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1 Introduction

The contribution is a continuation of the research started in [7] and [2]. We deal with periodic prob-
lems for nonlinear distributional (measure) differential equations with a parameter. In particular,
we are interested in the existence of the bifurcation points for such problems.

The concept of distributional differential equations arose more or less together with the concept
of systems with impulses. In general, they can describe some physical or biological problems, such
as heartbeat, blood flow, pulse/frequency modulated systems, biological neural networks and/or
models arising in control theory in which measures can be suitable controls, cf. e.g. [10]. Of
course, differential equations with measures appear also in non-smooth mechanics. In these models,
derivatives are understood in the sense of distributions and the solutions are generally discontinuous,
but not too bad from another point of view, i.e. they are usually regulated or have bounded
variation. For some early results, see e.g. [1] and references therein.

In this article we consider distributional differential systems of the form

Dx = f(λ, x, t) + g(x, t) · Dh, (1.1)

where D stands for the distributional derivatives and λ is a parameter. To this end, a handful tool
are generalized ordinary differential equations (we write simply GODEs) introduced by Kurzweil
in [3,4] in the middle of 1950’s. Since then, many authors have dealt with the potentialities of this
theory (see e.g. [5,9,11] and references therein). In particular, measure differential equations of the
form (1.1) as well as equations with impulses acting in fixed times are their special cases.

Throughout G[0, T ] is the Banach space of regulated functions (functions having all onesided
limits) with values in Rn and equipped with the supremal norm and BV [0, T ] ⊂ G[0, T ] is the space
of functions with bounded variation on [0, T ]. As usual, we denote ∆+x(s) = x(s+) − x(s) and
∆−x(t) = x(t)− x(t−) for x ∈ G[0, T ]. Our basic assumptions are the following:

Assumptions 1.1. T ∈ (0,∞), Ω ⊂ Rn and Λ ⊂ R are open sets, f : Λ × Ω × [0, T ] → Rn,
g : Ω × [0, T ] → Rn, h : R → R has a bounded variation on [0, T ] and is left-continuous on [0, T ],
while h(0−) = h(0) and h(T+) = h(T ).
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2 Distributional differential equations

By distributions we understand linear continuous n-vector functionals on the topological vector
space Dn of functions φ : R → Rn possessing for any j ∈ N ∪ {0} a derivative φ(j) of the order j
which is continuous on R and such that φ(j)(t) = 0 if t ̸∈ (0, T ). The space Dn is endowed by the
topology in which the sequence φk ∈ D tends to φ0 ∈ D in D if and only if lim

k
∥φ(j)

k − φ
(j)
0 ∥∞ = 0

for all non negative integers j.
The space of n-vector distributions on [0, T ] (dual of Dn) is denoted by Dn∗. Instead of D1∗

we write D∗. Given a distribution f ∈ Dn∗ and a test function φ ∈ Dn, ⟨f, φ⟩ is the value of
the functional f on φ. Of course, reasonable real valued point functions are naturally included
into distributions. The zero distribution 0 ∈ Dn∗ on [0, T ] can be identified with an arbitrary
measurable function vanishing a.e. on [0, T ]. Obviously, if f ∈ G[0, T ] is left-continuous on (0, T ],
then f = 0 ∈ D∗n if and only if f(t) ≡ 0.

For h ∈ D∗, the symbol Dh stands for its distributional derivative, i.e.

Dh : φ ∈ D → ⟨Dh,φ⟩ = −⟨h, φ′⟩ for all φ ∈ D.

If f ∈ AC[0, T ], then Df = f ′, of course.
The term g(t, x) · Dh on the right hand side of (1.1) is a symbol for the distributional product

of the function g̃x : t ∈ [0, T ] → g(x(t), t) and the derivative Dh of h. As in the Schwartz setting no
general rule how to define a product of an arbitrary couple of distributions is available, some more
explanation is desirable. In text-books one can find the trivial examples. However, the product
occurring in (1.1) is not covered by these cases. Fortunately, it turned out that, for this aim, a good
tool is provided by the Kurzweil–Stieltjes integral. The following definition has been introduced
in [12] and was used in [9, Section 8.4], as well.

