, 1] — R given by
f(t)=c fortela,b]\ D,

where D = {d;} C [a, b] is infinite and such thalim,_.., di, =d & D while f(dy)
does not converge to. Thus, f is not regulated, but by Propositi@h3.2 the
integral f: f dg exists for allg € BV({[a, b]).

The example above leads us to conclude tG&fa,b]) is not adjoint with
BV([a,b]) regarding the KS-integral. Yet, we might wonder whether conditio
(ii) of Definition 8.3.1holds for these classes of functions. As we will see in the
following example, the answer is again negative.

8.3.4 Example.Let ¢: [0, 1] — R be given by

if t=4 for somek € N such that: > 2,

g(t) = { (8.3.1)

0 otherwise

Claim1. vartg=oo.

1
Note thatA~g(+) =—ATg(3) = z for k € N and hence

1
k

=0Q.

| =

D 1ATgM+ Y 1ATg()]

0<t<1 0<t<1

>3
k=1

On the other hand, if we hage BV([0, 1]), then by Corollary?.3.8we would
have

D 1A+ Y 1ATg(t) <vargg.

0<t<1 0<t<1

Therefore vafg = oo.
Claim 2. folfdg:O forevery f:[0,1] = R.
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Let f:[0,1] =R ande >0 be given. PutD={0}U{;:k€eN, k>2} and
define

dist(¢, D) if t&D,
6(t)=q dist(¢t, D\ {t}) if t= for somek € N such that; > 2,

777 |f t: 0,
wheren > 0 is such that
£ (0)[1g(s)| <e for s€(0,n) (8.3.2)

(such a number exits ag0+) =g(0) =0). Let P=(a, &) be ad-fine partition
of [0, 1]. Due to the definition ob we have¢; =0 and foreachy € {2,...,v(a)}

the subintervalo;_,, ;] contains at most one point db. Moreover, it is not
difficult to see thatifa; =& = 1 forsomej € {2,...,v(a) — 1} andk > 2, then
=& = % Hence, in such case

F(&) (9(ag) = glaj-1)) + f(&r1) (9(ajp1) — g(ay))
= f(3) (9(aj1) — g(a;1)) =0,

since none of the points;_; anda;; belongtoD\ {0}. Let P be the partition
obtained fromP by combining two adjacent subintervals whenever they hav
a common tag. All subintervals determined By except the first one, contribute
nothing to S(f,dg, P). Therefore

|S(f.dg, P)| =|S(f.dg, P)| = £(0) g(en)| <,
where the last inequality is due 18.8.2). This proves Claim 2.

Concerning the functiom in (8.3.]), it is worth highlighting that, unlike what
we observed for the integration in the Kurzweil sense, the RS-integral fails
exist even for all continuous functions. This is a direct consequence of the f
that C([a,b]) and BV ([a,b]) are adjoint with respect to the RS-integral. (See
Theorent.8.3for details.)

The example above not only invalidates condition (iii) for the clagsés, b])
and BV ([a, b]), but also shows that there is no class of functiohsdjoint with
BV([a,b]) regarding the KS-integral. Nevertheless, as will see in the follow
ing theorem, integrability with respect to functions of bounded variation ensur
boundedness of the integrator.

8.3.5 Theorem.If f:[a,b] — R is a function such that the integ@ab f dg exists
for everyg € BV([a, b)), then f is bounded.
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Proof. For contradiction, assume that there exists an unbounded funttgat-
isfying the hypothesis. Without loss of generality, assume tha unbounded
from above (otherwise, consider the functierf ). Thus, there exist € [a, b] and
a sequenc€t,} in [a,b] such that

lim t,=c and lim f(¢,)=+oc.
Note that the intersection dft,, : n € N} with at least one of the intervalg, ),
(¢, b] is an infinite set. Thus, we can assume that the sequfngeis monotone
and{f(t,)} isincreasing, withf(¢,,) >0 for all n € N. Denote

1 1 °
Yo =0, Yn = - , SnZZyk, for neN.
f(tn) f(tn-i-l) k=0

If {t,,} increases te, defineg: [a,b] — R by

O, if t e [a, tl],
g(t) =14 sn_1, if t €t thi1), n€N,
lim, o0 Sn, If t€]c, 0.
Note thatg is continuous at: and has bounded variation, because it is monoton

By hypothesis, the integra[: f dg exists; thus, using Hake’s Theoreirb.5we
can write

[ rag=tm < / nfdg+f(6)[g(0)—g(tn)]) ~lin [ 7dg. (833)

For eachk € N, calculating the integral we obtain

tit1 tit1
/ fdg= / f d(Sk—1X[tk,tk+1) + SkX[tkH]) = f(tk+1)(5k; - Sk—l) = f(tk+1) Yk

173 lk

(see Example6.3.1), and consequently

tn t1 n—1 thi1 n—1
[ rag= [ rage S [T rag=Y s (8.3.4)
a a k=17t k=1

k

We claim that) "> | f(t,+1) v, diverges. Indeed, since the sequefi¢ét,,)}
is increasing and unbounded, for eack N we can choosen,, € N, such that

fltn) 1

my, >n and ———— < —.
f(tmn+1> 2
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Therefore,

- N e) =) 1§ _
;f(tk+1)yk—; ) > Flom) D [f(tksr) = f(tn)] =

k=n
L St 1
=1 f(tmn—l—l) g 2

This means thad_ | f(t,+1) v, does not satisfy the Cauchy condition of con-
vergence, and consequently the series diverges. Having this in mind, the equi
(8.3.9 together with8.3.3 contradicts the existence of the integjélf dg.

If, on the other hand{¢,} decreases te, we redefineg accordingly and
using similar argument we get thg(ffdg equals a divergent series; again a
contradiction. In summary, we conclude that a function satisfying the hypothe
must be bounded. O

Now we turn our attention to the following question: BV ([a, b]) adjoint
with G([a, b]) regarding KS-integral? We know from Theoré&n3.11that condi-
tion (i) of Definition8.3.1is satisfied for these classes of functions. The verifica
tion of the remaining ones is contained in Propositiéris6and8.3.&

8.3.6 Proposition. If f:[a,b] —R is a function such that the integrajffdg
exists for everyy € G([a, b]), then f € BV([a, b]).

