Adam Bartoš

bartos at math dot cas dot cz

Recent materials

Category-theoretic Fraïssé theory: an overview

Constructing compacta from posets and sequences of graphs

Preprints

Publications

  1. C. Bargetz, A. Bartoš, W. Kubiś, F. Luggin.
    Homogeneous isosceles-free spaces.
    Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 118 (2024), 118, 32 pages. [DOI] [arXiv]
  2. A. Bartoš, J. Bobok, P. Pyrih, S. Roth, B. Vejnar.
    Constant slope, entropy and horseshoes for a map on a tame graph.
    Ergodic Theory Dynam. Systems 40 (2020), no. 11, 2970–2994. [DOI] [arXiv]
  3. A. Bartoš.
    Borel complexity up to the equivalence.
    Topology Appl. 270 (2020), 107042, 13 pages. [DOI] [arXiv]
  4. A. Bartoš, J. Bobok, J. van Mill, P. Pyrih, B. Vejnar.
    Compactifiable classes of compacta.
    Topology Appl. 266 (2019), 106836, 25 pages. [DOI] [arXiv]
  5. A. Bartoš.
    Tree sums of maximal connected spaces.
    Topology Appl. 252 (2019), 50–71. [DOI] [arXiv]
  6. T. Banakh, A. Bartoš.
    Lower separation axioms via Borel and Baire algebras.
    Serdica Math. J. 44 (2018), 155–176. [PDF] [arXiv]
  7. A. Bartoš, R. Marciňa, P. Pyrih, B. Vejnar
    Incomparable compactifications of the ray with Peano continuum as remainder.
    Topology Appl. 208 (2016), 93–105. [DOI]
  8. A. Bartoš.
    On n-thin dense sets in powers of topological spaces.
    Comment. Math. Univ. Carolin. 57, 1 (2016), 73–82. [DOI]

Thesis

My PhD thesis Families of connected spaces, supervised by Petr Simon and Benjamin Vejnar, and defended in September 2019, consists of the papers 4., 5., 6. and of an introduction providing more context and references. The following note summarizes an open question regarding our notion of compactifiable classes of compacta.