Definition 2.1. If g : [0, T ] → Rn and h : [0, T ] → R are such that the Kurzweil–Stieltjes integral
T∫
0

g dh exists, then the product g · Dh is the distributional derivative of the indefinite integral

H(t) =
t∫
0

g dh, i.e. g · Dh = DH.

The multiplication operation given by Definition 2.1 has all the usual properties excepting that
(cf. [12, Remark 4.1] and [9, Theorem 6.4.2]) the expected formula D(f · g) = Df · g + f · Dg
does not hold, in general. More precisely, if f and g are regulated and at least one of them has a
bounded variation, then

D(f · g) = Df · g + f · Dg +Df · ∆+g̃ −∆−f̃ · Dg,

where

∆+g̃(t) =

{
∆+g(t) if t < T,

0 if t = T
and ∆−f̃(t) =

{
0 if t = 0,

∆−f(t) if t > 0.

Now, we can define solutions of (1.1) as follows:

Definition 2.2. A couple (x, λ) ∈ G[0, T ]×Λ is a solution of (1.1) if x is left-continuous on (0, T ],
x(t) ∈ Ω for all t ∈ [0, T ], the distributional product g̃x · Dh of the function g̃x : t ∈ [0, T ] →
g(x(t), t) ∈ Rn with Dh has a sense and the equality (1.1) is satisfied in the distributional sense,
i.e. ⟨Dx,φ⟩ = ⟨f̃λ,x, φ⟩+ ⟨g̃x · Dh,φ⟩ for all φ ∈ Dn, where f̃λ,x : t ∈ [0, T ] → f(λ, x(t), t) ∈ Rn.
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Together with (1.1) let us consider two related equations

x(t) = x(0) +

t∫
0

f(λ, x(s), s) ds+

t∫
0

g(x(s), s) dh(s) for t ∈ [0, T ] (2.1)

and (GODE)

x(t) = x(0) +

t∫
t0

DF (x(τ), t)
(

i.e. dx

dτ
= DF (x, t)

)
. (2.2)

We have

Theorem 2.1. Let Assumptions 1.1 and

f(λ, · , · ) is Carathéodory on Ω×[0, T ] for any λ ∈ Λ,

g( · , t) is continuous on Ω for t∈ [0, T ] and there is mh such that:
T∫
0

mh(s) d[var
s
0h] < ∞ and ∥g(x, t)∥≤mh(t) for (λ, x, t) ∈ Λ×Ω×[0, T ].

hold and let

F (λ, x, t) =

t∫
0

f(λ, x, s) ds+

t∫
0

g(x, s) dh(s) for (λ, x, t) ∈ Λ× Ω× [0, T ].

Then the equations (1.1), (2.1) and (2.2) are equivalent.

3 Bifurcations
In the rest we assume that the assumptions of Theorem 2.1 are satisfied. Let us consider the
equivalent periodic problems

Dx = f(λ, x, t) + g(x, t) · Dh, x(0) = x(T ) (3.1)

and

x(t) = x(T ) +

t∫
0

f(λ, x(s), s) ds+

t∫
0

g(x(s), s) dh(s).

Put

Φ(λ, x)(t) = x(T ) +

t∫
0

f(λ, x(s), s) ds+

t∫
0

g(x(s), s) dh(s) for λ ∈ λ, x ∈ B(x0, ρ), t ∈ [0, T ].

Then Φ(λ, · ) maps B(x0, ρ) into G[0, T ] for any λ∈Λ and (3.1) is equivalent to finding couples
(x, λ) such that x = Φ(λ, x).

Definition 3.1. Let x0 be a solution of (3.1) for all λ ∈ Λ and let ρ > 0 be such that x(t) ∈ Ω
for all t ∈ [0, T ] whenever ∥x − x0∥ < ρ. Then (λ0, x0) a bifurcation point of (3.1) if every its
neighborhood in Λ×G[0, T ] contains a solution (λ, x) such that x ̸= x0.
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Next result is taken from [2].