Proof. For contradiction, assume that there exists a funcfiguch that va} f =
oo, while the integralff f dg exists for eacty € G([a, b]). Recall that a function
belongs toBV([a, b]) if and only if each point of{a, b] has a neighborhood on
which the variation is finite. Hence, a6¢ BV ([a, b]), there must exist a point
¢ which satisfies eithet € (a,b] and vat f = co for everyt € [a,c), or c € [a,b)
and vat f = oo for everyt € (¢, b]. By Lemmab.8.2(i), in the former case there
is an increasing sequenge, } in (a,c) such that

Jim ), =c and D 1 f(tegr) = f(t)| =00
k=1

and further, due to Lemm&a.8.1, we can choose a sequenég.} of positive
numbers in such a way that

lim y, =0 and Y el f(trr1) — f(t)| = 0. (8.3.5)
k=1

k—o0

Let A\, =sgn (f(tx) — f(tr41)) for k€ N. Define

(=14 A it € (ty,tiyr) and k€N,
a= 0 otherwise
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Clearly, g € G([a, b]) and g(c—)=g(c)=0. Since fabfdg exists, the integral
also exists in every subinterval ¢, b]. In particular, fatl fdg=0 and for each
k €N, by Example.3.1(ii), we obtain

/t - fdg=yrAx /tk+1 f Xt ] =90 Ak (f(E) = f(tren)),

that is,

/ " g =y | f(ten) — F(t).

ty

Due to the convergence of the sequercgl and Hake's Theorerfi.5.5 we can
write

[ #ag=tim ([ 5dg+ 50 lote) - )
t1 n—1 tht1 n—1
= [ rage tim Y [ g =t Yl () - £
a k=1 Ytk k=1

Hence, in view of 8.3.9, [* f dg diverges, which is a contradiction. Therefore
we conclude that a function satisfying the hypothesis must have a bounded va
tion.

In the latter case, i.e., when thereds [a, b) such that vaff = oo for every
t € (¢, b], the proof is similar, but relies on part (i) of Lemra8.2 O

We remark that, in the proposition abové[a,b]) cannot be replaced by
the classC([a, b]). In other words, the existence of the Kurzweil-Stieltjes inte
gral with respect to continuous integrators does not ensure bounded variation
illustrate this fact we can again make use of the function giveB.ia9).

8.3.7 Example.Let f: [0, 1] — R be given by

if t=< for somek € N such that: > 2,

I =

ft)=

0 otherwise

We know thatf ¢ BV([0, 1]) (see Exampl&.3.]). Let us prove tha‘gfo1 fdg=0
for every g € C10, 1]. Consider an arbitrary > 0. Since g is uniformly continu-
ous, for eachk € N there existg;, > 0 such that

19
wou(9) <7 Q= (L~ pg, 2+ pr) N[0, 1],
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where wg, (9) denotes the modulus of oscillation gfon @);,. Put
1
D:{O}U{E ckeN, k>2}

and define a gaugéon [0, 1| by

dist(¢, D) if t&D,
6(t) = min {p, dist(t, D\ {t})} if t=1, keN, k>2,
1 if t=0.

Let P=(c, &) be ad-fine partition of [0, 1]. Then, for eachj € {2,...,v(a)},
the subintervala;_;, ;] contains at most one point db. Let A be the set of all
indicesj € {1,...,v(a)} suchthat; = ;- for somek; € N. Clearly, [a;_;, o] C
Qr, foreveryj € A. Therefore, ’

1S(F.dg. P)|=| 3 £(65) (9(ay) — gl < 3 - (9) <= D

JEA jen J n=1
wherefrom it follows thatfo1 fdg=0.

To conclude thatBV([a,b]) and G([a,b]) are adjoint classes it remains to
verify also condition (iii). Such a characterization of a regulated function via tr
integrability in the KS-sense has been already investigated in Proposition 2.6(
[29). Indeed, the result ir9] shows that we need not test the integrability of the
whole spaceBV([a, b]) but simply the finite step functions of the forgy where
J is an arbitrary interval. Herein we present a slightly different proof for the rest
in [29).

8.3.8 Proposition.Let g : [a, b] — R. If, for every intervalJ, the integralfab xsdg
exists, thery € G([a, b)).

Proof. Givenc e [a,b) we will prove thatg(c+) exists. To this aim, lef = x .
and lete > 0 be given. Thus, we can choose a gadgen [a, b] such that

b
‘S(f,dg,P)—/ fdg‘<% for every/j-fine partitionP of [a, b]. (8.3.6)

In view of Lemmeb6.1.12we can assume that the gaufjes such that every -fine
partition contains: as the tag of some subinterval.

Fix an arbitraryo -fine partition P = (o, €) of [a,b] andlet/ € {1, ..., v(a)}
be such that, = c. For eacht € (¢, ay), define the partition

P,=P,UP,UQ,UP,
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where P, = ({ao, ..., -1}, {&, -, &e-1}), Pr=({ou-1,}.{c}), Qrisanar-
bitrary §-fine partition of [t, ] and P;" = ({aw, ..., au(ey }s {€et1s - - - v })-

Thus, P, is a d-fine partition of|a, b] and a simple calculation shows that

S(f.dg. P,)=S(f,dg,Q:) + S(f,dg, ;") = g(b) — g(t).

This together with.3.6) implies that for each pai, v € (¢, ) we get

l9(u) = g(v)| =|S(f, dg. P.) = S(f,dg, P)| <e,
showing that the Cauchy condition for the existence@f+) is satisfied. Analo-
gously, we can show the existencegdf:—) for everyc € (a, b]. O

Propositions3.3.6and8.3.8lead to the following corollary.

8.3.9 Corollary. BV([a, b)) is adjoint with G([a, b]) regarding the KS-integral.

8.4 Distributions

In this section we outline some applications of the Kurzweil-Stieltjes integral |
the theory of distributions, which are understood in the sense of L. SchwWértz |
Let us recall some of the basic notions and definitions.

8.4.1 Definition. The symbol®|a, b] stands for the set of functions: R — R,
which are infinitely differentiable and such that®) (1) =0 for all t R\ (a, )
andk € NU{0}. Functions from®|a, b] are calledest function®n [a, b|.

The set®][a, b] is a linear space when equipped with the usual operations
addition and scalar multiplication. We say that a sequenceonverges tap in
Dla, b] if and only if

Jlrgo||¢;k>—¢<k>||=o forany ke NU{0}.

With the topology induced by the notion of convergence ab®/e, b] is a topo-
logical vector space.

Typical examples of test functions da, b] are given by:

(8.4.1)

exp (é—kﬁ) for t€(c,d),
SOC,d(t) =

for teR\ (¢, d),

where|c, d] is an arbitrary closed subinterval of, b].



318

8.4.2 Definition. Continuous linear functionals on the topological vector spac
Dla, b] are calleddistributionson [a, b], and the set of all distributions da, ] is
denoted by the symbdd*[q, b].

