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1 Introduction

The hp version of the finite element method (hp-FEM) gains its popularity thanks to its capa-
bility to converge exponentially fast even in presence of singularities. Recent results (see [3] and
references therein) show that the performance of hp-FEM can be further improved by a suitable
choice of higher-order basis functions. Proper basis functions can decrease the condition number
of the corresponding stiffness matrix dramaticly.

For elliptic problems in 2D we distinguish three types of these basis functions: vertex, edge,
and bubble functions. The vertex functions corresponds to vertices in the mesh, edge functions
to edges, and bubble functions to interiors of elements. The bubble functions are characterized
by the fact that they are supported in a single element only. The number of bubble functions
grows quadraticly with the polynomial degree in contrast to the linear grows of the number of
edge functions and constant number of vertex functions. Hence, the bubble functions form the
major part of the basis for higher polynomial degrees.

Moreover, the construction of bubble functions is not restricted by conformity requirements and
there is a freedom in their definition. Our idea is to use this freedom and find a set of basis
functions with best conditioning properties.

We analyze the problem of optimal basis functions for the Poisson equation with homogeneous
Dirichlet boundary conditions

−∆u = f in Ω, (1)

u = 0 on ∂Ω.

The optimal basis functions are known in the 1D case. The 1D bubble functions are defined as
the so called Lobatto polynomials [4] which are defined as primitive functions to the Legendre
polynomials. These Lobatto polynomials are orthogonal in the energetic inner product induced
by the 1D Laplacian. Therefore, the corresponding bubble-bubble block in the stiffness matrix
is diagonal.

The situation is much more difficult in higher dimension, where it is not possible to construct
bubble functions that would give diagonal bubble-bubble block. Therefore various sets of bubble
functions satisfying various criteria are constructed. The optimal choice is not known, yet.

In this work, we compare several popular sets of basis functions with respect to their conditioning
properties and show an interesting result about orthonormal basis functions.
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2 hp-FEM

From now on, we restrict ourselves to the 2D case. For simplicity, we assume Ω to be a polygonal
domain.

The hp-FEM solution of the Poisson problem (1) is based on the weak formulation: find u ∈
V = H1

0 (Ω) such that
a(u, v) = F (v) ∀v ∈ V,

where

a(u, v) =

∫

Ω

∇u · ∇v dx and F (v) =

∫

Ω

fv dx.

The hp-FEM formulation then reads: find uhp ∈ Vhp such that

a(uhp, vhp) = F (vhp) ∀vhp ∈ Vhp,

where Vhp is a suitable finite dimensional subspace of V = H1
0 (Ω).

The space Vhp is defined with the help of the triangulation Thp of the domain Ω. In hp-FEM,
every element K ∈ Thp is assigned an arbitrary polynomial degree pK > 1. The space Vhp is
then given by

Vhp =
{

vhp ∈ V : vhp|K ∈ P pK (K), K ∈ Thp
}

,

where P pK (K) stands for the space of polynomials of degree at most pK in K.

Let N = dimVhp and ϕj , j = 1, 2, . . . ,N , be a basis in Vhp. The finite element solution uhp is
then given as

uhp(x) =

N
∑

j=1

yjϕj(x).

The coefficients yj solve the linear algebraic system Ay = b, where the stiffness matrix A has
entries Aij = a(ϕj , ϕi) and the load vector b has the entries bi = F (ϕi), i, j = 1, 2, . . . ,N .

Clearly, the choice of the basis ϕj is crucial for the properties of the stiffness matrix A.

3 Choice of the Basis

The basis ϕj is defined in a standard finite element way. First, the so called shape functions
are defined in a reference element. These shape functions are then mapped by an affine trans-
formation from the reference element to the physical elements in the mesh. For simplicity, we
consider triangular elements only.

The vertex shape functions coincide with the barycentric coordinates of the reference triangle.
The edge shape functions vanish on all edges of the reference triangle except for one, where
they coincide with Lobatto polynomials. The bubble functions can be defined in various ways.
The simplest construction is based on products and powers of barycentric coordinates [2] and
we call them monomial bubbles. These basis functions have very poor conditioning properties.
If Lobatto polynomials are incorporated in the definition of bubbles then the condition number
improves – see [1] for details. Another idea is to use the Gram-Schmidt orthogonalization
to produce orthonormal bubble functions with respect to the energetic inner product on the
reference element. Clearly, there is infinitely many of such orthonormal sets.
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Figure 1: Comparison of the condition numbers for various sets of shape functions. Poisson
problem, L-shape domain, a mesh refined towards the re-entrant corner, uniform distribution of
polynomial degrees p = 1, 2, . . . , 10.