Theorem 3.1. In addition to the assumptions of Theorem 2.1, let x0 and ρ be as in Defini-
tion 3.1 and

there is a γ : [0, T ] → R nondecreasing and such that for any ε > 0 there is a δ > 0

such that
∥∥∥∥

t∫
s

[
f(λ2, x, r)− f(λ1, x, r)

]
dr

∥∥∥∥ < ε|γ(t)− γ(s)|

for x ∈ Ω, t, s ∈ [0, T ] and λ1, λ2 ∈ Λ such that |λ1 − λ2| < δ

and let [λ∗
1, λ

∗
2] ⊂ Λ be such that x0 is an isolated fixed point of both Φ(λ∗

1, · ) and Φ(λ∗
2, · ) and

degLS
(
Id− Φ(λ∗

1, · ), B(x0, ρ), 0
)
̸= degLS

(
Id− Φ(λ∗

2, · ), B(x0, ρ), 0
)
.

Then there is λ0 ∈ [λ∗
1, λ

∗
2] such that (x0, λ0) is a bifurcation point of (3.1).

The conditions necessary for the pair (λ0, x9) ∈ Λ × Ω to be a bifurcation point of (3.1) are
presented in our upcoming paper [8]. One of the equivalent formulations of the main result reads
as follows:

Theorem 3.2. Besides the assumptions of Theorem 3.1, let us assume also

• f has a total differential f ′
x(λ, x, t) for (λ, x, t) ∈ Λ×Ω×[0, T ] fulfilling Carathéodory conditions

withe respect to (x, t);

• g has a total differential g′x(x, t) for (x, t) ∈ Ω × [0, T ] which is bounded on Ω × [0, T ] and
continuous with respect to x ∈ Ω for each t ∈ [0, T ] and there is Θh : [0, T ] → R such that

T∫
0

Θh(s) d [var
s
0 h] < ∞ and ∥g′x(x, t)∥ ≤ Θh(t);

• there is a nondecreasing function γ : [0, T ] → R such that for any ε > 0 there is a δ > 0 such
that ∥∥∥∥

t∫
s

[
f ′
x(λ1, x, r)− f ′

x(λ2, y, r)
]
dr +

t∫
s

[
g′x(x, r)− g′x(y, r)

]
dh(r)

∥∥∥∥ < ε|γ(t)− γ(s)|,

whenever |λ1−λ2|+ ∥x− y∥ < δ.

Then the couple (λ0, x9) ∈ Λ × Ω is not a bifurcation point for (3.1) whenever the homogeneous
system

z(r) = z(T )−
t∫

0

f ′
x(λ0, x0, τ)z(τ) dτ −

t∫
0

g′x(x0, τ)z(τ) dh(τ), r ∈ [0, T ]

have only trivial solutions.

Remark. It is worth noting that in the proofs of theorems 3.1 and 3.2, reformulating the given
problem to GODEs proved useful.
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Example 3.1. Consider the periodic impulse problem x′ = λ b(t)x + c(t)x2, ∆+x(12) = x2(12),

x(0) = x(1) with b, c ∈ L1[0, 1] and
1∫
0

b ds ̸= 0. One can verify that, by Theorem 3.1, the couple

(0, 0) is its bifurcation point, while by Theorem 3.2 the couple (λ, 0) can not be a bifurcation point
whenever λ ̸= 0.
Example 3.2. One can verify that u0(t) = (2 + cos t)3 solves for all λ ∈ R the impulsive problem
related to the Liebau valveless pumping phenomena

u′′ = λ
(
(2 + cos t)u′ + 3(sin t)u

)
+ (6.6− 5.7 cos t− 9 cos2 t)u1/3 − 0.3u2/3,

∆+u′
(π
2

)
=

(
64− u2

(π
2

))
, u(0) = u(2π), u′(0) = u′(2π).

By Theorem 3.2 and using the result by A. Lomtatidze (cf. [6, Theorem 11.1 and Remark 0.5]) and
with some help of the software system Mathematica we can conclude that the couple (x0, 0) can
not be its bifurcation point.
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