In other words, the seD*[a, b] is the dual space t®|a, b].

For a given distributionf € ©*[a, b] and a test functiorp € ®|a, b], the value
f(p) is traditionally denoted by f, ).

8.4.3 Remark. Let f € L'([a,b]) be given and let

(f.g) = / () p(t)dt for peDla,b

(where the integral is understood as the Lebesgue integral). The mapping
(f, ) defines a distribution o, b], which will be also denoted by the symbol
f. We say that the distributiorf is determined by the functioi.

The null element of the spac®*[a, b] is the distribution that maps each test
function to zero. Notice that this distribution is determined by an arbitrary me
surable functionf which vanishes almost everywhere ja, b]. In particular,
if f€G([a,b]), then f=0€D*[a,b] if and only if f(t—)= f(s+)=0 for t €
(a,b], s€a,b). Likewise, if f € Geg([a, b]), then f =0€ D*[a, b] if and only if
f(t)=0 for all t€a,b]. Consequently, ifg € L!([a,b]), then there is at most
one function f € Gey([a, b]) such thatf =g a.e. onja,b]. Furthermore, for
f,g9€L[a,b]), the equality f = ¢ holds in the sense dD*[a,b] if and only if
f=g a.e.ona,b.

8.4.4 Definition. For a given distributionf € ©*[a, b], its distributional deriva-
tive f” is defined by(f’, ) = —(f,¢') for ¢ € Dla,b].
Similarly, for eachk € N, we define

(F®), 0y = (1) (f, ™) for peDla,b).

Note that distributional derivatives of absolutely continuous functions are d
termined by their classical derivatives.

8.4.5 Example.Given an arbitraryr € (a,b), by ¢, we denote theDirac J-
distribution(concentrated im) defined by

(0,,0)=¢(T) forevery p€Dla,b.
One can show that. corresponds to the distributional derivative of teaviside
functiongiven by h..(t)= H(t — 1), t € [a, b], where
for t <0,
for t=0,
for ¢ >0.

H(t)=

— o= O
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Indeed, by Theorenis.4.2and6.6.1, as well as relations5(3.1) and £.3.5, we
get

(W) = — () = — / b (£) (1) dt

:_/ath(t)d[/:gp’(s)ds}=—/abh7d90=/absodh7=<p(7)7

which shows that, = A/ in the sense of distributions.

8.4.6 Theorem.Let f €L!([a,b]). Then its distributional derivativef’ is the
zero distribution if and only if there is a constant R such that f(t) = ¢ for
almost allt € [a, b].

Proof. Let f(t) =c for almost allt € [a, b] and ¢ € D|a, b], then

(' @) = (e ') = —c / /() ds = —¢ (io(b) — p(a)) =0.

Conversely, assume that distributional derivatjVes the zero distribution:
Given an arbitrary test functiop € D|[a, b], let

/ (¢(s) —aoO(s))ds for t€a,b],
0 for teR\ [a, b],

p(t) =

where

w= [ Co(s)ds, O = — L)

b
/ ©Cap(s)ds

and g, is the function given by§.4.7). Then

/:@(s)ds:l

wherefrom it follows easily thap(a) = p(
p(t)=p(t)—aoO(t) for te€a,b].

Hence 0= (f,p") = (f, ) — (fab ©(s) ds) (f,©). Therefore, by letting:= (f, ©),
we get

o= [ o) ir.0)= [ eptsras

for any ¢ € ®[a, b]. Thus, f = c in the sense of distributions. O

b)=0, i.e., p€D[a, b]. Furthermore,

Originally we had the following: “On the other hand, assume tfyaty’) =0 for any ¢ €
Dla, b).”
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8.4.7 Exercise.For f € L'([a,b]) andk € NU {0} show thatf*) =0 € ©*[a, ]
if and only if there are, 1, ..., cx_1 € R such that

ft)=co+tert+--+cpit*! for aimostallt € [a,b].

An important problem of the theory of distributions is a proper definition o
the product of two distributions. The following classical definitions apply only t
very special kinds of distributions.

8.4.8 Definition. (i) If f,geL'([a,b]) are such thayf g € L!([a,b]), then

(fg,p) /f t)ydt for ¢ €Dla,bl.

(i) If fe®D*a,b] and g:[a,b] — R is infinitely differentiable on[a, b], then
(f9,0)=(f.99)-

To deal with differential equations with distributional coefficients, it is use
ful to have a reasonable definition of the distributighg’ and f’ g, where f €
G([a,b]) and g € BV([a,b]). Obviously, Definition8.4.8 does not cover such
cases. To formulate proper definitions for such couples, the Kurzweil-Stieltj
integral turns to be very helpful.

8.4.9 Definition. If fe€ G([a,b]) and g € BV([a,b]), then we define

b b
<f’g,90>=/ pgdf and <fg’,so>=/ pfdg for p€Dla,b].
8.4.10 Theorem.Let f € G([a,b]) andg € BV([a, b]) be such that
ATf(t)Atg(t)=A"f(t) A g(t) foreveryte(a,b). (8.4.2)
Then

(fo)=fd+[g

Proof. Using Definition8.4.4together with Integration by parts Theorem (Theo-
rem6.4.2) and Substitution Theorem (Theorén®.]), for ¢ € D[a, b] we obtain

(f9),o)=—(fg,¢

/ F(t) 9(t) (1)t = - / 10 gt) de(t)

_ / o6 d[£(t) 9(t) — f(a) g(a)]

= [t [oars [ ral

b b
=/ wgdf+/ pfdg=(f"g,0)+(fd ) =
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8.4.11 Remark.Let f € G([a,b]) andg € BV([a, b]). Then the conditiond.4.2)
is obviously satisfied e.g. if

e both functions are regular (see Reméark.5),
e at least one of them is continuous on b),

e one of them is left-continuous ofa, b) and the other is right-continuous on
(a,b).

8.4.12 Exercises.
e LetT€(a,b), R and

0 if t<r,
gt)y=< s if t=r,
1 if t>7.

Prove that fab v gdg=p(7) 2 forany e € BV([a,b]).

Hint: Using Exercisé.3.3 determine the values of the integrqlaé v gdg
and fTb pgdg.

e If h, and o, are the Heaviside and Dirac distributions concentrated :
a pointr € (a,b), show thath, 6, =4, /2.