However, unique position among them have the generalized eigenfunctions of the discrete Lapla-
cian on the reference element K̂ because they are orthonormal in both energetic and L2 inner
products. They are defined by requirements ϕ̂j ∈ P

p
0 (K̂), ϕ̂j 6≡ 0, and

∫

K̂

∇ϕ̂j · ∇v̂ dξ = λj

∫

K̂

ϕ̂j v̂ dξ ∀v̂ ∈ P p0 (K̂),

where λj > 0 are the eigenvalues and P p0 (K̂) =
{

ψ ∈ P p(K̂) : ψ|
∂K̂

= 0
}

.

4 Numerical Results

We present results of computations in an L-shape domain using a mesh refined towards the
re-entrant corner. Figure 1 compares the condition numbers of the stiffness matrices obtained
by different sets of the basis functions. All the sets have identical vertex and edge functions.
The first set includes monomial bubbles, the second have bubbles based on Lobatto polynomials,
the bubbles in the third set are orthonormal with respect to the energetic inner product, and
the fourth set has bubbles from the generalized eigenproblem. We can observe the exponential
growth of the condition number for the first two sets and algebraic growth for the other sets.
Interestingly enough all the orthonormal sets exhibit the same condition number of the stiffness
matrix. This fact follows from the following lemma.

Lemma 4.1 Let X be a finite dimensional vector space such that X = V ⊕W , where V and W
be any subspaces of X with N = dimX, M = dimV , and M −N = dimW . Let b : W ×W 7→ R

be a symmetric bilinear form on W . Let {ϕ1, . . . , ϕM} be a basis of V . Let {ϕM+1, . . . , ϕN} and

{ψM+1, . . . , ψN} be two bases of W such that

b(ϕi, ϕj) = δij for i, j = M + 1,M + 2, . . . ,N,

b(ψi, ψj) = δij for i, j = M + 1,M + 2, . . . ,N.

Moreover, let us set ψi = ϕi for i = 1, 2, . . . ,M .

Then for any other symmetric bilinear form a : X × X 7→ R the Gram matrices Aϕ =
{a(ϕj , ϕi)}

N
i,j=1 and Aψ = {a(ψj , ψi)}

N
i,j=1 have identical eigenvalues.
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Proof. If the functions ψi are expressed as linear combinations of functions ϕk then we can
show that the matrices Aϕ and Aψ are similar. Details can be found in [3]. �

Let us show in detail how to use Lemma 4.1 to see that all sets of bubble functions that are
orthogonal in energetic inner product on the reference element lead to stiffness matrices with
identical spectral condition numbers. Let us put X = Vhp and define V as the span of all vertex
and edge functions and W as the span of all bubble functions. Let us consider two sets of basis
functions {ϕi} and {ψi}, i = 1, 2, . . . , N , such that their vertex and edge functions are identical,
i.e. ϕi = ψi, i = 1, 2, . . . ,M < N . The bubble functions in these two sets are defined as affine
images of shape bubble functions that are orthonormal on the reference element in the energetic
sense. More precisely, let {ϕ̂k(ξ)} and {ψ̂k(ξ)} be two sets the shape bubble functions defined
on the reference element K̂ that satisfy

∫

K̂

∇ϕ̂k · ∇ϕ̂ℓ dξ =

∫

K̂

∇ψ̂k · ∇ψ̂ℓ dξ = δkℓ. (2)

The physical bubble functions in the mesh are defined with the aid of the bijective affine mapping
between the reference and physical element xK : K̂ 7→ K, x = xK(ξ), as follows

ϕi(x) = ϕ̂k
(

x−1
K (x)

)

and ψi(x) = ψ̂k
(

x−1
K (x)

)

.

Here i = M+1,M+2, . . . , N stands for the index of the basis function in the mesh and k stands
for the index of the corresponding shape function on the reference element K̂. The point is that
the bubble functions defined in this way are orthonormal under the following inner product

b(u, v) =







0 if suppu 6= supp v,
∫

K

(

DxK

Dξ

)T

∇u ·

(

DxK

Dξ

)T

∇v det

(

DxK

Dξ

)

−1

dx if suppu = supp v = K,

where u, v ∈W and (DxK/Dξ) stands for the matrix of partial derivatives. The orthonormality
of the bubble functions under this inner product follows from the substitution x = xK(ξ) and
from (2).

In this situation, finally, we can apply Lemma 4.1 to infer that the corresponding stiffness
matrices Aϕ = {

∫

Ω
∇ϕj ·∇ϕi}

N
i,j=1 andAψ = {

∫

Ω
∇ψj ·∇ψi}

N
i,j=1 have identical spectral condition

numbers. In addition, notice that from the same reason the condition numbers of the mass
matrices Mϕ = {

∫

Ω
ϕjϕi}

N
i,j=1 and Mψ = {

∫

Ω
ψjψi}

N
i,j=1 are equal as well.
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