8.5 Integration on time scales

The time scale calculus, which originated in the work of S. Hil@el [is a pop-
ular tool that provides a unification of the continuous and discrete calculus. It
concerned with functiong : T — R, whereT is atime scale- an arbitrary non-
empty closed sef’ C R. As we will see, the choic& =R leads to the classical
continuous calculus, whil& =Z corresponds to the discrete calculus. Anothe
frequently studied time scale i&=¢” = {¢":n€Z}, where ¢ > 1; this leads

to the quantum calculus. The basic operations of the time scale calculus are
A-derivative, V -derivative, A -integral, andV -integral. The main goal of this
section is show that both types of integrals on time scales are special cases o
Kurzweil-Stieltjes integral.

Let us start by introducing some basic notationt T andt <sup T, we
denote

o(t)=inf{s € T:s>t}, u(t)y=o(t)—t.
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Moreover, if t=supT <oo, we defineo(t)=t, wu(t)=0. The functions

0:T—T and p: T —[0,00) are referred to as thi@rward jump operatorand

forward graininessrespectively. Ift € T satisfieso(t) >t, we say that is right-

scatteredotherwise, ifo(t) =¢ andt <sup T, thent is calledright-dense
Similarly, if te T and¢>inf T, let

p(t)=sup{seT:s<t}, v(t)=t—p(t).

Moreover, if t=inf T > —oco, we define p(t)=t, v(t)=0. The functions
p:T—T andv:T — [0,00) are called thébackward jump operatoand back-
ward graininessrespectively. Ift € T satisfiesp(t) <t, we say thatt is left-
scatteredotherwise, ifp(t) =t andt > inf T, thent is calledleft-dense

For an arbitrary pair of real numbeus< b, we use the following notation:
la,blr=[a,b]NT, [a,b)r=][a,b)NT, (a,blr=(a,b]NT, (a,b)r=(a,b)NT.
These sets are referred to as the time scale intervals, and the sufishejis to

distinguish them from ordinary intervals.

A function f: T — R is calledrd-continuousif it is continuous at all right-
dense points and regulated @h Similarly, f is calledld-continuous if it is
continuous at all left-dense points and regulatedion

Given a function f: T— R, we can introduce the\-derivative and the
V -derivative of f at a pointt € T. Although our main interest lies in integration
theory, we include the definitions of both derivatives and some of their propert
(for more detalils, seéll, 15]).

8.5.1 Definition. Consider a functiory : T — R and a pointt € T.

e Suppose thatt <supT, or t=supT and p(t)=t. We say that the
A-derivative f2(t) exists and equal® € R, if for every ¢ >0, there is
a ¢ >0 such that

[f(o(t)) = f(s) = D(a(t) — s)| <elo(t) — s
forall se (t—d,t+0)r.

e Suppose thatt >infT, or t=infT and o(t)=t. We say that the
V -derivative fV (t) exists and equal® € R, if for every ¢ >0, there is
a d >0 such that

£ (p(t) = f(s) = D(p(t) — s)| <elp(t) — s|

forall se (t—d,t+0)r.
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The following remarks should help to clarify the meaning of both derivative:
as well as the difference between them:

o If T=R, then f2(t)= fV(t)= f'(t), i.e., both derivatives coincide with
the classical derivative.

o If T=7, then f2(t)=f(t+1)— f(t) and fV(t)=f(t) - f(t—1), i.e.,
the A- and V -derivative reduce to the forward difference and backwar
difference, respectively.

e More generally, ift € T satisfieso(t) > ¢, then

o Flo) = F0) fo()— F1)
FPO="=0=r ~— a0

Similarly, if t € T satisfiesp(t) <t, then

f@) = flp) _ f{t) = fp(®))
t—p(t) v(t)

We now proceed ta\ - and V -integrals of a functionf : [a, b]r — R, which
are in a certain sense inverse operations to Aheand V -derivatives. As in
the classical calculus, there exist definitions in the spirit of Newton, Rieman
Lebesgue, and Kurzweil. Moreover, these integrals also have their Stieltjes-ty
counterparts. We are primarily interested in Kurzweil integrals, but it is instructiy
to begin with Riemann integrals.

)=

In the rest of this section, we always assume thab € T. A partition of
la, b]7 is a partitionP = («, £) of [a, b] such that bothe and £ are subsets of .
We keep the notation used earlier in this book and write

(o)

S(P)=>" f(&) aj—aj1).

j=1

(Throughout this section, the symholhas two different meanings,(«) denotes
the number of subintervals in a divisiaa, while v(t) is the backward graininess
at a pointt € T. The meaning o’ will be always clear from the context.)

The definition of the classical Riemann integral relies on partitiong: of]
such that the distance of each two successive division points does not exce
certaind > 0. However, if we replacda, b] by the time scale intervala, b)r,
such a partition need not exist. For this reason, the Riendanand V -integrals
involve a modified type of partitions that are described in the next definition.

8.5.2 Definition. Given a >0, the symbolP;([a, blr) will denote all parti-
tions P=(«, &) of [a,b]r such that for eachie {1,...,v(a)} we have either
o; — o1 <94, 0r U(Ozi_l) =qQ;.
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We are now able to define the Riemann and V -integrals.
8.5.3 Definition. Consider a functiory : [a, b]t — R.

¢ We say that the Riemana -integral f: f(t)At exists and equal$ € R, if
for everye >0, there is a > 0 such that|S(P) — I| < ¢ for all partitions
P € Ps([a, b]r) satisfying¢; € [a;—1, p(a;)]r foreachie {1,...,v(a)}.

¢ \We say that the RiemanW -integral f;’ f(t)Vt exists and equalg € R, if
for everye >0, there is a >0 such that|S(P) — I| < ¢ for all partitions
P € Ps([a,b]r) satisfying¢; € [o(a;—1), oy]r foreachie {1,...,v(a)}.

A complete theory of Riemani - and V -integrals can be found ifLE]; here
we limit ourselves to several remarks:

e If T=R, then fabf(t)At:ff f(t)Vt:fff(t) dt, i.e., both integrals co-
incide with the classical Riemann integral.

e The requiremen{; € [;_1, p(a;)]r in the definition of theA -integral means
that if o; is left-scattered, then it cannot serve as a tadder, , o;|r. Thus,
if ¢t T satisfieso(t) >t, then the only possible partitioR = (a, ) that

is taken into account in the definition gf At iIsSt=ay=& <ag =

o(t). Thereforeft ()AL= f(t)(o(t) —1t) _f(t)u(t).

Similarly, the requwemenfi € [o(a;-1), ag]r in the definition of theV -
integral ensures that ik, _; is right-scattered, then it cannot serve as a ta
for |1, o;]r. Hence, ift € T satisfiesp(t) <t the only possible partition
P=(a,¢§) appeanng in the definition of HVtis p(t) =ap <& =

ay=t. Thereforef (t)Vt=f(t )(t—p(t)) :f(t)u(t).

o If T=Z,then [ f(t)At=S"0"1 f(¢) and [V f(H)VE=S0_ ., f(t) (see
the previous remark; fob <1, there is only one possible choice for the
partition of [a, b appearing in Definitio3.5.3).

e If f:]a,blr — R isregulated, thenitis Riemanh- andV -integrable, and
the indefinite integrals

:/tf(s)As and Fy(t /f t €fa, blr,

are continuous. Moreover, if is rd-continuous, thed’?(¢) = f(t) for all
t € a,b)r;if f isld-continuous, thed (t)= f(t) for all t € (a, b]r.

o If I is continuous,FA =f on [a,b)r and f is A-integrable, then
f f(t)At=F(b) — F(a). Similarly, if ' is continuous,FY = f on (a, b|r
and f is V-integrable, then/” f(t)Vt = F(b) — F(a).
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We now turn our attention to Kurzweik - and V -integrals. As in the classical
case, they have several advantages over the Riemann (or Lebesgue) integral:
class of integrable functions is larger, and the assumptions of the fundamental
orem of calculus are less restrictive (each function whichAs-ar V -derivative
is Kurzweil A- or V-integrable). In time scale calculus, the concepts of a gauc
on [a, blr and ad-fine partition of|a, b|r take the following form:

8.5.4 Definition. Consider a pair of functions;, 0% : [a, bjr — (0, 00). Thend =
(01,0r) is called aA-gauge on[a, b]r if dgr(t) > u(t) for all t €[a,b)r, and a
V-gauge onla, b|y if 0.(t) >v(t) forall t € (a,blr. If §=(d.,0r) is either a
A-gauge or & -gauge ora, b|t, a partitionP = («, &) of [a, b]7 is calledd-fine
if

1, 05] C 1§ = 00(&5), &+ 0r(E))] forallj=1,...,v(a).  (85.1)
8.5.5 Remark. We emphasize that the interval on the right-hand sid& &i.1) is
closed and cannot be replaced by an open interval. This is in contrast to Definit
6.1.], where it does not matter whether we choose an open or closed interval (

Remark6.1.5 — both choices lead to the same definition of the Kurzweil-Stieltje
integral.

Instead of introducing the Kurzweih - and V -integrals, we choose a more
general approach in the spirit of this book, and define the Kurzweil-Stieltje
A- and V-integrals of a functionf:[a,b]r — R with respect to a function
g:la,blr —R. As in the rest of the book, iP =(«, &) is a tagged partition
of [a, b, we write

v(ox)

S(f.dg. P)=> " f(&)g(ey) — g(ej1)).

j=1
8.5.6 Definition. Consider a pair of functiong, ¢ : [a, b]T — R.

e We say that the Kurzweil-Stieltje& -integral f;’ f(t)Ag(t) exists and equals
I R, if for every € >0, there is aA -gauges on [a, by such that

’S(f,dg,P)—[|<€
for all §-fine partitionsP of [a, b]T.

e We say that the Kurzweil-Stieltje§ -integral f: f(t)Vg(t) exists and equals
I eR, if for every € > 0, there is aV -gauged on [a, b|7 such that

|S(f7dg7p)_l|<€

for all ¢-fine partitionsP of [a, br.
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If g(t)=t for all ¢t € [a,b]r, the two integrals are referred to as the Kurzweil

A-integral andV -integral, and they are denoted lﬁ f(t)At and fabf(t)Vt,
respectively. Let us show that Riemann integrability implies Kurzweil integrabi

ity.
8.5.7 Theorem.Consider a functionf : [a, b]t — R.

¢ If the RiemannA -integral fab f(t)At exists, then the Kurzweih -integral
f: f(t)At also exists and has the same value.

e If the RiemannV -integral fabf(t)Vt exists, then the KurzweV -integral
fab f(t)Vt also exists and has the same value.

Proof. We prove the first statement, and leave the second up to the reader. S
pose that the Riemani -integral [ = f: f(t)At exists, and choose an arbitrary
e>0. By definition, there is & > 0 such that|S(P) — I| < ¢ for all partitions

P € Ps([a,b]r) satisfying; € [a;—1, p(ai)]r foreachie {1,... ,v(a)}. We de-
fine a A-gauged = (4, 05) on [a, b]r as follows:

5 v(t)/2 if te(a,blrandp(t) <t,
) otherwise

< u(t) iftela,b)r ando(t) >t,
Or(t) = i

) otherwise
Now, consider an arbitrary -fine partition P = («x, €) of [a,b]r. By splitting
each interval-point pai[c; 1, o], &) into ([, &), &) and (&, i), &), we
get a partitionP’ = (o, £') which is still §-fine and satisfies(P) = S(P’). By
the definition aj-fine partition, we have

[0 1, e C € —0r(&), & +0r(&))] forallj=1,...,v(a).

It follows from the construction of”’ that for eachj =1,...,v(a/'), either¢; =
oy, or &=a. Inthe latter case, we have,_, € [§} —d.(¢)),{)r. Observe
that if p(¢}) <&}, then the intervalg) — d..(&}), &;)r is empty (by the definition
of 1). This shows that the tag cannot coincide with the right endpoint, if it
is left-scattered, i.e., we always hagec [a; 1, p(a;)]r.

Finally, observe that the inequality, — o’ _, > canbe true only it =«a}_,
ando’; =o(a}_,); this shows that”” € P;([a, blr) . Consequently,

[S(P) = I|=[S(P") = 1| <,

i.e., the KurzweilA -integral exists and equals the Riemafirintegral. O
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Instead of developing a theory of Kurzweil-Stieltjés- and V -integrals, we
show that they are in fact special cases of the Kurzweil-Stieltjes integral fro
Definition'6.1.2. This means that all basic properties of the Kurzweil-Stielt}es
and V -integrals can be obtained as corollaries of the results from Chapter 6.

First of all, we describe two possible ways of extending a function defined ¢
the time scale intervdk, b]r to the full interval[a, b]. For eacht € [a, b], let

t* =inf{s € [a, b]r: s > t},
t.=sup{s€a,blr:s<t}.

Note that if t € [a, b]T, thent*=t,=t; otherwise,t, and ¢t* are elements of
la, b satisfyingt. <t <t¢*. Now, for an arbitrary functiory : [a, b]r — R, we
define the extension* : [a, b] — R by

g (t)=g(t*) foralltela,b, (8.5.2)
and the extensiop. : [a,b] — R by
g«(t)=g(t.) forallte]a,b]. (8.5.3)

These two extensions appear in the statement of the next result.

8.5.8 Theorem.Consider a pair of functions, g: [a,b]r — R. Let f:la, b —
R be an arbitrary function such thaf(t) = f(¢) for all t < [a,b|]r. Then the
following statements hold:

1. The integral [” f(t)Ag(t) exists if and only if the integral” f(t)dg*(t)
exists; in this case, both integrals have the same value.

2. The integral fa” f(t)Vg(t) exists if and only if the integrayab f()dg.(t)
exists; in this case, both integrals have the same value.

Proof. We prove only the first statement; the proof of the second one is simil
and is left to the reader. We will repeatedly use the fact that # (a, &) is
a partition of[a, b|r, thena, £ C T, and therefore

v(e)
S(f.dg*, P)= Z FEN g () = 9" (2j-1))
v(a)

=2 F(&)(9(ay) = g(as1)) = S(f,dg, P).

Suppose first thaybf g*(t) exists. Given an arbitrary>0 there is
a gauge : [a, b] — (0,00) such that|S(f,dg*, P) — [ f(t)dg*(t)| < ¢ for each
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5-fine partition P of [a, b]. Now, leto = (dz,0r) be aA-gauge onfa, b|r given
by 0.,(t)=0(t)/2 and dx(t) =max(d(t)/2, u(t)) for all ¢t [a,blr. Let P=
(o, &) be an arbitraryj-fine partition of [a,b]y. Note that P need not be
o-fine: there might existe {1,..., v(a)} such thaty; > & +4(&;). In this case,
we necessarily havég (&) = (&) >0, a; =0(&;), and thereforey*(t) = a; for
all te (&, aq]. After replacing each such interval-point paiey; 1, o], &;) by
the interval-point pair([a;_y, & +6(&)/2],&) and an arbltrary5 -fine partition
of [6;44(&)/2,«i], we get a partitionP’ of [a, b], which is d-fine and satisfies
S(f,dg*, P = S(f, dg*, P). Hence, we have

b
\ (f,dg, P / F(t)dg ' \s<f,dg*,P'>— [ ithag o] <<

which proves thagfab f(t)Ag(t) exists and equali” f(H)dg*(t).

Conversely, assume thgff f(t)Ag(t) exists. Given an arbitrary> 0 there
is a A-gauged = (4, dg) on [a,b]r such that|S(f,dg, P f ft)Ag(t)| <e
for eachd-fine partition P of [a,b]y. Now, let 4 :[a, b] — (0, 00) be a gauge
given by

min(dy(t),suplt,t +dr(t)|r —1t) ift€(a,b)r,

5() = supla, a+dg(a)lr —a if t=a,
o (b) if t=0,
dist(¢, [a, b]r) if t € [a,b]\T.

Let P = (a, &) be an arbitrary -fine partition of [, b]. Note thatP need not be
a partition of [a, b|7 (i.e., the division points and tags need not be elemenis)of
However, if we show that there existsdafine partition P’ of [a,b]r such that

S(f,dg, P")=S(f,dg*, P), then

‘fdg /ngHfdg, /ng

and the proof will be complete.

Thus, suppose thaP is not a partition of{a, b]r (otherwise takeP’ = P).
Sinceay=a €T, there exists the smallest {1, ..., v(a)} such thatr, , € T,
and at least one ofy;, & is not an element off. However, since the defini-
tion of 0 guarantees that we have eittige T, or &; ¢ T and [o;_1,a;] NT =10,
we necessarily havg, € [a,b)T and «; ¢ T. We now modify the partition” as
follows:

e Replace the interval-point paifa;_1, o], &) by ([ai-1, ], &)



KURZWEIL-STIELTJES INTEGRAL 329

e Remove all interval-point pair§a;_1, o], €;) suchthata,_q, o] C [, f].

e If there is an interval-point paif{c;_1, o;],§;) such thatoy; <o <af <
aj, replace it by([o}, o], &)

Denote the partition obtained in this way kY. Becauseg* is constant on
[, of], itis clear thatS(f,dg*, P') = S(f,dg*, P). Since

a; <&+ 0(&) <suplé, & + 0r(&)]r,

it follows from the definition of«a; that o <sup|¢;, & + 0r(&)]T, and conse-
quently

[ai1, o] C & —62(&%), &+ 0r(&)].

If necessary, we can repeat the procedure we have just described@®weh
placed byP. The procedure does not increase the total number of division poin
and decreases the number of division points that are not elemefitstdius, af-
ter finitely many steps, we obtain the desir@dine partition P’ of [a, b]r such
that S(f,dg, P')=S(f,dg*, P') = S(f,dg*, P), and the proof is complete. O

8.5.9 Corollary. Consider a functionf : [a,b]r — R. Let f:la,b] =R be an
arbitrary function such thatf (t) = f(¢) for all ¢ € [a, b]r. Also, letg(t) =t* and
h(t)=t. for all t € [a,b]. Then the following statements hold:

1. The integralf;’f(t)At exists if and only if the integraff f(t)dg(t) exists;
in this case, both integrals have the same value.

2. The integralff f(t)Vt exists if and only if the integraff f(t)dh(t) exists;
in this case, both integrals have the same value.

Bibliographic remarks. More information about the time scale calculus can b
found e.g. inlL4,57]. The basic reference on Riemanx+ and V -integrals (as
well as Lebesgue integrals on time scales)&.[ The definition presented there is
slighly different from our Definitior8.5.2 The conditions; € [a;_1, p(«;)]r and

& €lo(aiq), a;)r are replaced by; € [a;_1, ;)T and &; € (a1, ], respec-
tively. Nevertheless, the two definitions are equivalent; $&eRemark 5.17].

Kurzweil A- and V-integrals were introduced inL0€, and subsequently
discussed ind41]. In[10§, the definition of aA -gauge and & -gauge is slightly
less restrictive as it allows the possibility thgt(a) =0 anddz(b) =0. However,
one can easily see that this modification has no influence on the definitiofi-of a
fine partition of|a, b|t.

Riemann-StieltjesA - and V-integrals are treated inlD5. As far as we
are aware, there is no literature dealing with the Kurzweil-Stieltfesand V -
integrals. Special cases of Corolléy5.9with f(t) = f*(t) were obtained in
[38,1134.
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8.6 Dynamic equations on time scales

The time scale calculus introduced in the previous section makes it possible
unify the theories of differential and difference equation by considering the s
called dynamic equations, where classical derivatives or differences are repla
by A- or V-derivatives. The general form ofa-dynamic equation is

a®(t) = f(x(t),1), (8.6.1)
while V -dynamic equations have the form
2V (t) = f(x(t), 1), (8.6.2)

where in both cases: T —R" and f:R" x T — R". Integration leads to the
equations

a;(t):x(to)—l—/t f(xz(s),s)As, (8.6.3)
() = 2(tg) + /t F(2(s), ) Vs, (8.6.4)

wheret,,t € T, and the integrals on the right-hand sides are the Kurzeihnd
V -integrals introduced in the previous section.

Equations 8.6.9 and B8.6.4 are the main subject of this section. Since the
indefinite Kurzwell integrals are always continuous, each solutioof (8.6.9
or (8.6.9 necessarily has the same property. Moreoves,-# f(z(s),s) is rd-
continuous, then the integral on the right-hand side&3di.() exists as a Riemann
integral, it is A-differentiable, and the equation reduces back&®.(); simi-
larly, if s+— f(z(s),s) is Id-continuous, then the integral on the right-hand sidk
of (8.6.9) is V -differentiable, and we geB(6.2). Nevertheless, we focus on the
more general integral equatior&s .9 and 8.6.4 without imposing any continu-
ity conditions onf .

Since we know that Kurzweil\ - and V -integrals can be rewritten as Kurzweil-
Stieltjes integrals, it comes as no surprise that equati®risy and 8.6.9 are
equivalent to certain Kurzweil-Stieltjes integral equations. This relation is d
scribed in the next theorem, where we use the notatdnd) and 8.5.3 from
the previous section.

8.6.1 Theorem. Suppose that,b,t, €T, a <ty <b, and consider a function
f:Bx|a,blr—R", where BCR". Let f:B x [a,b]—R" be an arbitrary
function such thatf(z,t) = f(z,t) for all z€ B, t€|a,blr. Also, letg(t)=t*
and h(t) =t, for all ¢t € [a,b]. Then the following statements hold:
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1. Ifafunctionz : [a, b]y — B satisfies

35(75):93(750)+/t f(x(s),s)As, t€]la,b]r, (8.6.5)

then the functiony : [a, b] — B given byy = z* satisfies

y(t) =y(to) +/tt f(y(s), s)dg(s), te€]a,b. (8.6.6)

Conversely, each function: [a, b)) — B satisfying(8.6.6) has the formy =
x*, wherez : [a, bjy — B satisfieq8.6.5).

2. Ifafunctionz : [a, bl — B satisfies

a:(t):x(to)—l—/t f(z(s),s)Vs, te]a,b|r, (8.6.7)

then the functiony : [a, b] — B given byy =z, satisfies

y(t) =y(to) +/tt f(y(s), s)dh(s), t€la,b]. (8.6.8)

Conversely, each function: [a, b] — B satisfying(8.6.9 has the formy =
z., Wherez : [a, bly — B satisfieq8.6.7).

Proof. Suppose that:: [a,bjr — B satisfies 8.6.5 and y=2z*. For eacht ¢
[a, b], Corollary8.5.9implies

y(t) =z(t*) = z(ty) —i—/t f(z(s),s)As

=z"(to)+ | f(2"(s),5)dg(s)

to

=y(to)+ [ f(y(s),s)dg(s).

to

Since the functiory is constant ort, t*], we havej;t* f(y(s),s)dg(s)=0, and
therefore(8.6.6) holds.

Conversely, assume that [a, b] — B satisfies8.6.6). Since the functiory
is constant on each interv@, t*] with ¢ € [a,b], it follows that y has the same
property. Hencey =z*, wherez : [a, bjr — B is the restriction ofy to [a, b]r.
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For eacht € [a, b]T, Corollaryi8.5.9implies

£(t) = y(t) = y(to) / F(y(s), 5) dg(s)

=" (to) + f(())dg()

:x(t0)+/t f(z(s),s)As

The proof of the second statement is similar and is left to the reader. O

A consequence of the previous theorem is that all results on generalized
ferential equations are directly applicable to dynamic equations on time scal
We illustrate this fact in the context of linear equations, and show how the thec
developed in Chapter 7 leads to results on dynamic equations.

Let a:[«, Blr — 2(R"), b: |, Bjr — R™ be arbitrary functions. If we let
fz, t)=a(t)z +b(t) forall z € R™ andt € [«, [, equations§.6.5) and 8.6.7)
become

x(t) =z(to) —|—/ (a(s)z(s)+b(s))As, t€a, Pt (8.6.9)

to

a:(t):x(to)—l—/(a(s)x(s)+b(s))Vs, te|a, B, (8.6.10)

to

Thus, ifa: [a, 5] — 2(R") and b:|a, 3] — R™ are arbitrary functions such that
a(t)=a(t) and b(t) =0b(t) for all t € [, B]r, Theorem8.6.1implies that equa-
tions (8.6.9, (8.6.1() are equivalent to the Kurzweil-Stieltjes integral equations

v =utto)+ [ @e)u(s) +HeNAs), 1€l ) (8.6.11)

to

t

yO)=y(to) + [ @(s) + 5N (). o) (8.6.12)
to

with ¢(t) =t* and h(t) =t. for all ¢ € [«, 5]. Using Theoren®.6.1 (substitution

theorem), we see that the last two equations can be rewritten as generalized li

differential equations

y(t)=y(to) + /t d[A1(9)]y(s) + Bi(t) — Bi(ty), te€]a, ], (8.6.13)

to

y(t):y(to)+/td[A2(s)]y(s)—|—B2(t)—B2(t0), te o, g, (8.6.14)

to
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where Ay, As : [a, 5] — #(R") and By, By : [a, 5] — R™ are given by

A() = / Ca(s)dg(s), Bi(t) = / b(s) dg(s). (8.6.15)

to to

Ag(t):/ a(s)dh(s), Bg(t):/tl;(s) dh(s) (8.6.16)

to to

forall t € [, 3].
These considerations lead to the following existence and uniqueness theo
for linear dynamic equations.

8.6.2 Theorem.The following statements hold:

1. Suppose that: [, Bt — 2 (R™), b: [«, f]r — R™ are Kurzweil A-inte-
grable, I +a(t)u(t) is invertible for eacht € [a, ty)r, and there exists a
Kurzweil A -integrable functionm : [«, f]r — R such that

/u " a(s)As

Then equatior8.6.9 has a unique solution : [«, F]r — R".

§/ m(s)As whenevew, v € [a, B, u<v. (8.6.17)

2. Suppose that: [, f]r — Z(R"), b: [«a, f]r — R™ are Kurzweil V -inte-
grable, I —a(t)v(t) is invertible for eacht € (¢, 5]r, and there exists a
Kurzweil V -integrable functionn : [«, 5]r — R such that

/uv a(s)Vs

Then equatior{8.6.10) has a unique solution : [a, G| — R".

g/ m(s)Vs whenevew,v € [o, B, u<v. (8.6.18)

Proof. We prove the first statement; the proof of the second one is similar and
left to the reader.

Let A;: [a, B] — Z2(R™), By :[a, f] — R™ be given by 8.6.15. Note that the
function g(t) =t* is regulated (because it is nondecreasing) and left-continuot
According to Corollary6.5.4 A, and B; are regulated onc, 5]. For all t €
(to, O], the matrix] — A~ A;(t) =1 —a(t)A~g(t) =I isinvertible. Ift € [a, to)T,
then I + AT A (t)=1+a(t)ATg(t)=1+a(t)u(t). On the other hand, it €
[, to) \ T, thenI + A" A (t)=1+a(t)ATg(t)=1. Thus, I+ ATA,(t) is in-
vertible for allt € [a, ).
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Note that A, (t*) = A,(t) for eacht € [«, 3], since g is constant ont, t*].
Hence, ifa is an arbitrary division ofa, 5], we get

v(@)

-5

Jj=1

v(e) v(e)
V(Al,a)zz|A1(aj)—A1(aj_1)\=Z|A1(a;f)—A1(a;_1)|
j=1 j=1
v(e) o
=>- [ ats)dgts
j=1 Qg
v(e) o 8
SZ/ m(s)As:/ m(s)As,
j=1 a;_l «

which shows that4; has bounded variation di, 5].

Thus, all assumptions of Theorem6.2 are satisfied, and equaticf.6.13
has a unique solution : [«, 5] — R™. By Theorem8.6.], equation 8.6.9 has
a unique solutionz : [, 5] — R™, which is obtained as the restriction gfto

[O{,ﬁh‘. O

8.6.3 Remark. In the theory of dynamic equations, the requirement the
I+a(t)u(t) is invertible for eacht € [a,ty)r is known asu-regressivity (or
simply regressivity), while the condition thdt— a(¢)v(¢) is invertible for each

t € (to, Bt is calledv-regressivity. ForA-dynamic equations, it is usually sup-
posed (seelld, Chapter 5]) thatz and b are rd-continuous functions, while the
common assumption fo¥ -equations is Id-continuity oft and b (see B]). Un-
der these assumptions, boh@.17) and 8.6.1§ hold, because: is bounded.
Moreover, equations3(6.9 and 8.6.10 reduce tox®(t) = a(t)z(t) +b(t) and
vV (t)=a(t)z(t) +b(t), respectively. Our Theorei®.6.2is more general — no
continuity or boundedness afor b is assumed.

The next result is a continuous dependence theorem for solutions of line
A-dynamic equations.

8.6.4 Theorem.Leta: [a, Sy — Z(R"), b: [o, Bt = R", ai: [a, B]r — Z(R"),
bi : [, B]r — R™, k € N, be KurzweilA-integrable. Suppose thdt+ a(t)u(t) is

invertible for eacht € [a, to), and there exists a Kurzweil -integrable function
m: [a, f]T — R such that

/u " () As

S/ m(s)As foru,v € [a, flr, u<v, keN. (8.6.19)
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Furthermore, assume that

t ¢
lim sup / ak(s)As—/ a(s)As| =0, (8.6.20)
k=00 tefa,Br | Ja a

¢ ¢
lim sup / bk(s)As—/ b(s)As|=0. (8.6.21)
k"oote[()é,ﬁ]ﬂ‘ «a a

Finally, let 20 € R", k € N, be a sequence satisfying

lim 7 = 2"

k—oo

Then there exists &, € N such that the equations

t

wi(t) =2} +/ (ar(s)zr(s) +bi(s))As,  t€a, Blr, k>ko, (8.6.22)
to

have unique solutionsy, : [«, 8]t — R™. Moreover,z, = =, wherezx : (o, S|t —

R"™ is the unique solution of the equation

Jc(t):x0+/t(a(s)x(s)+b(s))As, t e [a, Blr. (8.6.23)

Proof. Consider the functions

Alt) = / i(s)dg(s), B(t)= / b(s) dg(s).

to

t t
)= [ @) dg(s), Belt)= [ Buls)dg(s), ke,
to to

wherea: [o, 8] — 2(R"), b: o, 3] — 2(R"), ax : [ov, 8] — 2(R"), by : [, ] —

R", k€N, are arbitrary functions satisfying(t) = a(t), b(t)=b(t), ax(t)=

ax(t), bp(t) =bi(t) forall t € [, B]1. As in the proof of Theorer.6.2 one can
show thatA, A, B, By are regulated, left-continuous+ A* A(t) is invertible
for eacht € [a, ty)r, and

B
var® A, S/ m(s)As, keN.

Corollary8.5.9and the assumption8.6.2() and 8.6.27) imply that A, = A and
By =B on [a,f]r. SinceA, A, B, By are constant on each intervgl t*|
with ¢ € [a, §], we conclude thatl, = A and B, = B on |, 3].

Thus, by Theorerii.6.G there exists &, € N such that for every: > kg, the
equation

yp(t) =2) + /t d[Ak(8)]yk(s) + Bi(t) — Bi(to), te€ o, ], (8.6.24)

to
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has a unique solutiog,, : [a, b] — R"™. Moreover,y, =y, wherey : [a, 3] = R"
is the unique solution of the equation

y@=w+/dmww@+3@—3%»temﬂy

to

By Theoren®.6.], the restrictions ofy andy; to [a, S|t are the unigue solutions
of the equationsd.6.23) and 8.6.22), respectively; this completes the proofa

8.6.5 Exercise.Formulate and verify the counterpart of Theor@rf.4for linear
V -dynamic equations.

Bibliographic remarks. A special case of the relation between dynamic eque
tions on time scales and Kurzweil-Stieltjes integral equations was describec
[134]. Kurzweil-Stieltjes integral equations having the form

y@ZMM+[f@@JNM$

where ¢ is a nondecreasing functions, are sometimes catledsure differen-
tial equations They include not only dynamic equations on time scales, but al:
differential equations with impulses; see e/@8,[101]. Basic results concern-
ing the existence, uniqueness and continuous dependence of solutions to no
ear measure differential equations are availabléLiil[135. The applicability

of the theory of linear generalized differential equations in the context of line
dynamic equations was demonstratedlifij, which contains a special case of
Theorem8.6.4 The concept ofstieltjes differential equationis closely related
to measure differential equations, and is based on Stieltjes derivatives instea
Stieltjes integrals; more details can be found4f][
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